Time-frequency decomposition
Theory and Practice

EEGLAB Workshop XXIII
AlISH, Mysore, India
Day 1, 18:00
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« Signals — EEG

Goals
— Describe dynamic characteristics of brain activity
— Describe relation between different regions of brain

Approaches

— Time domain

— Frequency domain
— Time/Frequency
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Different meanings traditionally given to different
frequency bands

Computational
NeufOSClenCe

Beta 15-30 Hz

Defta

Awake, normal alert
consciousness

Alpha 9-14 Hz
Relaxed, calm, meditation,
creative visualisation ks

Theta 4-8 Hz

Deep relaxation and
meditation, problem
solving

Delta 1-3 Hz

Deep, dreamless
sleep
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MEEG spectrum
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Time varying frequency content
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Time-varying frequency content
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Power Spectrum does not describe temporal variation
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Swartz
Center for
Computational

-
Multiresolution Short-Time Wigner-Ville
Wavelets / ier Transf4 Distributions

S. Makeig, 2005
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Plan

Part 1: Frequency Analysis
— Power Spectrum
* Approaches
— FFT
— Welch's Method
« Windowing

Part 2: Time-Frequency Analysis
— Short Time Fourier Transform

— Wavelet Transform
— ERSP

Part 3: Coherence Analysis
— Inter-Trial Coherence
— Event-Related Coherence
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Part 1: Frequency Analysis

* Goal: What frequencies are present in signal?
 What is power at each frequency?

* Principle: Fourier Analysis
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Fourier Analysis

Computational
NeufOSClenCe

Freq. decomp. Sum of freq.
Time
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Figure, courtesy of Ravi Ramamoorthi & Wolberg
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| Power Spectrum. Approach 1: FFT
Ed

&

)

Why not just take FFT of our signal of interest?

Advantage — fine frequency resolution
— AF =1/ signal duration (s)
— E.g. 100s signal has 0.01 Hz resolution
— But, do we really need this?

Disadvantage 1 — high variance
— Solution: e.g. Welch’s method

Disadvantage 2 — no temporal resolution
— Solution 1: Short-Time Fourier Transform
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Amplitude and phase

Power spectra describe the amount of a given frequency
present

NOT a complete description of a signal: We also must
know the phase at each frequency

FFT/STFT/Wavelet return an amplitude and phase at
each time and frequency (represented as complex #).

To find power, we compute the magnitude, which
discards phase.
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Phasor representation

\r"
* A complex number x + yi can be expressed in terms of
amplitude and phase: ae®

amplitude*exp(i*phase)
amplitude = sqrt(x"2 + y"2); phase = atan(y/x);

-
N

/
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Approach 2: Welch’s Method

EEG amplitude

Time

Calculate power spectrum of short windows, average.
Advantage: Smoother estimate of power spectrum

Frequency resolution set by window length
e.g. 1s window -> 1 Hz resolution
In practice: taper, don’'t use rectangular window
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Windowing

When we pick a short segment of signal, we typically
window it with a smooth function.

Windowing in time = convolving (filtering) the spectrum
with the Fourier transform of the window

No window (=rectangular window) results in the most
smearing of the spectrum

There are many other windows optimized for different
purposes. Hamming, Gaussian...
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Windows and their Fourier transforms

Compu!aﬂonal
Neuroscience

Rectangular window Fourier transform
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Close-up view

Frequency response of popular window functions

A

No window

AAAAA
A AR

Hamming

AA N

Four-term
8 -100 | Blackman-Harris L

Notice the tradeoff between
sidelobe rejection and

width of main lobe o—Side lobes

Seven-term
Blackman-Harris

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
FFT frequency bin
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Part 2: Time-Frequency Analysis

Short-Time Fourier Transform
— Find power spectrum of short windows
— “Spectrogram”

Advantage: Can visualize time-varying frequency content

Disadvantage: Fixed temporal resolution is not optimal
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Time-Frequency Uncertainty

You cannot have both Y —r=i |
arbitrarily good temporal gouf — -
and frequency resolution!
_ 0, * 0,2 1/2

If you want sharper

temporal resolution, you will . =
sacrifice frequency ! :«iwwi
resolution, and vice versa. 7 ! W ! f\/\ﬂ
lliiiid
(Optimal: Confined S SO
Gaussian) Starosielec S, Hagele D (2014) Discrete-time windows

with minimal RMS bandwidth for given RMS temporal
width. Signal Processing 102:240-6.
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Shorter Windows

poorer frequency resolution

freq

3 Hz

03s time

freq

1 Hz

Consequence for STFT

Longer Windows

finer frequency resolution

1s

time
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Cemer

Computational
Neurosclence
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Time-Frequency Tradeoff

enter for
Computational
Neuroscience

Signal: 10, 25, 50, 100 Hz

Spectrogram with T= 25 ms Spectrogram with T = 125 ms

frequency [Hz|
frequency [Hz]

time [s] time [s]
25 ms window & 125 ms window &
Spectrogram with T= 375 ms Spectrogram with T = 1000 ms
09
08
07
) 06 )
& 0.4 g
03
02
01
2 4 6 8 10
time [s]
375 ms window & 1000 ms window &l

EEGLAB Workshop XXIII, Jan 16-19, 2017, Mysore, India —John Iversen— Time-Frequency Analysis 23



&
—

D S

A better way: Wavelet transform

Wavelet transform is a ‘multi-resolution’ time-frequency
decomposition.

Intuition: Higher frequency signals have a faster time
scale

So, vary window length with frequency!
— longer window at lower frequencies
— shorter window at higher frequencies
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Comparison of FFT & Wavelet

FFT
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Wavelet

Scaled versions of one shape

Constant number of cycles

25



Comparison of FFT & Wavelet
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Center for
Compu!ational
Neuroscience

EEG amplitude
.

Sinusoid /\ / \ / \ / \/
*
Gaussian / \
For each time point

Tapered ) J\/\/\ Analyze signal using the wavelets
sinusoid for different frequencies.
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Exercise

L
3 -
-

* Create a signal

>> t = 0:0.01:100;

>> X = sin(2*pi*10*t); plot(t,x)
» Find FFT

>> F = fft(x);

>> F(1:3) %complex

>> power = F.*conj(F);
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Spectrogram of one epoch of data
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Computing Spectrogram Power
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Definition: ERSP

* Event Related Spectral Perturbation

« Change in power in different frequency bands relative to
a baseline. ERS (Event-Related Synchronization), ERD (Event-

Related Desynchronization)

1 —"'-’
| |
| | |
S ‘ PPR "
| |
|
|

|
O_l‘ =458 | Basei ‘-\‘ |
— gy >
\6“.‘“\“‘\ ; ll BY
= o

ERSP (AdB)
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Try it out

Swartz

Center for
Computa!ional
Neuroscience

® e EEGLAB v13.1.1
File Edit Tools gdld Study Datasets Help |
___#2:faces 41 Channellocations >
Channel data (scroll)
Filename: none Channel spectra and maps

Channels per frami  Channel properties
Frames per epoch | Channel ERP image
fipoghs Channel ERPs >
Fesats ERP map series S
Sum/Compare ERPs

Sampling rate (Hz

Epoch start (sec)

Epoch end (sec) Component activations (scroll)

Reference Component spectra and maps

Channel locations Component maps >

ECEpRE BhEs Component properties

Pataset size (N  Component ERP image
Component ERPs >

— Sum/Compare comp. ERPs
Data statistics >
Time-frequency transforms > Channel time-frequency

Channel cross-coherence

Component time-frequency

Component cross-coherence |

pvaf topo

(Load faces_4.set

Epoch on'face’ event)
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Event-related

Spectrogram

Event-Related
Spectral Perturbation
(ERSP)

Display ERS vs. ERSP

: [ NoN ) Plot component time frequency -- pop_newtimef()
Component number 1
Sub epoch time limits [min max] (msec) -1000 1996 . Use 200 time points ¢ |
Frequency limits [min max] (Hz) or sequence _ Use limits, paddin... 7 | | Log spaced
Baseline limits [min max] (msec) (0->pre-stim.) 0 Use divisive basel... 3 | v No baseline
Wavelet cycles [min max/fact] or sequence 305 | Use FFT
ERSP color limits [max] (min=-max) [V see log power (set)
ITC color limits [max] | plot ITC phase (set)
Bootstrap significance level (Ex: 0.01 -> 1%) _| FDR correct (set)
Optional newtimef() arguments (see Help)
(v Plot Event Related Spectral Power (¥ Plot Inter Trial Coherence | Plot curve at each frequency

Help

[ Cancel | [ Ok |

" [ NN ] Plot component time frequency -- pop_newtimef()
Component number 1
Sub epoch time limits [min max] (msec) -1000 1996 . Use 200 time points % |
Frequency limits [min max] (Hz) or sequence _ Use limits, paddin... ;| | Log spaced
Baseline limits [min max] (msec) (0->pre-stim.) 0 Use divisive basel... % | .| No baseline
Wavelet cycles [min max/fact] or sequence 305 | Use FFT
ERSP color limits [max] (min=-max) [ see log power (set)
ITC color limits [max] | plot ITC phase (set)
Bootstrap significance level (Ex: 0.01 -> 1%) | FDR correct (set)
Optional newtimef() arguments (see Help)
(v Plot Event Related Spectral Power (¥ Plot Inter Trial Coherence | Plot curve at each frequency

= [ Cance BN Ok |

Computational
Neuroscience
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Event-related

Spectrogram

Event-Related
Spectral Perturbation
(ERSP)
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Time-Frequency Analysis
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Exercises

Try different wavelet specifications

Wavelet cycles [min max/fact] or sequence 305

— Default: 3 0.5
« 3 cycles. Try 2. How do the time limits of the plot change?
 What is the 0.5? Try 0. Try 1...what do you observe?

Try different low-frequency limit

Frequency limits [min max] (Hz) or sequence

— what is the effect on the time limits of the ERSP?

Try different baseline methods
— divisive
— standard deviation (express spectral perturbations in #sd relative to
baseline sd)
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Wavelet Specification

T enter for-

2 Computational
N/ euroscienc
——

Wavelet cycles [min max/fact] or sequence 30.5

Answer: The first #cycles controls the basic duration of the wavelet in cycles.

The second factor controls the degree of shortening of time windows as frequency increases
0 = no shortening = FFT (duration remains constant with frequency)
1 = pure wavelet (#cycles remains constant with frequency)

0.5 = intermediate, a compromise that reduces HF time resolution to gain more
frequency resolution.

30 31 30.5
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Comparison of FFT & Wavelet

ic 1
- ERSP(dB)
Tl 8
. — ‘
— 0
[30] (FFT) =\ | = ,
A — 2
00 F ! &
dB — R
_-4:]] -2:]] (!l Z(I]D 400 600 ﬂ;ﬂ IDIUO IZIUO I4I00_ ®
Time (ms)
ic1
e EHSP{dg)
= . | Thisis the EEGLAB default
0
%-20 . p Notice: features have similar
[3 0. 5] Wavelet | 2 time and frequency
. 2 resolution
5
Ic 1
- ERSP(dB)
3
™40l 2
0 1
2 0
20t -1
[3 1] Wavelet ¢£.] £

1 1 1 1las
=400 =200 0 200 400 600 BOO 1000 1200 1400
Time (ms)
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Time loss at edge of ERSP

et R 2
“::_? Ne:rosclence
« Settings for wavelet cycles and MIN FREQ: 3 Hz .
lowest frequency impact the time 0 : T
limits of analysis £ : :
b ; - B
| = N
Zlogg ’1 1 1 ‘I\ : —% '55 s
=400 ‘?Igl?na (n?gs? &0O 10 1200 1400
MIN FREQ: 1 Hz
- ERSP(dB)
more wavelet cycles, or a lower minimum : ' l 0
frequency loses time at edges of epoch | 19; — - ..
zo&{g SR — R m— "

Solution: If you need low frequencies, be sure to extract longer epochs to counteract this. Barring this, try reducing

the number of wavelet cycles.
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Part 3: Coherence Analysis

Goal: How much do two signals resemble each other?

Coherence = complex version of correlation: how similar
are power and phase at each frequency?

Variant: phase coherence (phase locking, etc.) considers
only phase similarity, ignoring power
— Regular coherence is simply a power-weighted phase coherence
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Coherence

s Chntetfor
N Computational
2 ‘%}‘,‘. Neuroscience

C(fiyx Y FL(f.DF2,(f.1)

k=trials \

i6, i(6,-6,)

ae’'a,e? xe

----------

Fourier time series Fsiand Fs.

V
L¥ ]
85 LR ]
T ﬂ Lk
S2 "/ \:"“ W W ‘q"rﬁ‘i\;‘ Liv)./ W ‘

l%l Phase difference between S1 and S2,

D / 4———\ cee
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Part 3a: Inter-Trial Coherence

« (Goal: How much do different trials resemble each other?

 Phase coherence not between two processes, but
between multiple trials of the same process

« Defined over a (generally) narrow frequency range
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EEGLAB'’s Inter-Trial Coherence is phase ITC

Phase ITC

ITPC(f 1) =

same time, different trials

Trial 1

Trial 3 Trial 2

liFk(f,t)

= |Fk (f,t)l

Normalized

(no amplitude information)

amplitude 0.5 phase 0 Q
amplitude 1 phase 90 @

amplitude 0.25 phase 180 O

_ A = B ;

o

POWER = mean(amplitudes? )
0.44 or -8.3 dB

COHERENCE = mean(phase vector)

@ Norm 0.33

% poi 2
Center for-

Computational
euroscienci
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ITC Example (3 trials)

Intertrial Coherence (ITC)

10tSingle trials 10} Single trials

h A ] ‘
0 MM%WM&:WWW 0 sy | ,

-10 -10¢
-0.5 0 0.5 -0.5 0 0.5
10 10
ERP ERP
O prnwit A AN AN /| i 0 v-'\'\ww\/\_/\/\/\/\/\/\'\&v‘f
-10 -10
-0.5 0 0.5 -0.5 0 0.5
25
Total power Total power :
® o
5
-0.5 ! -0.5 0 0.5

180

270

ITC: .05 ITC: .80

Slide courtesy of Stefan Debener
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Several possible origins of an ERP

« Event Related Potential can result from
— ITC increase (with no change in power)
— ITC & Power change

ITC

EEGLAB Workshop XXIIl, Jan 16-19, 2017, Mysore, India —John Iversen— Time-Frequency Analysis

PPR

ERSP (AdB)
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Compare: ‘Pure’ ERP

400k -,3: = Phase-sorted ERP Image-
» 300+ 3 : — =
T 1 e e
;:ZDr_ . - - e — : .
1m}_ :g = ~ :;_.--.-- :.:.-_ -—-—s y
) i — 1 - L-; ’.; b = —
‘8 AVERAGE ERP

AMPLITUDE INCREASE

10 _a203 4B
0
0 =
=
1 INTER-TRIAL COHERENCE
O 7.588 Hz
=
0
—200 0 200 400 800 800
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Component ERP Image: Activation vs. Amplitude

Component ERPimage -- pop_erpimage()

Component(s) | 3

Project to channel # | Figure title |

Smoothing [ 10 M Flot scalp map

Downsampling | 1 W Plot ERP ERP limits |
Time limits (ms) | -800 1000 W Plot colorbar Color limits {see Help) |

Sort/align trials by epoch event values

Epoch-sorting field | Event type(s) | Eventtime range Rescale Align _|Don't sort by value
| | | [ no [ _|Don't plot values
o | Figure 11: erpimage() = | FET3| 1 ) Figure 10: erpimage() = | 1T} | P
File Edit View Insert Tools Desktop MWindow Help £ . File Edit ¥iew Insert Tools Desktop Mindow Help ~
(] Image amps |‘ Image amps |
% time-varying voltage @ time-varying 10Hz Power
T Comp. 3 4 plit - Comp. 3
T S : 3 S — 16.8
il e e $5 ag [ | % A00Ee - "% B4
f - # ' 2 = . —— '
S 200 = = ™ 0 S 200 = —— 0
§ 100 : ; - -03 = 100 2 i e G4
_g- 1 | 1 1 1 1 -19 tlm é— —= 1 1 1 1 = e -16.
< — <

T Lol -1.7

7 ki 7 :

-0.2066 dB =
& 0 /?‘" — — & 0 /2-32'@ N <~
- e — & = N~
-10 -10

1 1
O 10.39 Hz O 10.99 Hz
E E

(I e S s 0 ey e —

-600  -600  -400 -z200 0 200 400 600 G00 1000 -600 -600 -400 -200 0 200 400 600 goo 1000

Time (ms) Time (ms)
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Putting it all together
-

@ / @ n, - {
e Center for-

N Computational

N/ Neuroscience

1

00O Figure 5 Exercise
File Edit View Insert Tools Desktop Window Help
—e3 ' component of your choice
ERSP{dE)
_'in : Compute ERP Image (with ERSP
g;‘z ' and ITC displayed*)
2 20} ’ Use all of this information to explain
T 10} % the origin of the Evoked Response
3
Question: Which changes are
, : L significant? Use the options in ERP
40 : Image and ERSP dialogs to set
S : = i significance threshold e.g. 0.01. Do
2 20 | 0.2 the results survive?
T 10 - l S
0 o0z2[ l E! ! Bk ’
ERP L | | -4
1] =00 1000
Time (ms)
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e Figure 5

File Edit View Insert Tools Desktop Window Help
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Method: Bootstrap

Green areas are not significant.
Scale of ERSP & ITC vales also give a clue:
Large values are often encouraging of a significant effect

(Large= > 1dBforERSFP; > 0.5 forlITC)

For exploratory purposes, can try 0.01 without FDR correction
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Part 3b: Event Related Coherence

\Vd.

e Goal: How similar is the

event-related response of
two signals?

— Between channels
(problematic due to volume
conduction)

— Between ICs

— Useful to quickly begin to
understand relationships
between components

Filename: none

Frames per epoch
Epochs

Events

Sampling rate (Hz|

Epoch start (sec)
Epoch end (sec)
Reference
Channel locations
ICA weights
Dataset size (Mb)

X . EEGLAB v13.1.1 .
File Edit Tools m”mudy Datasets Help B

___#2:faces_41 Channel locations

Channel data (scroll)
Channel spectra and maps
Channels pexr fram  Channel properties
Channel ERP image

Channel ERPs
ERP map series

Sum/Compare ERPs

Component activations (scroll)
Component spectra and maps
Component maps
Component properties
Component ERP image

Component ERPs

O sum/Compare comp. ERPs

Data statistics

pvaf topo

>

>

>

S e |

Center for-
Computational
Neuroscience

Time-frequency transforms > Channel time-frequency

Channel cross-coherence

Component time-frequency

Component cross-coherence
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TWO SIMULATED THETA PROCESSES

Event-related

Coherence
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Cross coherence betweenIC1and IC 3
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Significant event-related coherence (as well as tonic
coherence) in alpha/beta bands

IC 1 tonically leads IC 3 (negative phase), but phase
relationships are changed post-stimulus

More advanced, directional, measures of effective connectivity are present in the SIFT toolbox (a later lecture).
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Event-Related Coherence Exercise

« Examine event-related coherence between two ICs
— Which pair did you pick, and why? What do you predict?
— What did you learn?

* Explore other options:
— Significance threshold
— Figure out how to subtract a baseline
— Phase vs. Linear Coherence
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