

Time-frequency decomposition Theory and Practice

EEGLAB Workshop XXIII AIISH, Mysore, India Day 1, 18:00

Signals – EEG

Goals

- Describe dynamic characteristics of brain activity
- Describe relation between different regions of brain

Approaches

- Time domain
- Frequency domain
- Time/Frequency

Different meanings traditionally given to different frequency bands

many more appropriate the second property of the second property of



Beta 15-30 Hz

Awake, normal alert consciousness

Alpha 9-14 Hz

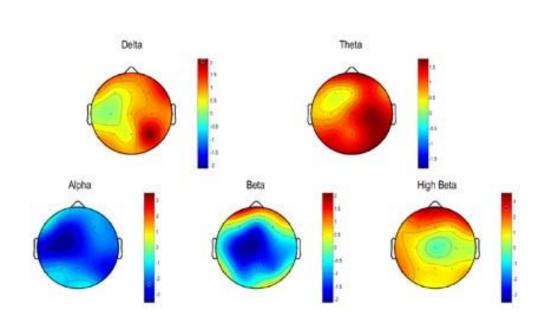
Relaxed, calm, meditation, creative visualisation

Theta 4-8 Hz

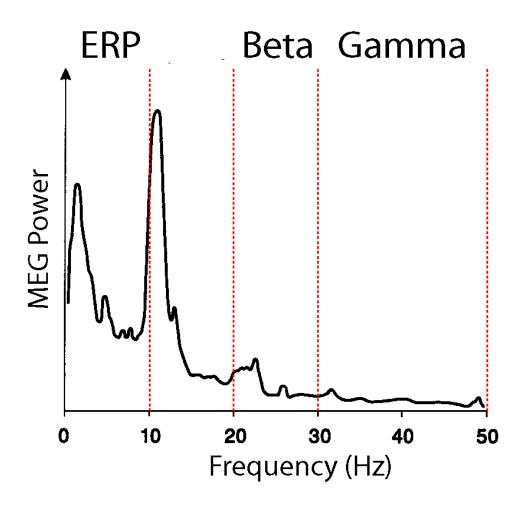
Deep relaxation and meditation, problem solving

Delta 1-3 Hz

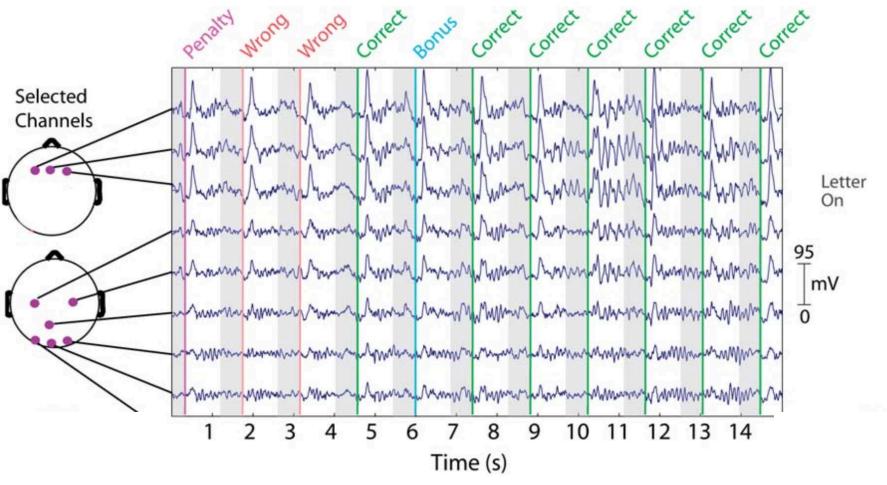
Deep, dreamless sleep



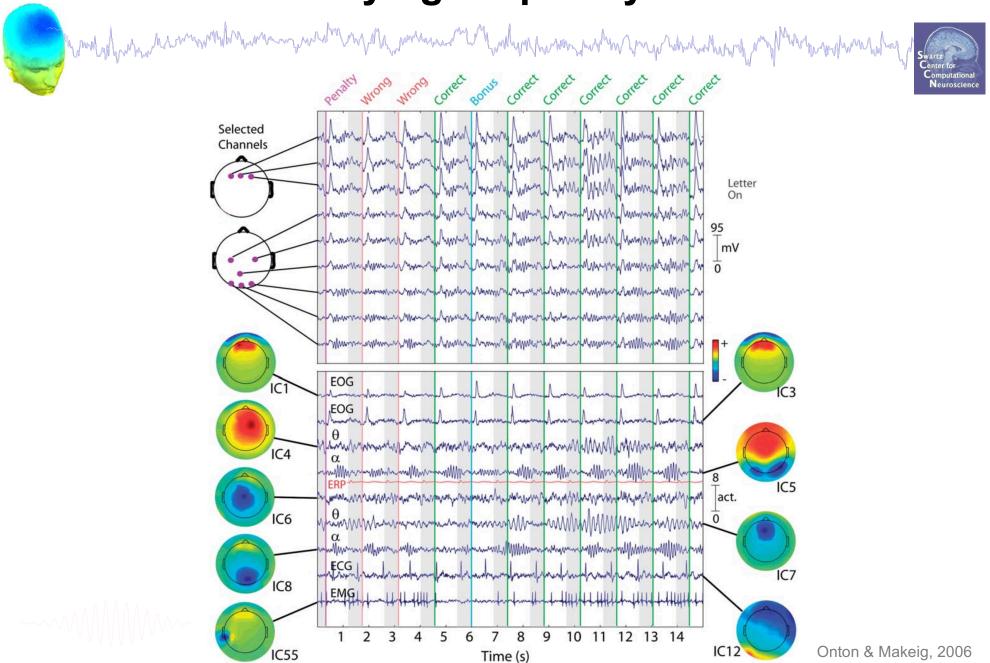
MEEG spectrum



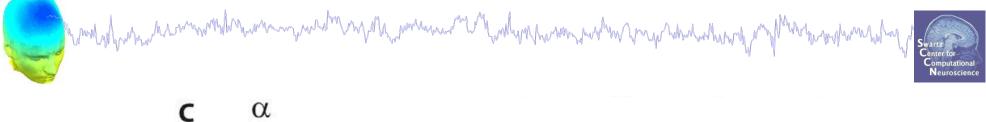
Time varying frequency content

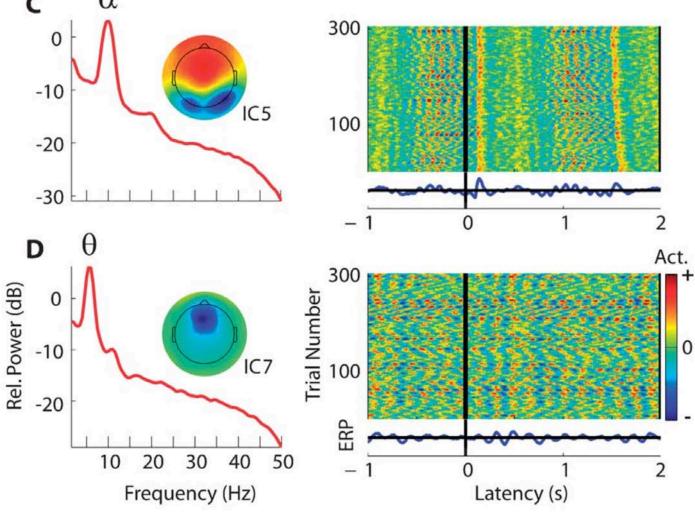


Time-varying frequency content

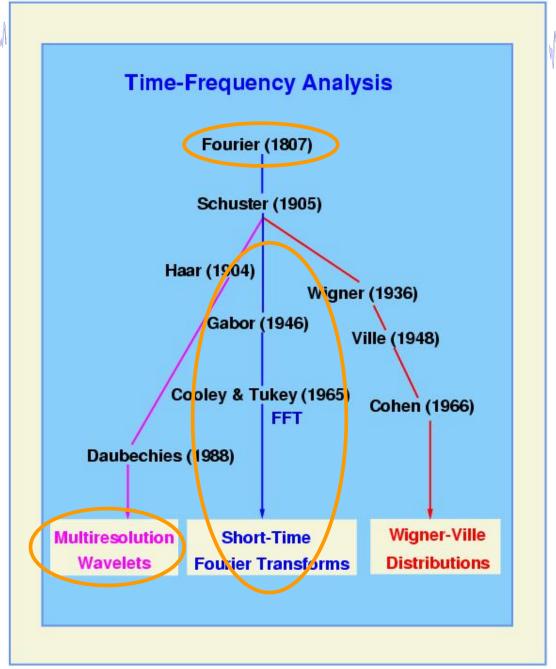


Power Spectrum does not describe temporal variation





Onton & Makeig, 2006



S. Makeig, 2005

Plan

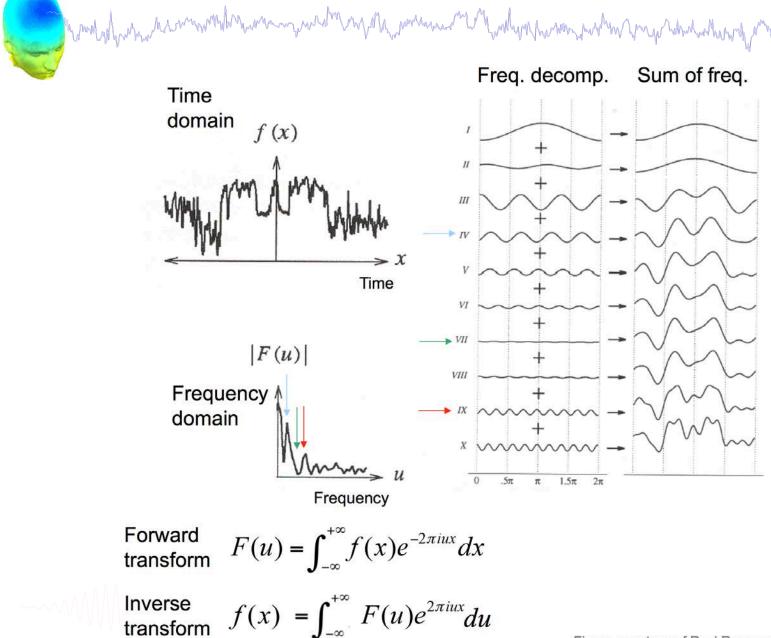


- Part 1: Frequency Analysis
 - Power Spectrum
 - Approaches
 - FFT
 - Welch's Method
 - Windowing
- Part 2: Time-Frequency Analysis
 - Short Time Fourier Transform
 - Wavelet Transform
 - ERSP
- Part 3: Coherence Analysis
 - Inter-Trial Coherence
 - Event-Related Coherence

Part 1: Frequency Analysis

- Goal: What frequencies are present in signal?
- What is power at each frequency?
- Principle: Fourier Analysis

Fourier Analysis



Figure, courtesy of Ravi Ramamoorthi & Wolberg

Power Spectrum. Approach 1: FFT

- Why not just take FFT of our signal of interest?
- Advantage fine frequency resolution
 - $-\Delta F = 1 / signal duration (s)$
 - E.g. 100s signal has 0.01 Hz resolution
 - But, do we really need this?
- Disadvantage 1 high variance
 - Solution: e.g. Welch's method
- Disadvantage 2 no temporal resolution
 - Solution 1: Short-Time Fourier Transform

Amplitude and phase

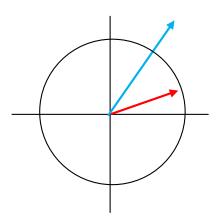
- Power spectra describe the amount of a given frequency present
- NOT a complete description of a signal: We also must know the phase at each frequency
- FFT/STFT/Wavelet return an amplitude and phase at each time and frequency (represented as complex #).
- To find power, we compute the magnitude, which discards phase.

Phasor representation

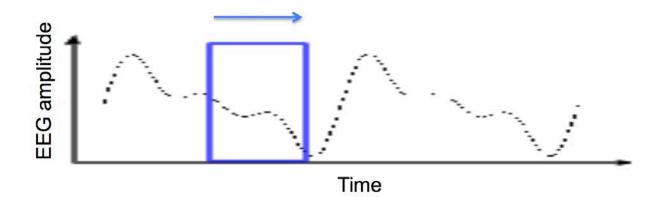
• A complex number x + yi can be expressed in terms of amplitude and phase: $ae^{i\theta}$

```
amplitude*exp(i*phase)

amplitude = sqrt(x^2 + y^2); phase = atan(y/x);
```

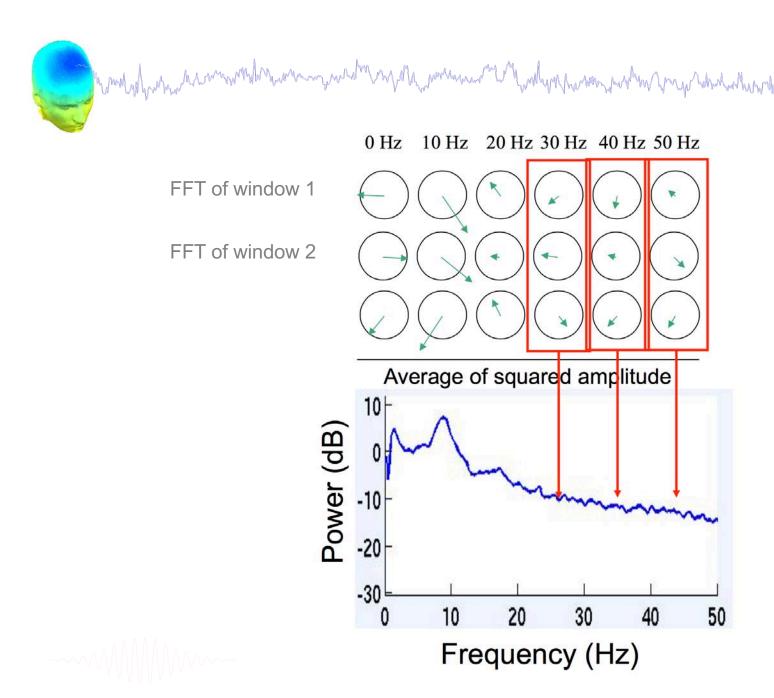


Approach 2: Welch's Method



Calculate power spectrum of short windows, average. Advantage: Smoother estimate of power spectrum

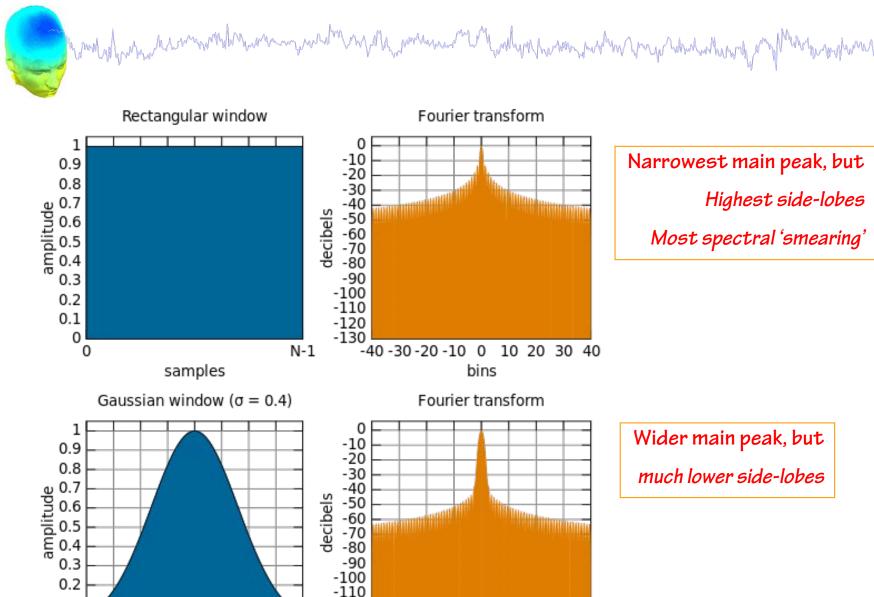
Frequency resolution set by window length
e.g. 1s window -> 1 Hz resolution
In practice: taper, don't use rectangular window



Windowing

- When we pick a short segment of signal, we typically window it with a smooth function.
- Windowing in time = convolving (filtering) the spectrum with the Fourier transform of the window
- No window (=rectangular window) results in the most smearing of the spectrum
- There are many other windows optimized for different purposes: Hamming, Gaussian...

Windows and their Fourier transforms



-120

N-1

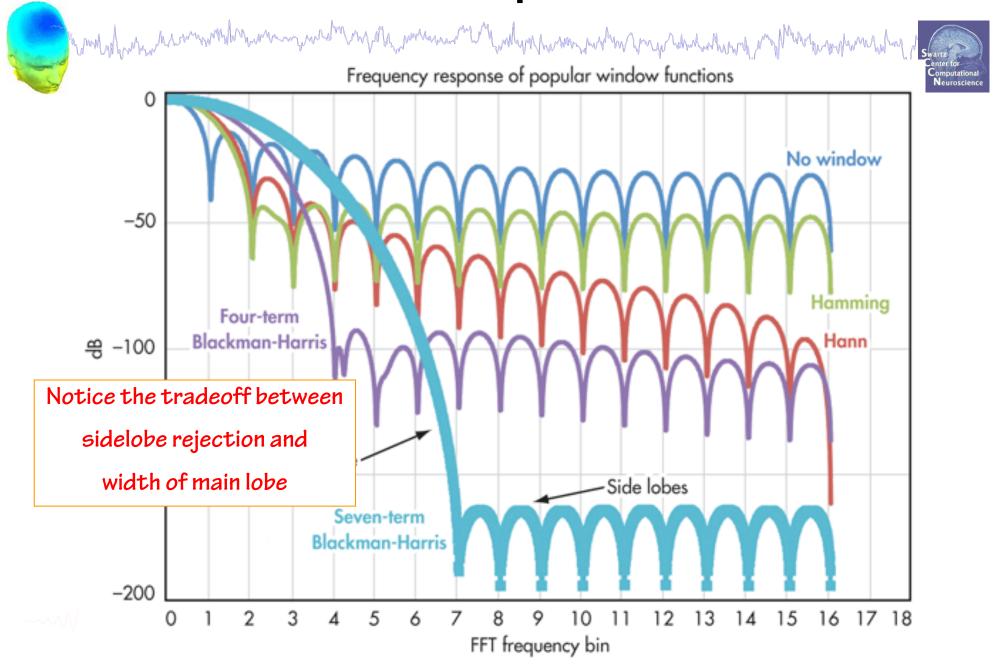
samples

0.1

-40 -30 -20 -10 0 10 20 30 40

bins

Close-up view



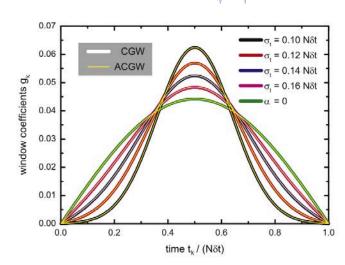
Part 2: Time-Frequency Analysis

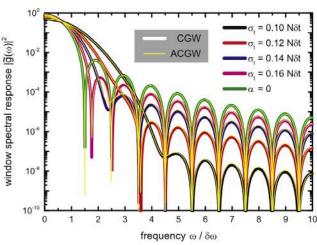
- Short-Time Fourier Transform
 - Find power spectrum of short windows
 - "Spectrogram"
- Advantage: Can visualize time-varying frequency content
- Disadvantage: Fixed temporal resolution is not optimal

Time-Frequency Uncertainty

my the more was a few party and the same of the same o

- You cannot have both arbitrarily good temporal and frequency resolution!
 - $-\sigma_t * \sigma_f \ge 1/2$
- If you want sharper temporal resolution, you will sacrifice frequency resolution, and vice versa.
- (Optimal: Confined Gaussian)



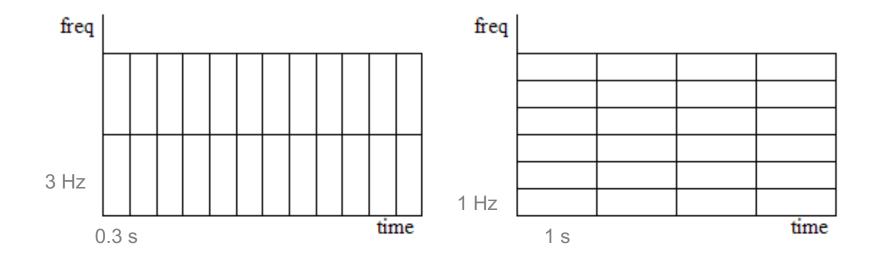


Starosielec S, Hägele D (2014) Discrete-time windows with minimal RMS bandwidth for given RMS temporal width. Signal Processing 102:240–6.

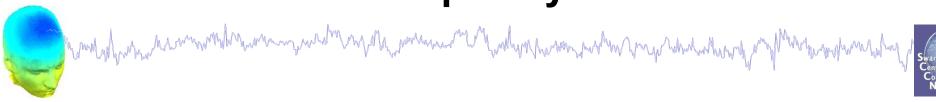
Consequence for STFT

Shorter Windows poorer frequency resolution

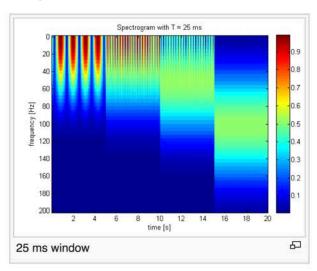
Longer Windows finer frequency resolution

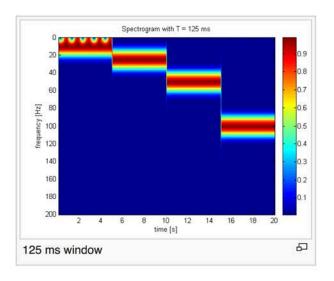


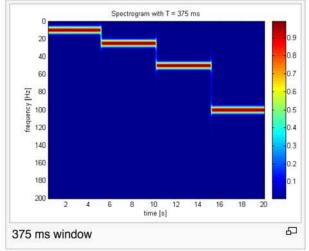
Time-Frequency Tradeoff

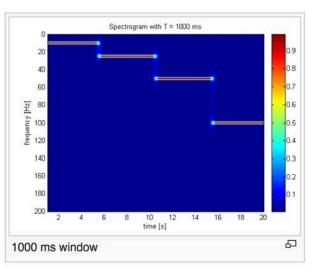


Signal: 10, 25, 50, 100 Hz





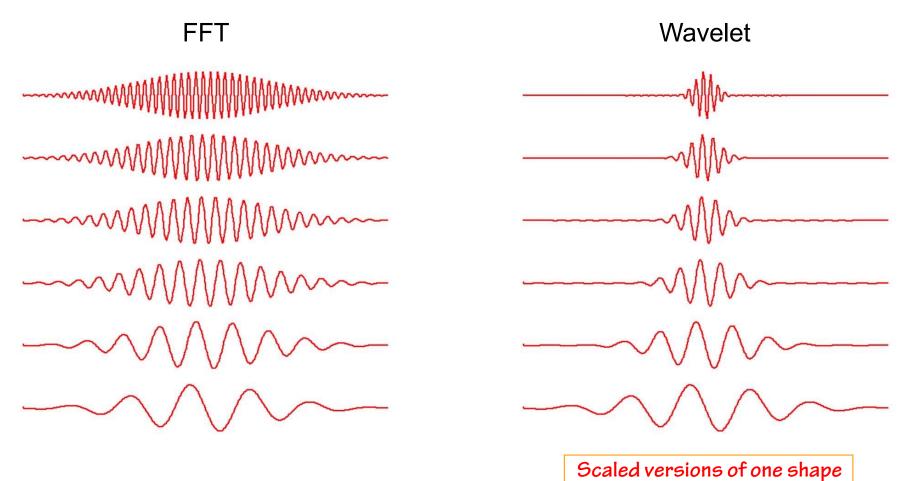




A better way: Wavelet transform

- Wavelet transform is a 'multi-resolution' time-frequency decomposition.
- Intuition: Higher frequency signals have a faster time scale
- So, vary window length with frequency!
 - longer window at lower frequencies
 - shorter window at higher frequencies

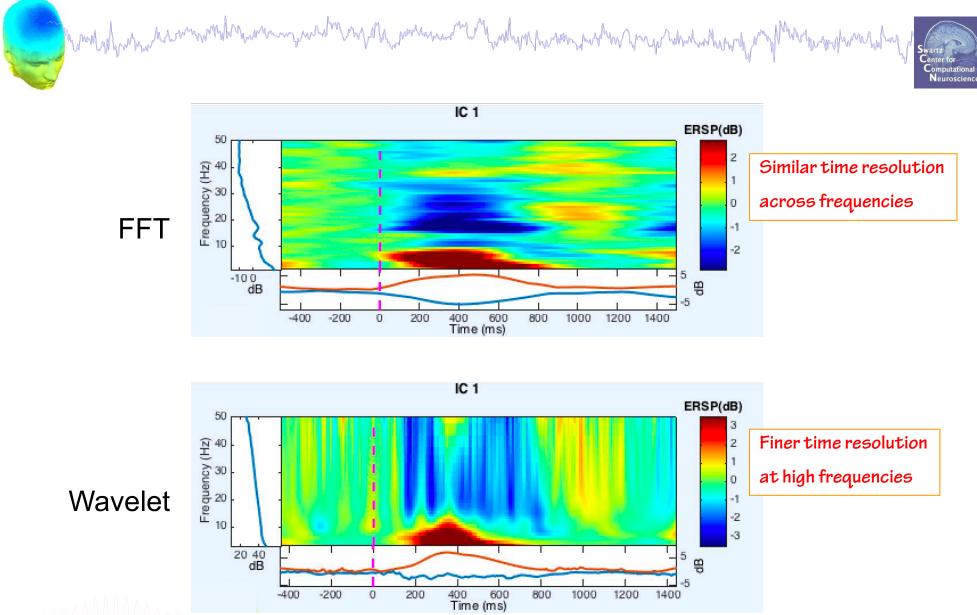
Comparison of FFT & Wavelet

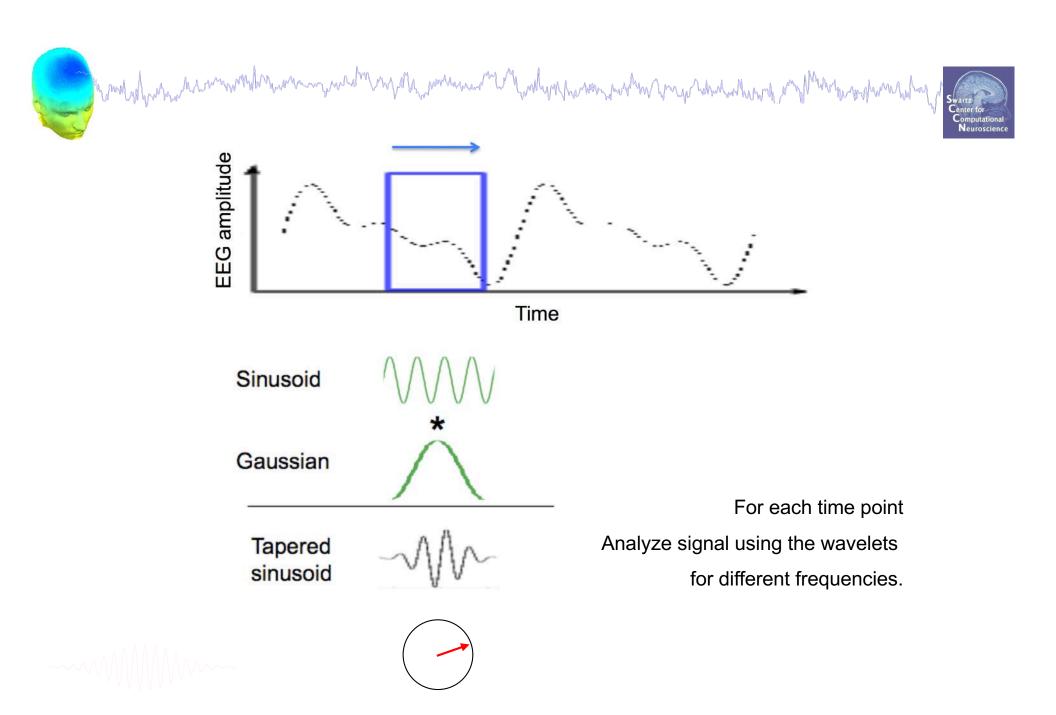


25

Constant number of cycles

Comparison of FFT & Wavelet





Exercise

Create a signal

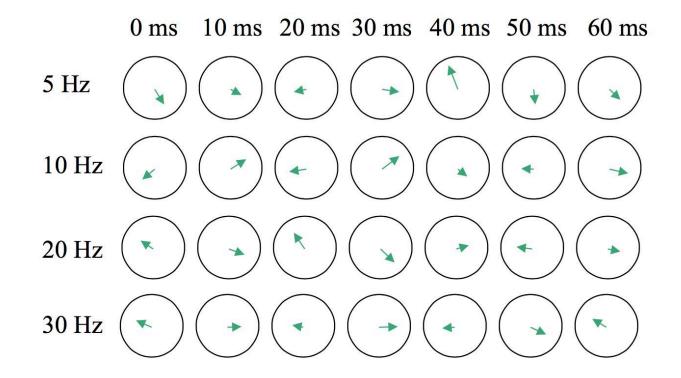
```
>> t = 0:0.01:100;
>> x = sin(2*pi*10*t); plot(t,x)
```

Find FFT

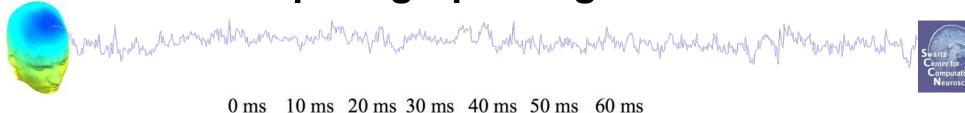
```
>> F = fft(x);
>> F(1:3) %complex
>> power = F.*conj(F);
```

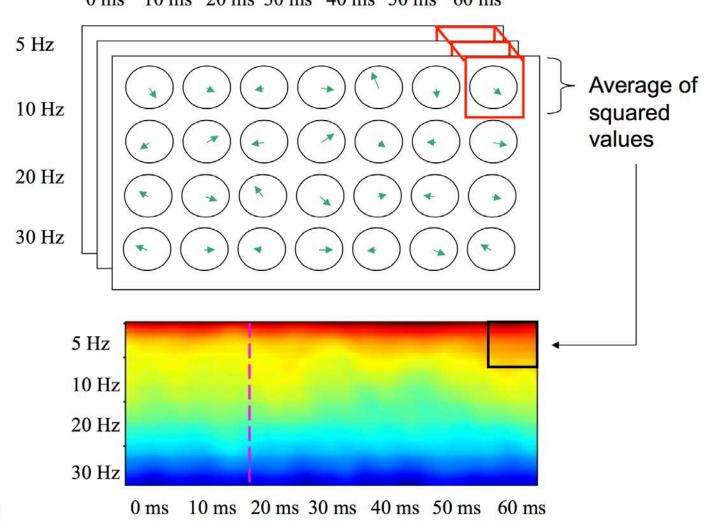

Spectrogram of one epoch of data



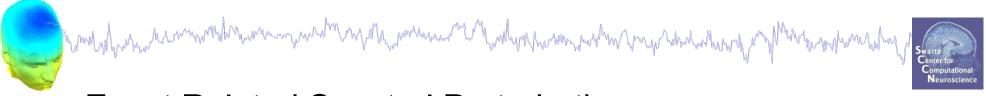


Computing Spectrogram Power

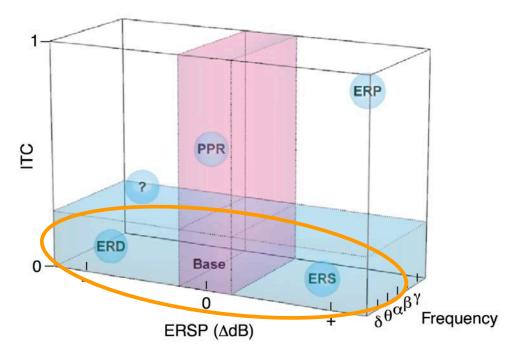




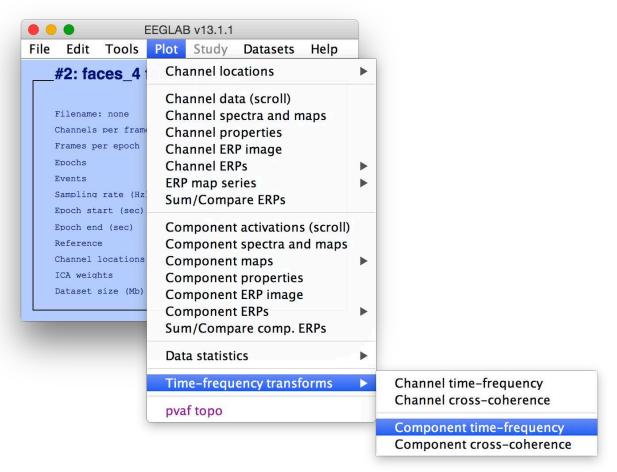
Definition: ERSP



- **Event Related Spectral Perturbation**
- Change in power in different frequency bands relative to a baseline. ERS (Event-Related Synchronization), ERD (Event-Related *Desynchronization*)



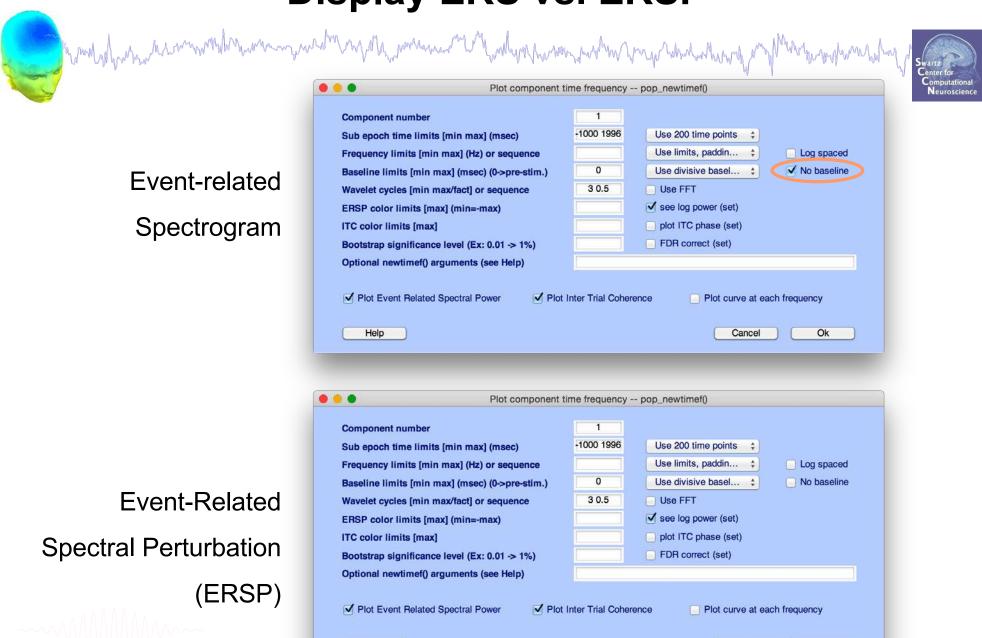
Try it out



(Load faces_4.set

Epoch on 'face' event)

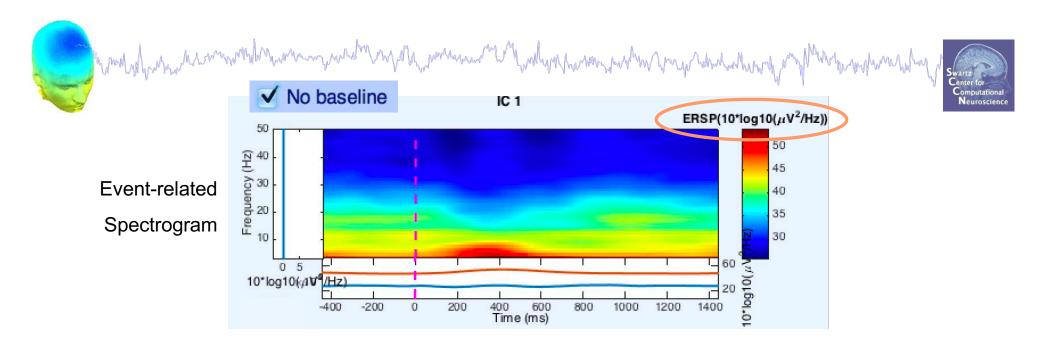
Display ERS vs. ERSP

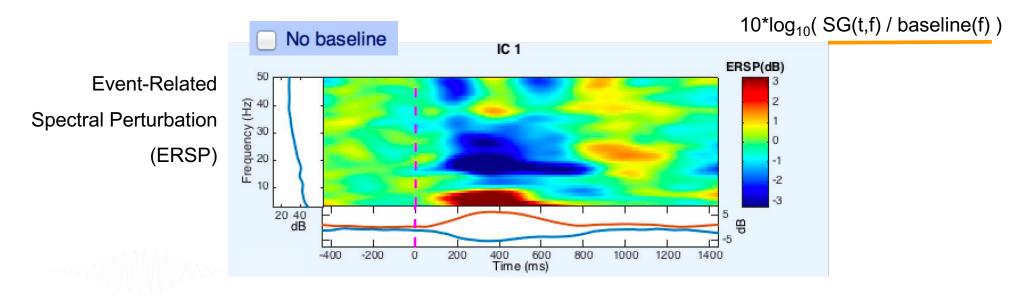


Help

Cancel

Ok





Exercises

Try different wavelet specifications

Wavelet cycles [min max/fact] or sequence 3 0.5

- Default: 3 0.5
 - 3 cycles. Try 2. How do the time limits of the plot change?
 - What is the 0.5? Try 0. Try 1...what do you observe?
- Try different low-frequency limit

Frequency limits [min max] (Hz) or sequence

- what is the effect on the time limits of the ERSP?
- Try different baseline methods
 - divisive
 - standard deviation (express spectral perturbations in #sd relative to baseline sd)

Wavelet Specification

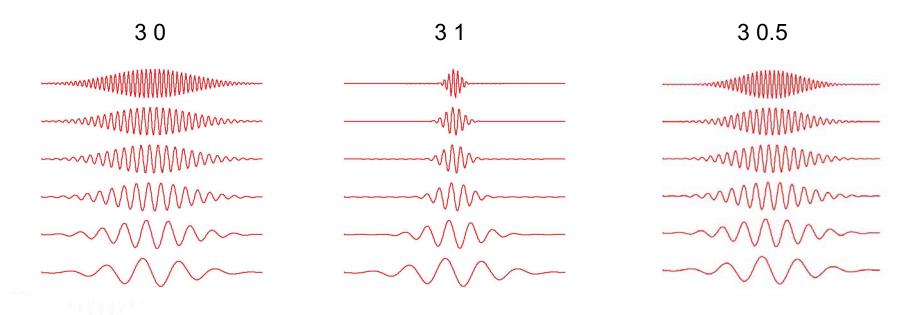
Answer: The first #cycles controls the basic duration of the wavelet in cycles.

The second factor controls the degree of shortening of time windows as frequency increases

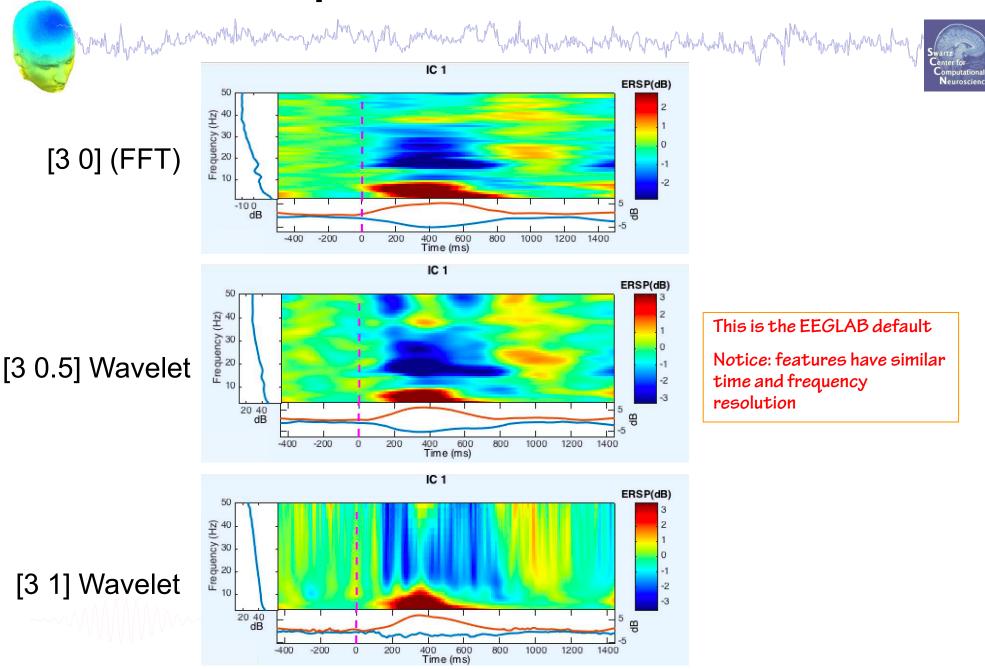
0 = no shortening = FFT (duration remains constant with frequency)

1 = pure wavelet (#cycles remains constant with frequency)

0.5 = intermediate, a compromise that reduces HF time resolution to gain more frequency resolution.



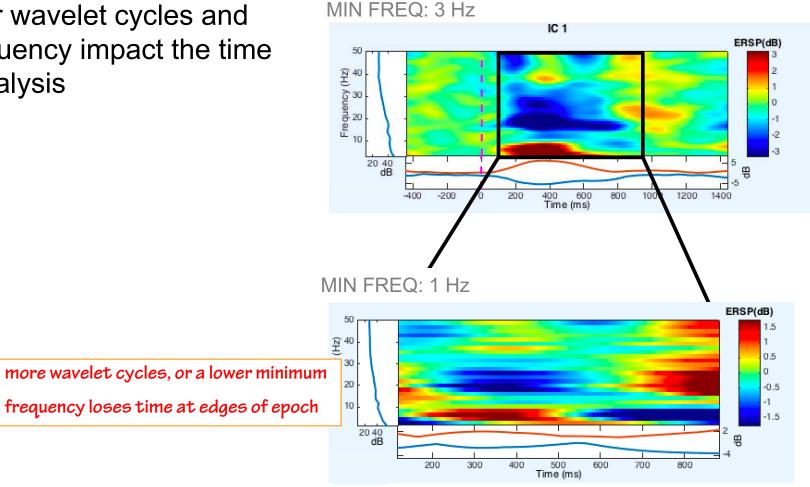
Comparison of FFT & Wavelet



Time loss at edge of ERSP

my apropriation of the major of the second o

Settings for wavelet cycles and lowest frequency impact the time limits of analysis



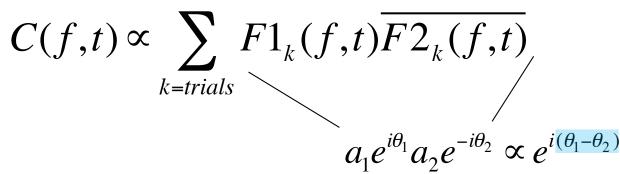
Solution: If you need low frequencies, be sure to extract longer epochs to counteract this. Barring this, try reducing the number of wavelet cycles.

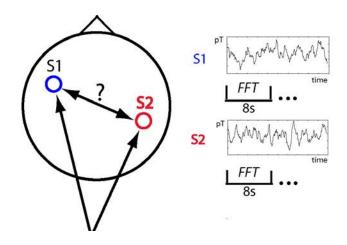
Part 3: Coherence Analysis



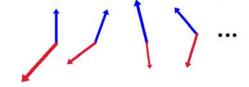
- Goal: How much do two signals resemble each other?
- Coherence = complex version of correlation: how similar are power and phase at each frequency?
- Variant: phase coherence (phase locking, etc.) considers only phase similarity, ignoring power
 - Regular coherence is simply a power-weighted phase coherence

Coherence

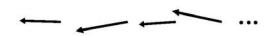


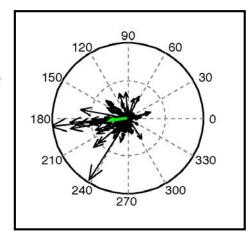


Fourier time series F₅₁ and F₅₂



Phase difference between \$1 and \$2,





Part 3a: Inter-Trial Coherence

- Goal: How much do different trials resemble each other?
- Phase coherence not between two processes, but between multiple trials of the same process
- Defined over a (generally) narrow frequency range

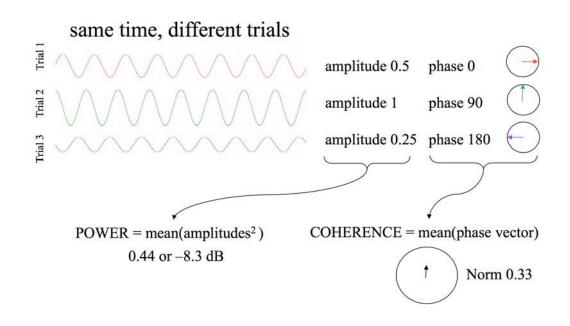
EEGLAB's Inter-Trial Coherence is phase ITC

when he was a supplied the same have the same of the s

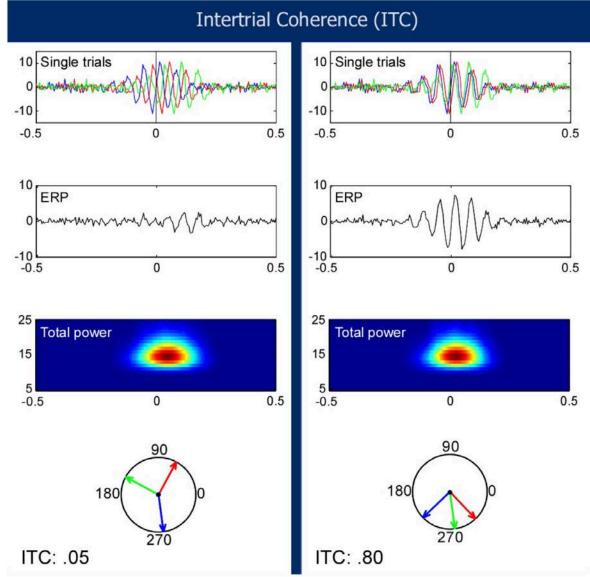
Phase ITC

$$ITPC(f,t) = \frac{1}{n} \sum_{k=1}^{n} \frac{F_k(f,t)}{|F_k(f,t)|}$$

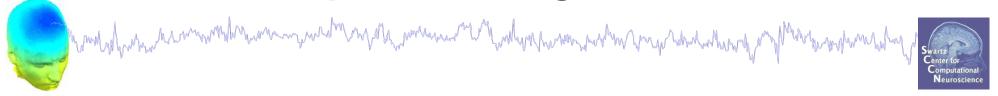
Normalized (no amplitude information)



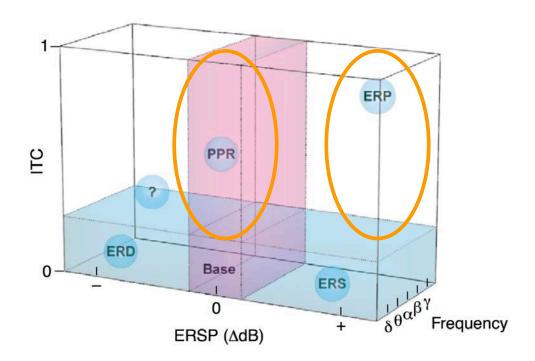
ITC Example (3 trials)

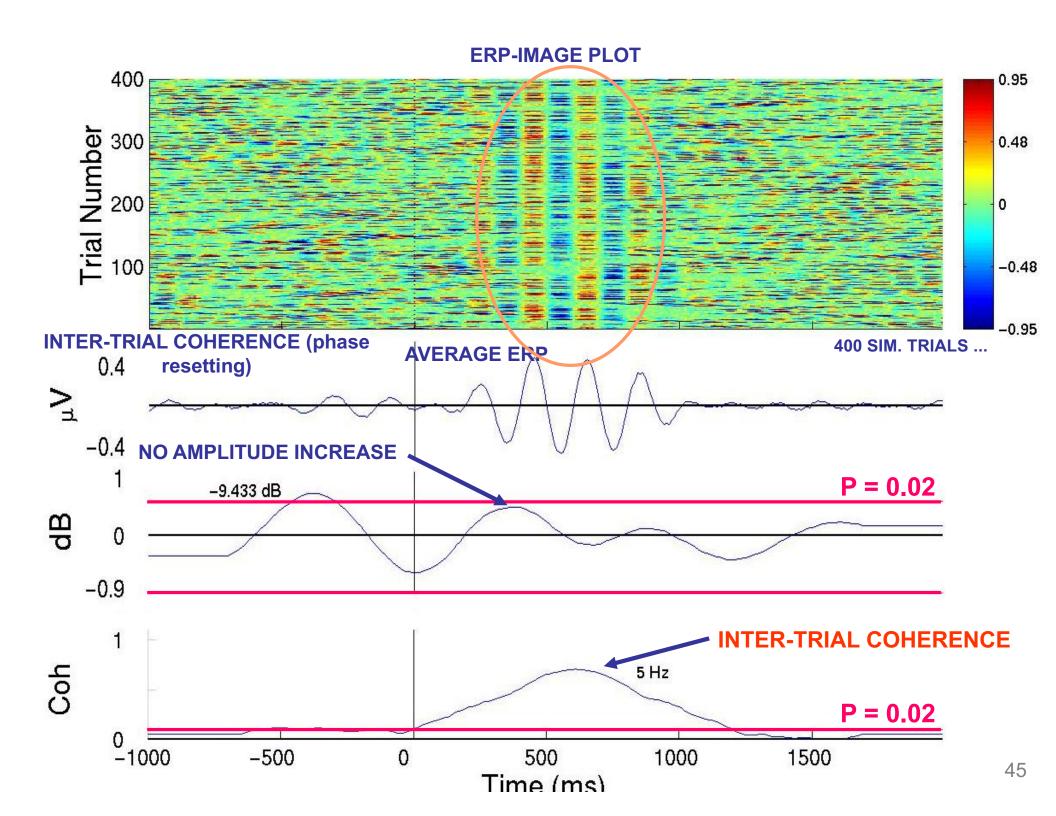


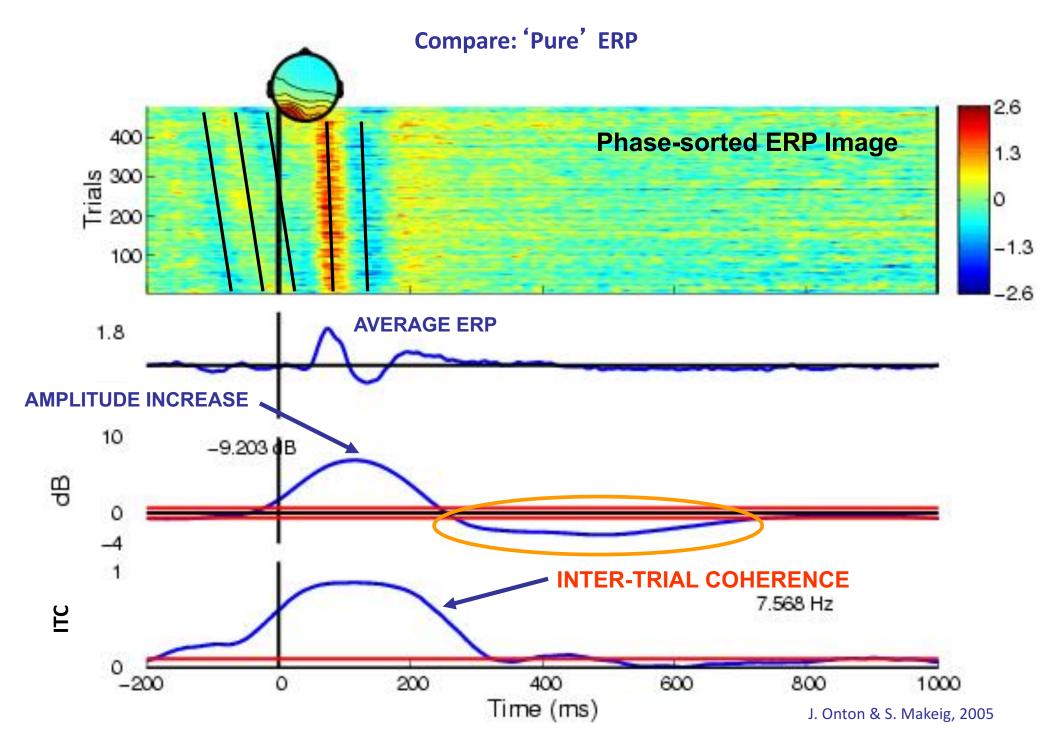
Several possible origins of an ERP



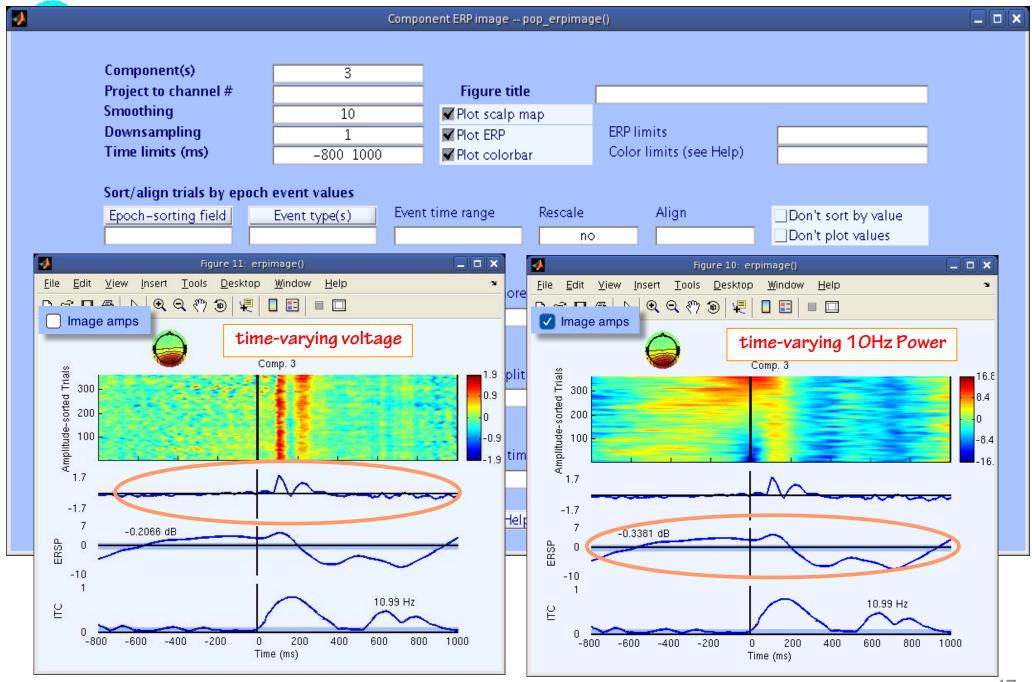
- Event Related Potential can result from
 - ITC increase (with no change in power)
 - ITC & Power change



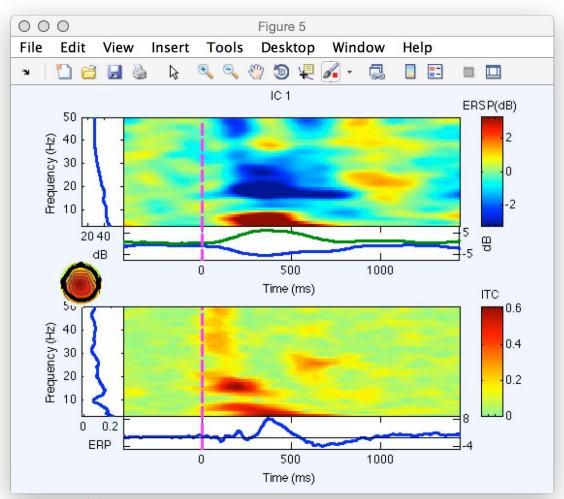




Component ERP Image: Activation vs. Amplitude



Putting it all together



Exercise

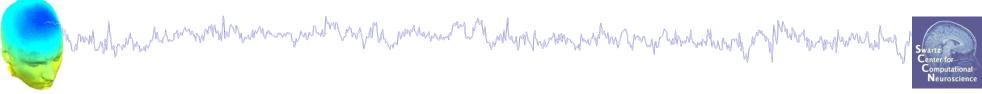
All: Compute ERSP/ITC for a component of your choice

Compute ERP Image (with ERSP and ITC displayed*)

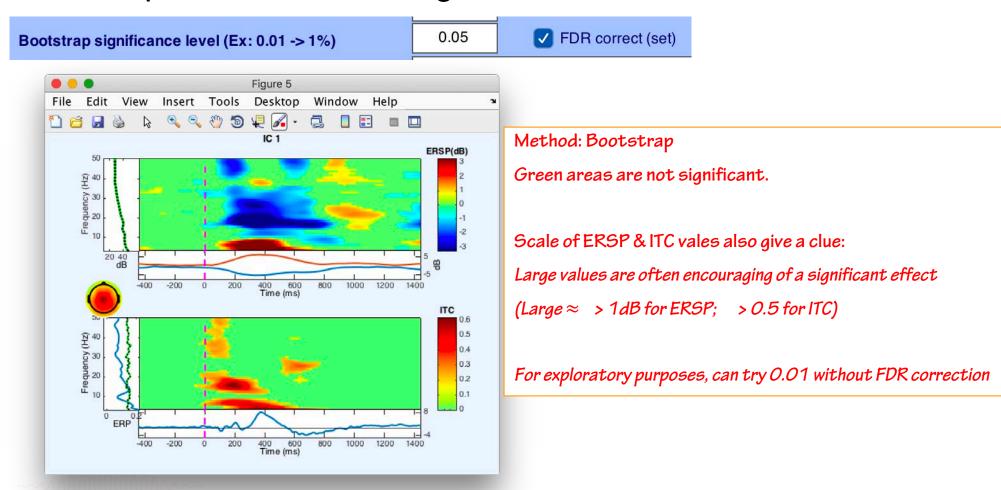
Use all of this information to explain the origin of the Evoked Response

Question: Which changes are significant? Use the options in ERP Image and ERSP dialogs to set significance threshold e.g. 0.01. Do the results survive?

Significance Testing



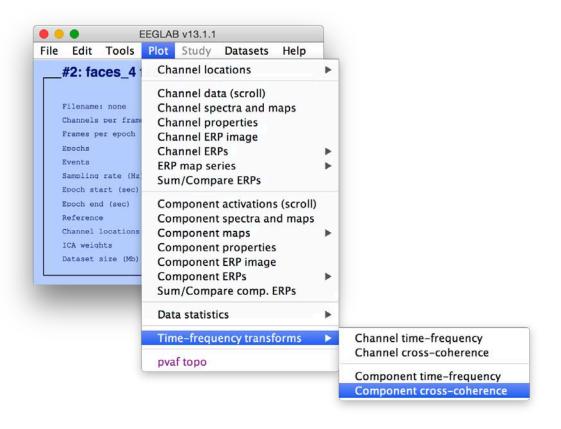
Keep in mind: "is this significant?"



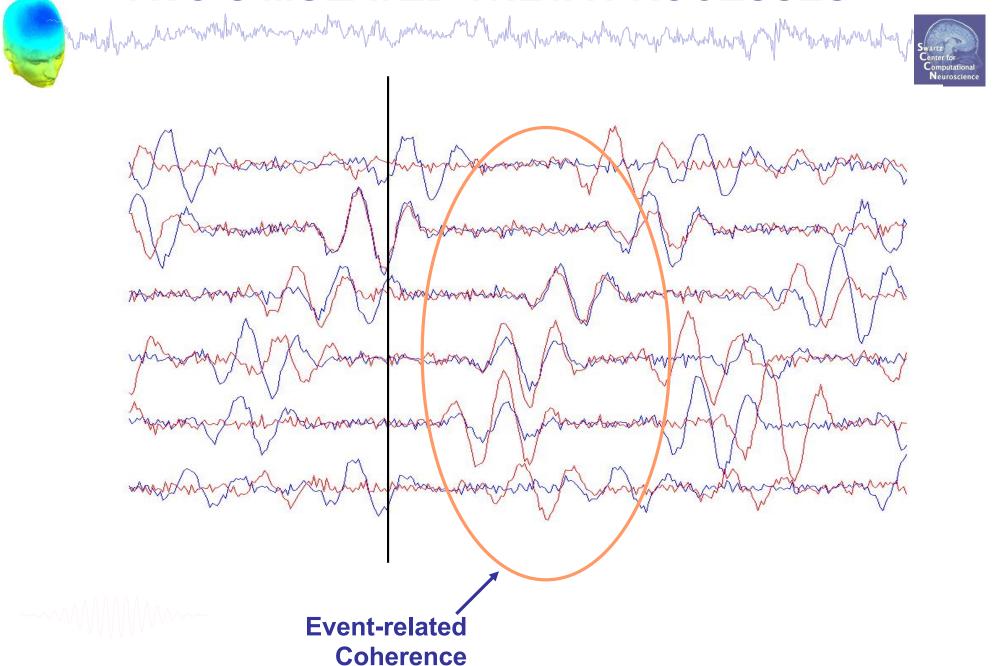
Part 3b: Event Related Coherence

one when the same with the same of the sam

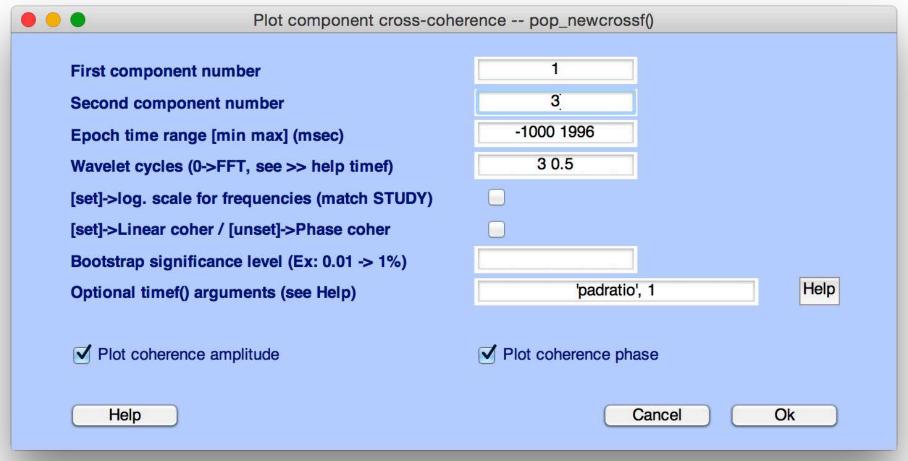
- Goal: How similar is the event-related response of two signals?
 - Between channels (problematic due to volume conduction)
 - Between ICs
 - Useful to quickly begin to understand relationships between components



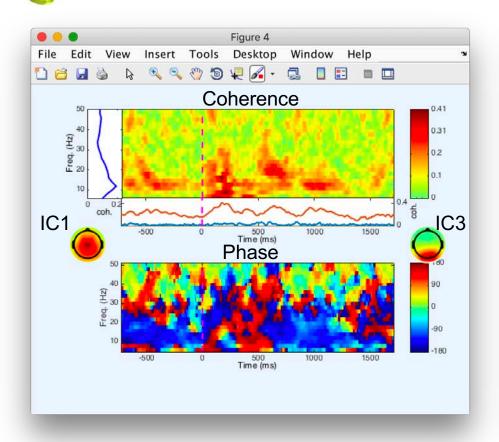
TWO SIMULATED THETA PROCESSES

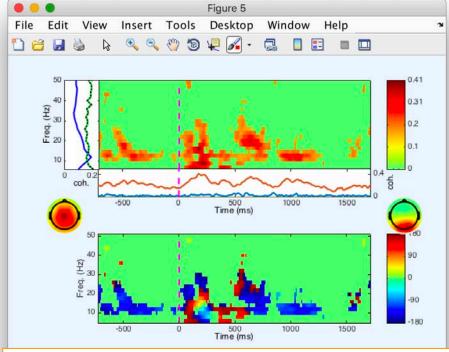


Try it!



Cross coherence between IC 1 and IC 3





Significant event-related coherence (as well as tonic coherence) in alpha/beta bands

IC 1 tonically leads IC 3 (negative phase), but phase relationships are changed post-stimulus

More advanced, directional, measures of effective connectivity are present in the SIFT toolbox (a later lecture).

Event-Related Coherence Exercise

- Examine event-related coherence between two ICs
 - Which pair did you pick, and why? What do you predict?
 - What did you learn?
- Explore other options:
 - Significance threshold
 - Figure out how to subtract a baseline
 - Phase vs. Linear Coherence

