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Robust statistics

Parametric & non-parametric statistics: Use mean and 
standard deviation (t-test, ANOVA, …) or rank-based 
statistics (more robust to outliers), but 

Depend on Gaussian assumption.

Bootstrap and permutation methods: Shuffle/bootstrap 
data and recompute measure of interest. Use the tail of the 
empirical distribution to asses significance.

Works for any distribution.

Correction for multiple comparisons: Computing 
statistics on time(/frequency) series requires correction for 
the number of comparisons performed.
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Take-home messages 

• Look at your data! Show your data! 

• A perfect & universal statistical recipe does 
not exist 

• Keep exploring: there are many great options, 
most of them available in free softwares and 
toolboxes 
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Parametric statistics

T-test: Compare 
paired/unpaired 
Samples for continuous 
data. In EEGLAB, used for 
grand-average ERPs.

ANOVA: compare several
groups (can test interaction 
between two factors for the 
repeated measure ANOVA) 
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Problems

• Not resistant against outliers

• For ANOVA and t-test non-normality is an
issue when distributions differ or when 
variances are not equal.

• Slight departure from normality can have 
serious consequences

1. Robust Measures (outliers)

2. Bootstrap approach (non-normality)

Solutions
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Problem of Outliers
Median

Mean
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Robust measures of ERP

• Non-robust estimator
– Mean: mERP = mean(EEG.data,..)

• Robust estimator
- Median: mdERP = median(EEG.data,...)
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Non-parametric statistics

Paired t-test  Wilcoxon
Unpaired t-test  Mann-Whitney
One way ANOVA Kruskal Wallis

Values Ranks

Non-parametric is more robust to outliers

BOTH ASSUME NORMAL DISTRIBUTIONS
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How handle violations of normality?

• Bootstrap
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Bootstrap: central idea 

• “The bootstrap is a computer-based method for 
assigning measures of accuracy to statistical 
estimates.” Efron & Tibshirani, 1993 

• “The central idea is that it may sometimes be 
better to draw conclusions about the 
characteristics of a population strictly from the 
sample at hand, rather than by making perhaps 
unrealistic assumptions about the population.”
Mooney & Duval, 1993 
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Sample and population

Sample Population

H0: the mean is not 0 for the
population

given that we have no other information 
about the population, the sample is our 
best single estimate of the population
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Inferences based on percentile  
bootstrap method H0  

Permutation
/bootstrap

Sorted values

Thresholds

2.5% 97.5%

Confidence interval for the difference
Bootstrap approach
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2.5% 97.5%

Distribution can take any shape

2.5% 97.5% 2.5% 97.5%

Signif. value

Non signif. value

Once you have the 95% confidence interval for 
the difference: significance only involves 
assessing if 0 is included in the tails.
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Difference 1  Difference 2  Difference 3  Difference 4  
Original 

Difference  

…

2.5% 2.5%

Assessing significance

Difference mask at p<0.05
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Multiple comparisons

• Problem: Comparison of ERP or ERSP across 
conditions involves many parallel statistical tests

• ERP: e.g. 3s = 1500 points, so 1500 tests.
• ERSP: e.g. 50 frequencies x 1000 times = 50,000 tests.

1500 tests at p=0.05: expect 75
points to be significant by 
chance (150 ms!)

50,000 tests at p=0.05: expect 
2500 points to be significant by 
chance
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Correcting for multiple comparisons

• Bonferoni correction: divide by the number of 
comparisons (Bonferroni CE. Sulle medie multiple di potenze. Bollettino 
dell'Unione Matematica Italiana, 5 third series, 1950; 267-70.)

• Correct if every measurement is independent, but this is not the 
case for biological data, which has many local correlations.

• à too conservative

• Holms correction: sort all p values. Test the first one 
against α/N, the second one against α/(N-1)

• False detection rate (FDR)

• Cluster randomization
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FDR

C2 C3
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FDR procedure

C1 (Pk) C2 C3

Index "k" Actual j*0.05/10 C2-C1
1 0.001 0.005 -0.004
2 0.002 0.01 -0.008
3 0.01 0.015 -0.005
4 0.03 0.02 0.01
5 0.04 0.025 0.015
6 0.045 0.03 0.015
7 0.05 0.035 0.015
8 0.1 0.04 0.06
9 0.2 0.045 0.155

10 0.6 0.05 0.55

Procedure:
- Sort all p values (column C1)
C3

- Create column C2 by computing k*α/N

- Subtract column C1 from C2 to build
column C3

- Find the highest negative value in C3 and
find the corresponding p-value in C1
(p_fdr)

- Reject all null hypothesis whose p-value
are less than or equal to p_fdr
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Comparison of different corrections

C1 C2 C3

Index "j" Actual j*0.05/10 C2-C1
1 0.001 0.005 -0.004
2 0.002 0.01 -0.008
3 0.01 0.015 -0.005
4 0.03 0.02 0.01
5 0.04 0.025 0.015
6 0.045 0.03 0.015
7 0.05 0.035 0.015
8 0.1 0.04 0.06
9 0.2 0.045 0.155

10 0.6 0.05 0.55

Bonferoni

Uncorrected

FDR
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Original 
difference  

2.5% 97.5%  

Size of largest sig. cluster: 44 pixels  

….  

Difference bootstrap 1  

35 pixels  

Difference bootstrap 2  

27 pixels  

Cluster correction for multiple comparisons  

Difference bootstrap 3  

22 pixels  
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Study GUI
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Test between conditions (stern study)
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LIMO EEG
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