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Robust statistics

Parametric & non-parametric statistics: Use mean and
standard deviation (t-test, ANOVA, ...) or rank-based
statistics (more robust to outliers), but

Depend on Gaussian assumption.

Bootstrap and permutation methods: Shuffle/bootstrap
data and recompute measure of interest. Use the tail of the
empirical distribution to asses significance.

Works for any distribution.

Correction for multiple comparisons: Computing
statistics on time(/frequency) series requires correction for
the number of comparisons performed.



Take-home messages

» Look at your data! Show your data!

* A perfect & universal statistical recipe does
not exist

* Keep exploring: there are many great opfions,
most of them available in free softwares and
toolboxes
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Assume gaussian distribution of data

T-test: Compare
paired/unpaired

Samples for continuous
data. In EEGLAB, used for
grand-average ERPs.

ANOVA: compare several

groups (can test interaction
between two factors for the
repeated measure ANOVA)
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Problems

* Not resistant against outliers

* For ANOVA and t-test non-normality is an
iIssue when distributions differ or when
variances are not equal.

« Slight departure from normality can have
Serious consequences

Solutions

1. Robust Measures (outliers)

2. Bootstrap approach (non-normality)




Problem of Outliers

Median




Robust measures of ERP

 Non-robust estimator
— Mean: mERP = mean(EEG.data,..)

* Robust estimator
- Median: mdERP = median(EEG.data,...)



Non-parametric statistics

Paired t-test > Wilcoxon
Unpaired t-test > Mann-Whitney
One way ANOVA —— Kruskal Wallis

Values

Non-parametric is more robust to outliers

BOTH ASSUME NORMAL DISTRIBUTIONS




Goal

Dataset

ﬁf

Binomial or Discrete

%’

Continuous measurement
(from a normal distribution)

Continuous measurement,
Rank, or Score (from non-
normal distribution)

Example of data sample

List of patients recovering or not

Readmgs of heart pressure from |

Ranking of several treatment

after a treatment several patients efficiency by one expert
Describe one data sample Proportions Mean. SD Median
l Compare one data sample to a 3 X ) ‘ 2 ' 4
hypothetcl datihubue 7 or binomal test One-sample t test Sign test or Wilcoxon test
Compare two paired samples Sign test Paired t test Sign test or Wilcoxon test
' Compare two unpaired samples A . .
= e " A square Unpaired t test Mann-Whitney test

Fisher's exact test

Compare three or more

unmatched samples Xz test One-way ANOVA Kruskal-Wallis test
|c th tched _
e Cochrane Q test Repeated-measures ANOVA Friedman test
samples
| e . - . |
Quantify as?ouatmn hetween Contmgency cocfficients PO T o e
two paired samples J

Delorme, A. (2006) Statistical methods. Encyclopedia of Medical Device and Instrumentation, vol 6, pp 240-264. Wiley interscience.




How handle violations of normality?

Monographs

RANDOMIZATION,
BOOTSTRAP AND
MONTE CARLO
METHODS IN An

BIOLOGY Introduction
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Bootstrap
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Bootstrap: central idea

“ “The bootstrap is a computer-based method for™=

assigning measures of accuracy to statistical
estimates.” Efron & Tibshirani, 1993

“The central idea is that it may sometimes be
better to draw conclusions about the
characteristics of a population strictly from the
sample at hand, rather than by making perhaps

unrealistic assumptions about the population.”
Mooney & Duval, 1993



Sample and population

Sample \ Population

given that we have no other information HO: the mean is not 0 for the
about the population, the sample is our population
best single estimate of the population
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Measure for the bootstrap

Anova — X,

|
2.5%

I
97.5%



Confidence interval for the difference

. Bootstrap approach

permutation MMM A i

/bootstrap o
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| Distribution can take any shape
-

—

Non signif. value

A\

| | |
2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

Once you have the 95% confidence interval for
the difference: significance only involves
assessing if 0 is included in the talls.
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Assessing significance

Original
Difference 1 Difference 2 Difference 3 Difference 4 Difference
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2 Multiple comparisons
““« Problem: Comparison of ERP or ERSP across

conditions involves many parallel statistical tests

ERP: e.g. 3s = 1500 points, so 1500 tests.
ERSP: e.g. 50 frequencies x 1000 times = 50,000 tests.

ERP - CZ Condition 1 minus Condition 2 ERSP(dE)
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1500 tests at p=0.05: expect 75 50,000 tests at p=0.05: expect
points to be significant by 2500 points to be significant by

chance (150 ms!) chance



Correcting for multiple comparisons
-

« Bonferoni correction: divide by the number of

Comparisons (Bonferroni CE. Sulle medie multiple di potenze. Bollettino
dell'Unione Matematica ltaliana, 5 third series, 1950; 267-70.)

« Correct if every measurement is independent, but this is not the
case for biological data, which has many local correlations.

« - too conservative

* Holms correction: sort all p values. Test the first one
against a/N, the second one against a/(N-1)

* False detection rate (FDR)

e Cluster randomization



FDR

‘ 1. For a given a, find the largest k such that Py < —a.
m

Center for

xi': 2. Reject the null hypothesis (i.e., declare discoveries) for all H, (4) forg = Lo K- Chepatagioi
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FDR procedure

_‘ 1. For a given ¢, find the largest & such that P(k) < —a.

<. . 2. Reject the null hypothesis (i.e., declare discoveries)Tor all H(,-) torg = Looos; K
C1(P,)
Procedure: Index "k" | Actual
- Sort all p values (column C1) 1 0.001
c3 2| 0.002
- Create column C2 by computing k*a/N 3 0.01
4 0.03
- Subtract column C1 from C2 to build 5 0.04
column C3 5 0.045
- Find the highest negative value in C3 and 7 0.05
find the corresponding p-value in C1 8 0.1
(P 9 0.2
- Reject all null hypothesis whose p-value 10 0.6

are less than or equal to p_fdr
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FDR procedure

1. For a given ¢, find the largest & such that Py < —a.

m
2. Reject the null hypothesis (i.e., declare discoveries) for all H(i) torg = Looos; K
C1(P,) C2
Procedure: Index "k" | Actual | k*0.05/10
- Sort all p values (column C1) 1 0.001 0.005
C3 2| 0.002 0.01
- Create column C2 by computing k*a/N 3 0.01 0.015
4 0.03 0.02
- Subtract column C1 from C2 to build 5 0.04 0.025
I C3
SO 6| 0.045 0.03
- Find the highest negative value in C3 and 7 0.05 0.035
find the corresponding p-value in C1 8 0.1 0.04
(p_tel) 9 02| 0045
10 0.6 0.05

- Reject all null hypothesis whose p-value
are less than or equal to p_fdr
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FDR procedure

1. For a given ¢, find the largest & such that Py < —a.

m
2. Reject the null hypothesis (i.e., declare discoveries) for all H(i) torg = Looos; K
C1(P,) C2
Procedure: Index "k" | Actual | k*0.05/10 | C2-C1
- Sort all p values (column C1) 1 0.001 0.005 -0.004
C3 2|  0.002 0.01| -0.008
- Create column C2 by computing k*a/N 3 0.01 0.015 -0.005
4 0.03 0.02 0.01
- Subtract column C1 from C2 to build 5 0.04 0.025 0.015
I C3
comimn 6| 0.045 0.03| 0015
- Find the highest negative value in C3 and 7 0.05 0.035 0.015
find the corresponding p-value in C1 8 0.1 0.04 0.06
(p_fdr)
9 0.2 0.045 0.155
10 0.6 0.05 0.55

- Reject all null hypothesis whose p-value
are less than or equal to p_fdr
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FDR procedure

1. For a given ¢, find the largest & such that Py < —a.

2. Reject the null hypothesis (i.e., declare discoveries)Tor all H(i) torg = Looos; K
C1(P) C2

Procedure: Index "k" | Actual | k*0.05/10 | C2-C1
- Sort all p values (column C1) 1 0.001 0.005 -0.004
C3 2|  0.002 0.01| -0.008
- Create column C2 by computing k*a/N 3 “ 0.01 0.015 -0.005

4 0.03 0.02 0.01
- Subtract column C1 from C2 to build 5 0.04 0.025 0.015
column €3 6| 0.045 0.03| 0.015
- Find the highest negative value in C3 and 7 0.05 0.035 0.015
find the corresponding p-value in C1 8 0.1 0.04 0.06
(p_rdr) 9 02| 0045| 0.155
- Reject all null hypothesis whose p-value 10 0.6 0.05 0.55

are less than or equal to p_fdr
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FDR procedure

1. For a given ¢, find the largest & such that Py < —a.

m
2. Reject the null hypothesis (i.e., declare discoveries) for all H(i) torg = Looos; K
C1(P,) C2

Procedure: Index "k" | Actual | k*0.05/10 | C2-C1
- Sort all p values (column C1) 1 0.001 0.005 -0.004
C3 2| 0.002 0.01| -0.008
- Create column C2 by computing k*a/N 3 “ 0.01 0.015 -0.005

4 0.03 0.02 0.01
- Subtract column C1 from C2 to build 5 0.04 0.025 0.015

I C3

soHmn 6| 0.045 0.03| 0.015
- Find the highest negative value in C3 and 7 0.05 0.035 0.015
find the corresponding p-value in C1 8 0.1 0.04 0.06
(p_fdr)

9 0.2 0.045 0.155
- Reject all null hypothesis whose p-value 10 0.6 0.05 0.55

are less than or equal to p_fdr




Comparison of different corrections

Bonferoni f

C2 / C3

FDR 4

C1
Index "j" | Actual |j*0.05/10 ¥ C2-C1

0.001 0.005 -0.004

2 0.002 0.01 -0.008
g“ 0.01 0.015 -0.005
4 0.03 0.02 0.01
5 0.04 0.025 0.015
6 0.045 0.03 0.015
7 0.05 0.035 0.015
8 0.1 0.04 0.06
9 0.2 0.045 0.155
10 0.6 0.05 || 0.55

\

Uncorrected



Cluster correction for multiple comparisons
-
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Study GUI

IV ﬁ f‘\ul\ M A M 1
i View and edit current component clusters -- pop_clustedit()

Swartz
Center for
Computa’(ional
euroscience

All cluster centroids
Parerytcllésteﬂ (311 ICs)

" Cls4 (15ICs)
Cls 5 (35 ICs)
Cls 6 (12 ICs)

Plot scalp maps
Plot dipoles

Plot ERPs Params |

Use permutation statistics &

i v Do not correct for multiple comparisons
Plot ERPimage N Use Bonferoni correction
- ‘ Use Holms correction
Use FDR correction

Plot spectra

Plot ERSPs

Plot ITCs

Allthresnoldi(p=vaiue))

HandomiZatuenii),

L . 1, 1 H . 1
channelneighborparameters method', triangulation

Create new cluster CE clustering parameters Clusterstatistic', maxsum’

Rename selected cluster
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Test between conditions (stern study)

Cls 3 ERSP, ignore

.
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