

Source information flow and Granger-Causal modeling tools

EEGLAB Workshop XXVI Ben-Gurion University, Be'er-Sheva, Israel Day 3

John Iversen

EEGLAB Workshop XXVI, Oct 15-18, 2017, Israel – Connectivity 1

Part 3b: Event Related Coherence

- Goal: How similar is the event-related response of two signals?
 - Between channels
 (problematic due to volume conduction)
 - Between ICs
 - Useful to quickly begin to understand relationships between components

•			EEGLAB v13.1.1				
File	Edit	Tools	Plot Study	Datasets	Help		
	_#2: faces_4		Channel loo	ations		•	
	Filename Channels Frames p Epochs Events Sampline	e: none s per fram per epoch g rate (Hz	Channel da Channel sp Channel pr Channel ER Channel ER ERP map se Sum/Comp	ta (scroll) ectra and n operties P image Ps ries are ERPs	naps	* *	
	Epoch st Epoch en Referenc Channel ICA weic Dataset	tart (sec) ce locations ahts size (Mb)	Componen Componen Componen Componen Componen Sum/Comp	t activation: t spectra ar t maps t properties t ERP image t ERPs are comp. 1	s (scroll) Id maps : : : :	•	
			Data statist	cs		۲	
			Time-frequ	ency transf	orms	>	Channel time-frequency
			pvaf topo			-	Channel cross-coherence
			-				Component time-frequency
							Component cross-coherenc

TWO SIMULATED THETA PROCESSES

Try it!

Cross coherence between IC 1 and IC 3

 $\alpha = 0.01$

coherence) in alpha/beta bands IC 1 tonically leads IC 3 (negative phase), but phase relationships are changed post-stimulus

Directional measures of effective connectivity are present in the SIFT toolbox.

Source Information Flow Toolbox

http://sccn.ucsd.edu/wiki/SIFT Mullen, et al, Journal of Neuroscience Methods (in prep, 2012) Mullen, et al, Society for Neuroscience, 2010 Delorme, Mullen, Kothe et al, Computational Intelligence and Neuroscience, vol 12, 2011

- A toolbox for (source-space) electrophysiological information flow and causality analysis (single- or multi-subject) integrated into the EEGLAB software environment.
- Emphasis on vector autoregression and time-frequency domain approaches
- Standard and novel interactive visualization methods for exploratory analysis of connectivity across time, frequency, and spatial location

Tim Mullen

EEGLAB Workshop XXVI, Oct 15-18, 2017, Israel – Connectivity

The Dynamic Brain

A key goal: To model temporal changes in neural dynamics and information flow that index and predict task-relevant changes in cognitive state and behavior

• Open Challenges:

- Non-invasive measures (source inference)
- Robustness and Validity (constraints & statistics)
- Scalability (multivariate)
- Temporal Specificity / Nonstationarity / Single-trial (dynamics)
- Multi-subject Inference
- Usability and Data Visualization (software)

Tim MullenEEGLAB Workshop XXVI, Oct 15-18, 2017, Israel – Connectivity10

Large-scale brain connectivity

(Bullmore and Sporns, Nature, 2009)

A taxonomy of connectivity measures

Bastos AM, Schoffelen J-M: A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls. *Front Sys Neurosci* 2016, **9**:413.

The problem of spurious connectivity

Bivariate measures, such as coherence (but also original GC), find spurious connections between nodes if they share a **common input**.

Calculation of GC

Granger Causality

- A measure of *statistical* causality based on prediction.
- Widely used in time-series econometrics.
- Nobel Prize in economics, 2003.

If a signal A causes a signal B, then knowledge of the past of both A and B should improve the predictability of B, as compared to knowledge of B alone.

Granger Causality

Granger (1969) quantified this definition for **bivariate** processes in the form of an F-ratio: reduced model

$$F_{X_1 \leftarrow X_2} = \ln \left(\frac{var(\tilde{E}_1)}{var(E_1)} \right) = \ln \left(\frac{var(X_1(t) \mid X_1(\cdot))}{var(X_1(t) \mid X_1(\cdot), X_2(\cdot))} \right)$$
full model

Alternately, for a multivariate interpretation we can fit a single MVAR model to all channels and apply the following definition:

Autoregressive Models

Goal: Predict future values of a data time series (EEG signal) from its past.

X WMMMMMMM
$$x(t) = \sum_{\tau=1}^{p} a(\tau)x(t-\tau) + e(t)$$

weighted error
sum of
past values

$$x(t) = a(1)x(t-1) + a(2)x(t-2) + e(t)$$

AR Models (prediction of future of a signal by its past)

VAR Models (prediction of future of a signal by its past + the other signal's past)

$$\begin{split} X_{1} \mid X_{2} & \text{MMMMMMM} & GC_{2 \to 1} = ln \frac{var(e_{1})}{var(e_{1|2})} \\ x_{1|2}(t) &= \sum_{\tau=1}^{p} c(\tau)x_{1}(t-\tau) + \sum_{\tau=1}^{p} d(\tau)x_{2}(t-\tau) + \frac{e_{1|2}(t)}{e_{1|2}(t)} & \approx \ln(1) = 0 \end{split}$$

AR Models (prediction of future of a signal by its past)

VAR Models (prediction of future of a signal by its past + the other signal's past)

Incorporating information about X_1 improves the prediction of X_2 ! We say " X_1 granger-causes X_2 "

Granger Causality

Granger (1969) quantified this definition for **bivariate** processes in the form of an F-ratio: reduced model

$$\begin{split} F_{X_1 \leftarrow X_2} = \ln & \left(\frac{var(\tilde{E}_1)}{var(E_1)} \right) = \ln & \left(\frac{var(X_1(t) \mid X_1(\cdot))}{var(X_1(t) \mid X_1(\cdot), X_2(\cdot))} \right) \end{split}$$
 full model

Problem: Pairwise GC for multichannel data has problems of spurious connectivity due to common inputs

Solution: Multivariate VAR (MVAR)

Vector Autoregressive (VAR / MAR / MVAR) Modeling

The Linear Vector Autoregressive (VAR) Model

VAR[p] model

2

EEGLAB Workshop XXVI, Oct 15-18, 2017, Israel – Connectivity 23

Granger Causality

Granger (1969) quantified this definition for **bivariate** processes in the form of an F-ratio: reduced model

$$F_{X_1 \leftarrow X_2} = \ln \left(\frac{var(\tilde{E}_1)}{var(E_1)} \right) = \ln \left(\frac{var(X_1(t) \mid X_1(\cdot))}{var(X_1(t) \mid X_1(\cdot), X_2(\cdot))} \right)$$
full model

Alternately, for a multivariate interpretation we can fit a single MVAR model to all channels and apply the following definition:

Granger Causality – Frequency Domain

$$\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)} \mathbf{X}(t-k) + \mathbf{E}(t)$$

Fourier-transforming **A**^(k) we obtain

Likewise, X(f) and E(f) correspond to the fourier transforms of the data and residuals, respectively

$$\mathbf{A}(f) = -\sum_{k=0}^{p} \mathbf{A}^{(k)} e^{-i2\pi f k}; \mathbf{A}^{(0)} = I$$

We can then define the spectral matrix X(f) as follows:

 $\mathbf{X}(f) = \mathbf{A}(f)^{-1}\mathbf{E}(f) = \mathbf{H}(f)\mathbf{E}(f)$

Where **H**(*f*) is the *transfer matrix* of the system.

EEGLAB Workshop XXVI, Oct 15-18, 2017, Israel – Connectivity 26

Time-Frequency GC

- Brain network dynamics often change rapidly with time
 - event-related responses
 - transient network changes during sequential information processing
- Electrophysiological processes often exhibit oscillatory phenomena, making them well-suited for frequencydomain analysis

Adapting to Non-Stationarity

- The brain is a dynamic system and measured brain activity and coupling can change rapidly with time (non-stationarity)
 - event-related perturbations (ERSP, ERP, etc)
 - structural changes due to learning/feedback
- How can we adapt to non-stationarity?

Adapting to Non-Stationarity

- Many ways to do adaptive VAR estimation
 - Segmentation-based adaptive VAR estimation
 - Factorization of time-varying spectral density matrices (e.g. from STFTs, Wavelets, etc)
 - State-Space Modeling

. . .

EEGLAB Workshop XXVI, Oct 15-18, 2017, Israel – Connectivity29

Important Choices

- Model Order
 - Determines complexity of spectrum you can model
 - Larger orders need more data
- Window Length
 - Window must be long enough to contain sufficient data for your chosen model order
 - Must be long enough to encompass the time-scale of interactions
 - Yet not too long as to smear temporal dynamics or include non-stationary data

Selecting a VAR Model Order

 Model order is typically determined by minimizing information criteria such as Akaike Information Criterion (AIC) for varying model order (p):

Selecting a VAR Model Order

- Other considerations:
 - A M-dimensional VAR model of order p has at most Mp/2 spectral peaks distributed amongst the M variables. This means we can observe at most p/2 peaks in each variables' spectrum (or in the causal spectrum between each pair of variables)

 Optimal model order depends on sampling rate (higher sampling rate often requires higher model orders)

Order selection in reality

Consideration: Local Stationarity

Consideration: Sufficient data

M = number of variables

- p = model order
- Ntr = number of trials
- W = length of each window (sample points)

We have M^2p model coefficients to estimate. This requires a minimum of M^2p independent samples. So we have the constraint $M^2p \le N_{tr}W$. In practice, however, a better heuristic is $M^2p \le (1/10)N_{tr}W$.

10x more data points than parameters to estimate

SIFT will let you know if your window length is not optimal

Example Application

EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks

Hristos Courellis^{1,2*}, Tim Mullen¹, Howard Poizner³, Gert Cauwenberghs^{2,3} and John R. Iversen¹

Frontiers in Neuroscience | www.frontiersin.org

May 2017 | Volume 11 | Article 180

How does brain plan visually guided movements?

• Pointing Task (Park, et al. 2014, IEEE Trans Neural Syst Rehabil Eng)

EEGLAB Workshop XXVI, Oct 15-18, 2017, Israel – Connectivity 39

ICA source space analysis

Independent Component Analysis

Estimate IC equivalent dipole locations

Identify & remove non-brain artifact ICs

EMG

Noise

Cortical ROIs

Group SIFT: Project ICs onto cortical surface using LORETA; extract ROI time series. Advantage: Same ROIs for all subjects enables statistical comparison. (Use BCILAB srcpot)

Analysis Methods I

Segmentation–based MVAR

$$\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)}(t) \mathbf{X}(t-k) + \mathbf{E}(t)$$
$$\mathbf{A}(f) = -\sum_{k=0}^{p} \mathbf{A}^{(k)} e^{-i2\pi fk}; \mathbf{A}^{(0)} = I$$
$$\mathbf{A}(f)^{-1} = \mathbf{H}(f)$$

Analysis Methods II

•Time-varying SdDTF ("short-time direct directed transfer function")

 Directed measure of direct (unmediated) causal flow between ROIs

•Combines DTF and partial coherence; windowed (0.5s, 30ms).

$$\eta_{ij}^2(f,t) = \frac{|H_{ij}(f,t)|^2 |P_{ij}(f,t)|^2}{\sum_{klf\tau} |H_{kl}(f,\tau)|^2 |P_{kl}(f,\tau)|^2}$$

(Korzeniewska, et al. 2008)

dDTF

Partial Coherence

SIFT Analysis

•Time-varying SdDTF

Directed measure of direct causal flow between ROIs

Averaged across subjects

dDTF during reaching

EEGLAB Workshop XXVI, Oct 15-18, 2017, Israel – Connectivity 45

Changed causal flow during reaching

46

Occipital \rightarrow ACC

Greater causal flow during movement planning

EEGLAB Workshop XXVI, Oct 15-18, 2017, Israel – Connectivity 48

Discussion

- SIFT is a capable toolkit for causal dynamical analysis at source level
- **Parietal** network expected for visually guided action (e.g. Heider, et al., 2010)

- ACC more strongly driven by Occipital & Motor. Locus for translation of intention into action (Paus, 2001; Srinivasan, et al. 2013). ACC drives SMA (not shown).
- Causal network results depend on the number of nodes
 - E.g. Occipital → ACC could be mediated by region not included in model
 - There will always be a tradeoff between network size and amount of data needed to fit the model.
 - Regularization

History of group-level SIFT

- Approaches
 - Tim Mullen & Wes Thompson (since 2010)
 'Hierarchical Bayesian Modeling' that interpolate missing values (i.e. inconsistency in dipole locations across subjects).
- ROI-based approaches
 - Iversen, et al, 2014; Courellis, et al, 2017: project IC activation onto cortical surface and define activity in anatomically defined cortical ROIs.
 - Nima Bigdely-Shamlo (in his PhD dissertation in 2014) 'Network Projection' that uses dipole density and anatomical ROI. (Makoto Miyakoshi)

Source Information Flow Toolbox

http://sccn.ucsd.edu/wiki/SIFT Mullen, et al, Journal of Neuroscience Methods (in prep, 2012) Mullen, et al, Society for Neuroscience, 2010 Delorme, Mullen, Kothe et al, Computational Intelligence and Neuroscience, vol 12, 2011

- A toolbox for (source-space) electrophysiological information flow and causality analysis (single- or multi-subject) integrated into the EEGLAB software environment.
- Emphasis on vector autoregression and time-frequency domain approaches
- Standard and novel interactive visualization methods for exploratory analysis of connectivity across time, frequency, and spatial location

SIFT Workflow

Preprocessing: Select Components

3

Model Order Selection

4

ModelOrd
Downdate
■ Miscellan
RuninPara
T PlotResult
Optima
Percent
Verbosity
▼ Data Sele
WindowSa
Algorithm
Vieira-Morf
Algorithm
Descriptio
_
H
Þ
lidation 🕨
►

Help

Model Order Selection Assistant 문 🛃 📼 🔫 단 ▼ Modeling Parameters ModelingApproach Segmentation VAR Algorithm Vieira-Morf WindowLength 0.35 WindowStepSize 0.03 TaperFunction rectwin NormalizeData $\overline{\mathbf{v}}$ ▼ Detrend DetrendingMethod constant SetArgDirectMode V ModelOrderRange [1 30] V Downdate InformationCriteria sbc; aic; fpe; hg ▼ Miscellaneous RuninParallel $\overline{\mathbf{v}}$ ▼ PlotResults **OptimalModelSelectionMethod** min PercentileLimits 90 VerbosityLevel 2 ▼ Data Selection WindowSamplePercent 80 Algorithm Vieira-Morf

*

OK

Algorithm: Vieira-Morf

Description:

Help Cancel

Model Order Selection

Fit AMVAR Model

Validate model

								Windowst
0	0	EE	GLAB v	12.0.0.0	b			TaperFun
File	Edit	Tools	Plot	Study	Datasets	Help		WindowSa
	#1: Re Filename Channels Frames p	Chan Filter Re-re Inter Rejec	ge san the da eference polate t conti	npling ra ata ce electrod nuous d	es ata by eye	+		 Window F Normalize Detrend Detren Miscellan Timer SetAraDire
	Epochs Events Sampling	Extra Remo	ct epo ove bas	chs seline				Verbosity
	Epoch st	Run I Remo	CA ove cor	nponent	ts			VAR model
	Referenc Channel ICA weig Dataset	Auto Auto Rejec Rejec	matic e matic e t data t data	hannel poch re epochs using IC	rejection jection A	* *		
		Clear	Line				100	
		SIFT				>	Simulat	ion
		Locat Peak	e dipo detect	les using ion usin	g DIPFIT 2.x g EEG toolb	ox ►	✓ Pre-pro Model f Connec	ocessing itting and validation tivity
		FMRI	B Tools	5			Statistic	:s

Visualization Locate dipoles using LORETA . Help

0	Checking M	IVAR parameters				
		- · · · · · · · · · · · · · · · · · · ·				
MVAR PARAMETER SUMMA	RY FOR CONDITION: RespWrong					
		•				
OK: Ratio of number of param	neters to datapoints is 0.081.					
OK: Time-Frequency Product	Time-Frequency Product is 993.712. This should be greater than p=14					
OK: Given your model order of	of p=14, a maximum of p/2=7.0 frequenc	cy components (spectral peaks) can be estimated for each pair of variables				
C	Cancel	Ok				

Validation			Connectivity Statistics Visualization Help	
• • • • Validated Fitted VAR	Model			
1 문부 : III 바구 반고 Validation Methods				
CheckResidualWhiteness SignificanceLevel MultipleComparisonsCorrection	none	0.05		
WhitenessCriteria	Ljung-Box; ACF; B	ox	Ljung-Box	
CheckResidualVariance NumberOfAutocorrelationLags		50	ACF	-1
CheckConsistency		50	Sox-Pierce	-
CheckStability	V	_	LI-MCLEOD	-
▼ Data Reduction	-		Cancel OK	
WindowSamplePercent		70		
Miscellaneous				
VerbosityLevel		2		
PlotResults				
WhitenessCriteria				
Whiteness criteria. These are the statisti	cal tests used to te	st for	800	Progress
uncorrelated residuals				riogress
			Validating Model	for RespWrong

EEGLAB Workshop XXVI, Oct 15-18, 2017, Israel – Connectivity 59

Connectivity Estimation ConnectivityMeasures	DTF: dDTF08: nPDC	
Options SquaredModulus ConvertSpectrumToDecibels Frequencies Miscellaneous	1:40	dDTF dDTF dDTF08
VerbosityLevel		2 PDC
Select measures to estimate. Measures are categorized as follows: + DIRECTED TRANSFER FUNCTION M DTF: Directed Tranfer Function nDTF: Normalized DTF dDTF: Direct DTF dDTF08: Direct DTF (with full cause ffDTF: Full-frequency DTF + PARTIAL DIRECTED COHERENCE MB PDC: Partial Directed Coherence nPDC: Normalized PDC GPDC: Generalized Partial Directed PDC: Renormalized Partial Directed PDC: Renormalized Partial Directed PDC: Renormalized Partial Directed PDC: Complex Coherence iCoh: Complex Coherence iCoh: Imaginary Coherence pCoh: Partial Coherence mCoh: Multiple Coherence + SPECTRAL DENSITY MEASURES S: Complex Spectral Density	EASURES sal normalization) EASURES ed Coherence Factor tted Coherence SURES	GPDC PDCF RPDC GGC Coh iCoh pCoh mCoh ✓ S Cancel OK
Help Cancel	ок	
	+	

EEGLAB Workshop XXVI, Oct 15-18, 2017, Israel – Connectivity 61

Visualization: Time-Frequency Grid

Simulation	•	
✓ Pre-processing		
Model fitting and validation	*	
✓ Connectivity		
Statistics	b	
Visualization	>	Time-Frequency Grid
Help	•	BrainMovie3D

8

00	Time Frequency G	rid Options
DisplayProperties		
MatrixLayout		Partial
UpperTriangle		dDTF08
UT ColorLimits		100
LowerTriangle		dDTF08
LT ColorLimits		100
Diagonal		5
D ColorLimits		100
AllColorLimits		99.7
TimesToPlot		[-0.826171875 1.060.
FrequenciesToPlot		[1:40]
PlotContour		
PlottingOrder		0
SourceMarginPlot		dipole
NodeLabels		0
EventMarkers		{{0, 'r', ':', 2}}
FrequencyScale		linear
Colormap		[0 0 0.506666666666
Thresholding		
Thresholding		Simple
PercentileThresh	old	[97.5 3]
AbsoluteThresho	bld	D
DataProcessing		
Baseline		[-1 -0.25]
Smooth2D		
Miscellaneous		
DipolePlottingOptio	ns	
FrequencyMarkers		
FrequencyMarkers		[3 7 15]
FrequencyMarkerCo	olor	[0.7 0.7 0.7]
TextAndFont		
MT intel also all an		-f-sh-s
TextAndFont aseline Time range of baseli ach point. Leave bla	ne [Min Max] (sec). ank for no baseline	Will subtract ba
Help	Cancel	ОК

EEGLAB Workshop XXVI, Oct 15-18, 2017, Israel – Connectivity 64

EEGLAB Workshop XXVI, Oct 15-18, 2017, Israel – Connectivity 65

Visualization: Causal BrainMovie3D

dDTF08

1:15

max

0

[-0.826171875 1.0.

V

12345678

ICA_ERPenvelope

1: 2: 3: 4: 5: 6: 7: 8

A1; A2; A6; A7; A8;....

PeakFreg

Outflow

Power

Connectivity

0

w

4 1

1.06055

Make Moviel

BrainMovie3D Control Panel

9

000

File

: 21

10 10 10 1

..... ▼ DataProcessing

ConnectivityMethod

FreqCollapseMethod

SubtractConditions

▼ DisplayProperties

NodeLabels NodesToExclude

EdgeColorMapping EdgeSizeMapping

NodeColorMapping

FooterPanelDisplaySpec

FooterPanelDisplaySpec

Help

Preview BrainMovie-

-0.826172

BackProjectToChans

Configure footer panel displayed at the bottom of the figure. If 'off', don't render footer. If 'ICA_ERP_Envelope',

Select a time point to image tolick to refresh)

Cancel

00585938

then display the ERP envelope of backprojected

NodeSizeMapping

ICs

ShowNodeLabels

Baseline

TimeResamplingFactor

MovieTimeRange FrequenciesToCollapse

Figure 2

Tools Desktop Window Help

Insert

