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Motivation

• Why	perform	ICA?
• Why	fit	dipoles	or	distribution	source	models?
• Why	measure	EEG?!

• To	obtain	information	about	brain	processes…
– Time	course	of	activities	that	produce	the	EEG	signals
– Locations	of	the	activities	that	produce	the	EEG	signals

R. Oostenveld, & S. Makeig, 2016



scalp dynamics ≠ source dynamics !
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Peri-neuronal	currents
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Symmetry,	orientation	and	activation
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Awhen	recorded	at	a	distance,	dipolar field	components	dominate



EEG	Effective	Sources

Many neurons need to sum their local field activities to 
be detectable at EEG electrodes. Synchronized neural 
activity produces large far field signals.
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EEG	volume	conduction	of dipolar	field	
patterns	è effective	sources

R. Oostenveld, 2007



The	equivalent current	dipole

R. Oostenveld, 2007



Equivalent	current	dipole	modeling

A. Delorme, ~20071st IC source fit in an individual head model via EEGLAB



Julie Onton & S. Makeig (2006)
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• Physical/mathematical	motivation
– Any	current	distribution	can	be	written	as	a	multipole	
expansion

– First	term:	monopole	(must	be	0)
– Second	term:	dipole
– Higher	order	terms:	quadrupole,	octopole,	…
– In	far-field	recordings,	the	dipolar	term	dominates.

• For	convenience	+	accuracy,	therefore
– Dipoles	can	be	used	as	building	blocks	in	distributed	
EEG	effective	source	models

Equivalent	current	dipole	modeling

R. Oostenveld, & S. Makeig, 2016



The	linear	forward	problem

Daunizeau, 2009

where L is the lead field matrix giving
Potential vector contributions  X to each
scalp electrode  for all possible
source contributions S (source space)

Anatomical constraint:
Sources are
in the cortex & 
perpendicular to it.
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Forward	Head	Models

• Electrical	properties	of	tissue
– Conductivity
– Anisotropy	

• Geometrical	description
– Spherical	model?	(less	realistic)
– Realistically	shaped	model

→	A	forward	model	describes
how	the	currents	flow

from	all	possible	points	of	origin

R. Oostenveld, & S. Makeig, 2016



Forward	Head	Models

•	Advantages	of	the
spherical	model

– mathematically	accurate
– reasonably	accurate
– computationally	fast
– easy	to	use

•	Disadvantages	of	the
spherical	model

– inaccurate	in	some	regions
– difficult	to	align	to	head

R. Oostenveld, & S. Makeig, 2016



Forward	Head	Models

• Advantages	of	a	realistic	head	model
– accurate	solution	for	EEG

• Disadvantages	of	a	realistic	model
– more	work
– computationally	slower
– numerically	instable?
– Difficult	for	inter-individual	comparisons

→	The	pragmatic	(easy,	cheap)	solution	is	to	use	
a	standard	(mean)	realistic	head	model	(MNI).

R. Oostenveld, & S. Makeig, 2016



Forward	Head	Models

• Computational	methods	for	volume	
conduction	problem	that	allow	
realistic	geometries
– Boundary	Element	Method	(BEM)	
models

– Finite	Element	Method	(FEM)	models
• Geometrical	description

– Triangles (2-D)	à BEM
– Tetrahedra (3-D)	à FEM

R. Oostenveld, & S. Makeig, 2016



Forward	Head	Models:	BEM

• Boundary	Element	Method	(BEM)	models
– description	of	head	geometry	by	tissue	
compartments

– Tissue	in	each	compartment	is	assumed
• homogenous
• isotropic

Important	tissue	types
• Scalp
• Skull
• CSF
• Brain	(grey	matter	/	white	matter)

– Use	triangulated	surfaces	as	boundaries
– Each	surface	should	be	closed	(no	holes) R. Oostenveld, & S. Makeig, 2016
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Forward	head	models:
Modeling	the	skull

• Potential	differences	between	electrodes	measures	

summed	current	flowing	through	scalp

– However,	only	a	tiny	fraction	of	brain	source	currents	

pass	through	the	skull

– Therefore	a	forward	head	model	should	describe	

brain,	skull,	and scalp	tissues	as	accurately	as	possible.

R. Oostenveld, & S. Makeig, 2016



• Problems	with	skull	modeling

– Poorly	visible	in	the	anatomic	MRI	(T2)	image

– Thickness	varies	regionally

– Conductivity	is	not	homogeneous

– Complex	geometry	at	front	and	base	of	skull

à Skull	conductivity	variable	&	unknown

R. Oostenveld, & S. Makeig, 2016

Forward	head	models:
Modeling	the	skull



Volume	conductor:	FEM

• Tesselate	the	3-D	volume	into	solid	tetrahedra
- Contains	a	large	number	of	3-D	elements
- Each	tetrahedron	can	have	its	own	conductivity
- Each	tetrahedron	can	have	its	own	anisotropy

(direction-dependent	conductivity	differences)
• FEM	is	the	more	complete	numerical	method	(>	BEM)

– But	is	computationally	expensive
– Note:	Accurate	conductivities	are	not	known,	
particularly	for	skull	(and	scalp?).

To make a Finite Element Method (FEM) head model:

R. Oostenveld, & S. Makeig, 2016



Head Modeling Errors

Electrode & MRI Co-registration errors
HeaD Geometry Errors
EXCLUSION of white matter
Two Few electrodes 
Poor distribution of electrodes
à mis-estimation of skull conductivity



MRI Segmentation
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The	MNI	Head	Model

• 4-layer
– 16856	nodes
– 33696	elements

• 3-layer
– 12730	nodes
– 25448	elements

ScalpSkullCSFBrain
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Head	Model	Generation	Summary

• Subject-specific	Head	Model	(NFT)
– From	whole	head	T1	weighted	MR	of	the	subject
– 4-layer	realistic	BEM	model

• MNI	Template	Head	model	(DIPFIT)
– From	the	MNI	head
– 3-layer	and	4-layer	template	BEM	model

• Warped	MNI	Template	Head	Model	(NFT)
– Warp	MNI	template	to	EEG	sensors

• Spherical	Head	model	(no	longer	in	use)
– 3-layer	concentric	spheres
– Fitted	to	EEG	sensor	locations
– Not	accurate



Inverse	source	localization
• Single	and	multiple	dipole	models

– Minimize	error	between	the	model	and	
the	measured	potential/field

• Distributed	dipole	models
– Seek	perfect	fit	to	the	measured	potential	or	field
– Must	minimize	some	additional	source	constraint

• LORETA	assumes	a	smooth	source	current	distribution
• Minimum	Norm	(L2),	min.	total	cortical	|current|2

• Minimum	Current	(L1)	min.	total	cortical	|current|
• Note:	L2/L1	need	some	weighting	scheme	to	keep	
source	models	from	being	too	broad	&	superficial.

R. Oostenveld, & S. Makeig, 2016



Inverse	methods
Spatial	filtering	approaches

– Scan	whole	brain	with	single	dipole	and	compute	the	filter	
output	at	every	location	(using	sensor	covariance)
• MUSIC
• Beamforming	(e.g.	LCMV,	SAM,	DICS)

– Perform	ICA	decomposition	(higher-order	statistics)
on	the	continuous	data.
• ICA	gives	the	projections	of	the	sources	to	the	scalp	

surface	à�simple�maps!

àICA	solves�the	first	half� of	the	inverse	problem	�What?�

àICA	gives	‘simple’	source	maps,	helping	to	locate	‘Where?

R. Oostenveld, & S. Makeig, 2016



Single	or	multiple	dipole	models

• Manipulate	source	parameters	to	minimize	error	
between	measured	and	model	data
– The	position	of	each	source
– The orientation	of	each	source
– The strength	(magnitude)	of	each	source

• Dipole	orientation	and	strength	together	correspond	to	
the	�dipole	moment,� estimated	linearly

• Dipole	position	is	estimated	non-linearly	by	
source	parameter	estimation

R. Oostenveld, & S. Makeig, 2016



DIPFIT:	Dipole	fitting	1.	Grid	search

1.	Coarse	fit	step
•Define	a	grid	with	possible	dipole	locations
•Compute	optimal	dipole	moment	at	each	location
•Compute	value	of	goal-function	(fit	to	given	map)
•Plot	value	of	goal-function	on	the	grid	à find	best	fit.
•Number	of	evaluations:

– single	dipole,	1	cm	grid:					~4,000
– single	dipole,	½	cm	grid:							~32,000
– BUT	two	dipoles,	1	cm	grid:	 ~16,000,000

R. Oostenveld, & S. Makeig, 2016



DIPFIT:	Dipole	fitting	2.	Nonlinear	search

2.	Fine	fit	step
Start	with	the	initial	guess	from	coarse	fitting

– Evaluate	the	local	derivative	of	the	goal	(fit)	function
– Then	�walk	down	hill� to	the	most	optimal	solution

Number	of	iterative	steps	required	=	~100

R. Oostenveld, & S. Makeig, 2016



Effect	of	Template	Head	Model	Choice
On	Estimated	Dipole	Locations

Z.	Akalin	Acar	&	S	Makeig,	2013

7	mm	– head	sphere

4	mm	– electrode-warped	
MNI	

head

By Simulation: The median
geometric error in dipole
localization using the MNI
template head model warped
to measured electrode
positions is only 4 mm.

BUT Additional dipole	error	contributors:
- Electrode	co-registration	error
- ICA	numerical	error	(not	enough	data?)
- Source	model	geometry	error
- Conductance	value	error	(skull)



Distributed	source	models

• The	position	of	the	source	is	not	estimated	as	a	whole
• Instead,	On	a	pre-defined	source	space	grid	(3-D	volume	or	
cortical	2-D	sheet)
– Dipole	strength	is	estimated	at	each	grid	element
– In	principle,	a	linear	problem,	easy	to	solve,	BUT…

• More	�unknowns� (parameters)	than	�knowns�
(channels,	measurements),	so	…

• An	infinite	number	of	solutions	can	explain	the	data	
perfectly	(not	necessarily	physiologically	plausible!)

– Therefore,	additional	source	constraints	are	required	…
R. Oostenveld, & S. Makeig, 2016



Zeynep Akalin Acar,, S. Makeig, G. Worrell, ’09-’16

High-Resolution Distributed 
Source Localization

using a multiscale patch basis

1. Compute a ‘dictionary’ of Gaussian patches 
conforming to the cortical surface centered at 
each cortical mesh voxel.

2. Use a ‘sparsifying’ approach to find the sum of 
the fewest of these patches that together 
produce the given source scalp or grid map.

0.  Build a high-res. cortical 
surface mesh; give each 
voxel �� oriented dipole.



Summary

• An	electromagnetic	forward head	model	is	required	to	
interpret	the	sources	of	scalp	maps

• Interpretation	of	scalp	maps	in	terms	of	brain	source	
distributions	is	�inverse source	estimation�

àMathematical	techniques	are	available	to	aid	in	
interpreting	scalp	maps	as	arising	from	particular	brain	
sources

à These	require	an	inverse	source	model,	i.e.	 assumptions	
about	the	possible	locations	and	nature	of	the	sources	(i.e.,	
what	attributes	make	them	physiologically	plausible).		

à Then	search	for	the	most	plausible	sourcemodel.
R. Oostenveld, & S. Makeig, 2016



Summary

• Inverse	modeling
– Model	assumption	for	volume	conductor
– Model	assumption	for	source	(I.e.	dipole)
– Additional	assumptions	on	source

• Single	point-like	sources
• Multiple	point-like	sources
• Distributed	sources

– Different	mathematical	solutions
• Dipole	fitting	(linear	and	nonlinear)
• Linear	estimation	(regularized)

R. Oostenveld, 2007



• If	we	have	MRI	of	the	subject
– Subject	specific	head	model
– Distributed	source	localization

• If	we	don’t	have	the	MRI
– Warped	4-layer	MNI	model	(NFT)
– Dipole	source	localization

• Skull	conductivity	estimation	is	as	important	
as	the	head	model	used	(SCALE)

• White	matter	modeling	does	not	have	a	huge	
effect	on	source	localization.

Summary
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