Forward and Inverse EEG Source Modeling

Scott Makeig Institute for Neural Computation, UCSD

EEGLAB Mysore, India

January, 2017

Motivation

- Why perform ICA?
- Why fit dipoles or distribution source models?
- Why measure EEG?!

- To obtain information about brain processes...
 - Time course of activities that produce the EEG signals
 - Locations of the activities that produce the EEG signals

EEG source modeling

R. Oostenveld, & S. Makeig, 2016

Symmetry, orientation and activation

Awhen recorded at a distance, dipolar field components dominate 2007

EEG Effective Sources

Many neurons need to sum their local field activities to be detectable at EEG electrodes. Synchronized neural activity produces large far field signals.

EEG volume conduction of dipolar field patterns -> effective sources

Equivalent current dipole modeling

1st IC source fit in an individual head model via EEGLAB

A. Delorme, ~2007

Julie Onton & S. Makeig (2006)

Equivalent current dipole modeling

- Physical/mathematical motivation
 - Any current distribution can be written as a multipole expansion
 - First term: monopole (must be 0)
 - Second term: dipole
 - Higher order terms: quadrupole, octopole, ...
 - In far-field recordings, the dipolar term dominates.
- For convenience + accuracy, therefore
 - Dipoles can be used as building blocks in distributed EEG effective source models

The linear forward problem

Daunizeau, 2009

where *L* is the lead field matrix giving Potential vector contributions *X* to each scalp electrode for all possible source contributions *S* (source space)

Anatomical constraint: Sources are in the cortex & perpendicular to it.

- Electrical properties of tissue
 - Conductivity
 - Anisotropy
- Geometrical description
 - Spherical model? (less realistic)
 - Realistically shaped model
- → A forward model describes how the currents flow from all possible points of origin

- Advantages of the spherical model
 - mathematically accurate
 - reasonably accurate
 - computationally fast
 - easy to use
- Disadvantages of the **spherical** model
 - inaccurate in some regions
 - difficult to align to head

- Advantages of a realistic head model
 accurate solution for EEG
- Disadvantages of a **realistic** model
 - more work
 - computationally slower
 - numerically instable?

- Difficult for inter-individual comparisons
- → The pragmatic (easy, cheap) solution is to use a standard (mean) realistic head model (MNI).

- Computational methods for volume conduction problem that allow realistic geometries
 - Boundary Element Method (BEM) models
 - Finite Element Method (FEM) models
- Geometrical description
 - Triangles (2-D) → BEM
 - Tetrahedra (3-D) → FEM

Forward Head Models: BEM

- Boundary Element Method (BEM) models
 - description of head geometry by tissue compartments
 - Tissue in each compartment is assumed
 - homogenous
 - isotropic
 - Important tissue types
 - Scalp
 - Skull
 - CSF
 - Brain (grey matter / white matter)
 - Use triangulated surfaces as boundaries
 - Each surface should be closed (no holes)

Forward Head Models: BEM

- Boundary Eler
 - descripti compar
 - Tissue
 - hom
 - isot
 - Important
 - Scalp
 - Skull
 - CSF
 - Brain (grey ma
 - Use triangulated
 - Each surface should be closed (no holes)

Forward head models: Modeling the skull

Potential differences between electrodes measures

summed current flowing through scalp

- However, only a tiny fraction of *brain source currents* pass through the skull
- Therefore a forward head model should describe

brain, skull, and scalp tissues as accurately as possible.

Forward head models: Modeling the skull

- Problems with skull modeling
 - Poorly visible in the anatomic MRI (T2) image
 - Thickness varies regionally
 - Conductivity is not homogeneous
 - Complex geometry at front and base of skull
 - → Skull conductivity variable & unknown

Volume conductor: FEM

To make a Finite Element Method (FEM) head model:

- Tesselate the 3-D volume into solid tetrahedra
 - Contains a large number of 3-D elements
 - Each tetrahedron can have its own conductivity
 - Each tetrahedron can have its own anisotropy
 - (direction-dependent conductivity differences)

• FEM is the more complete numerical method (> BEM)

- But is computationally expensive
- Note: Accurate conductivities are not known, particularly for skull (and scalp?).

Head Modeling Errors

Electrode & MRI Co-registration errors HeaD Geometry Errors EXCLUSION of white matter Two Few electrodes Poor distribution of electrodes → mis-estimation of skull conductivity

Electromagnetic source localization using realistic head models (Dipfit, NFT)

The MNI Head Model

Brain

- 4-layer
 - 16856 nodes
 - 33696 elements
- 3-layer
 - 12730 nodes

Skull

- 25448 elements

NIST

Scalp map

space

Source

SCS

Patch-based SBL

sLORETA

- Subject-specific Head Model (NFT)
 - From whole head T1 weighted MR of the subject
 - 4-layer realistic BEM model

• MNI Template Head model (DIPFIT)

- From the MNI head
- 3-layer and 4-layer template BEM model

• Warped MNI Template Head Model (NFT)

- Warp MNI template to EEG sensors
- Spherical Head model (no longer in use)
 - 3-layer concentric spheres
 - Fitted to EEG sensor locations
 - Not accurate

- Single and multiple dipole models
 - Minimize error between the model and

the measured potential/field

- Distributed dipole models
 - Seek perfect fit to the measured potential or field
 - Must minimize **some additional source constraint**
 - LORETA assumes a smooth source current distribution
 - Minimum Norm (L2), min. total cortical |current|²
 - Minimum Current (L1) min. total cortical |current|
 - Note: L2/L1 need some weighting scheme to keep source models from being too broad & superficial.

Inverse methods

Spatial filtering approaches

- Scan whole brain with single dipole and compute the filter output at every location (using sensor covariance)
 - MUSIC
 - *Beamforming* (e.g. LCMV, SAM, DICS)
- Perform ICA decomposition (higher-order statistics) on the continuous data.
 - ICA gives the projections of the sources to the scalp surface → 'simple' maps!

 \rightarrow ICA solves 'the first half' of the inverse problem 'What?' \rightarrow ICA gives 'simple' source maps, helping to locate 'Where?

Single or multiple dipole models

- Manipulate source parameters to **minimize error** between measured and model data
 - The **position** of each source
 - The **orientation** of each source
 - The strength (magnitude) of each source
- Dipole orientation and strength together correspond to the "dipole moment," estimated linearly
- **Dipole position** is estimated non-linearly by source parameter estimation

1. Coarse fit step

- •Define a grid with possible dipole locations
- •Compute optimal dipole moment at each location
- •Compute value of goal-function (fit to given map)
- •Plot value of goal-function on the grid \rightarrow find best fit.
- •Number of evaluations:
 - single dipole, 1 cm grid: ~4,000
 - single dipole, ½ cm grid: ~32,000
 - BUT two dipoles, 1 cm grid:

~16,000,000

2. Fine fit step

Start with the initial guess from coarse fitting

- Evaluate the local derivative of the goal (fit) function
- Then "walk down hill" to the most optimal solution Number of iterative steps required = ~100

Effect of Template Head Model Choice On Estimated Dipole Locations

Distributed source models

- The position of the source is not estimated as a whole
- Instead, On a pre-defined source space grid (3-D volume or cortical 2-D sheet)
 - Dipole strength is estimated at each grid element
 - In principle, a linear problem, easy to solve, BUT...
 - More "unknowns" (parameters) than "knowns" (channels, measurements), so ...
 - An infinite number of solutions can explain the data perfectly (not necessarily physiologically plausible!)

- Therefore, additional source constraints are required ...

High-Resolution Distributed Source Localization

using a multiscale patch basis

- 0. Build a high-res. cortical surface mesh; give each voxel an oriented dipole.
- 1. Compute a 'dictionary' of Gaussian patches conforming to the cortical surface centered at each cortical mesh voxel.
- 2. Use a 'sparsifying' approach to find the sum of the *fewest* of these patches that together produce the given source scalp or grid map.

Zeynep Akalin Acar,, S. Makeig, G. Worrell, '09-'16

Summary

- An electromagnetic **forward head model** is required to interpret the sources of scalp maps
- Interpretation of scalp maps in terms of brain source distributions is "inverse source estimation"
- →Mathematical techniques are available to aid in interpreting scalp maps as arising from particular brain sources
- → These require an inverse source model, i.e. assumptions about the possible locations and nature of the sources (i.e., what attributes make them *physiologically plausible*).
- → Then search for the *most plausible* source model.

Summary

- Inverse modeling
 - Model assumption for volume conductor
 - Model assumption for source (I.e. dipole)
 - Additional assumptions on source
- Single point-like sources
- Multiple point-like sources
- Distributed sources
 - Different mathematical solutions
 - Dipole fitting (linear and nonlinear)
 - Linear estimation (regularized)

Summary

- If we have MRI of the subject
 - Subject specific head model
 - Distributed source localization
- If we don't have the MRI
 - Warped 4-layer MNI model (NFT)
 - Dipole source localization
- Skull conductivity estimation is as important as the head model used (SCALE)
- White matter modeling does not have a huge effect on source localization.

Acknowledgments

- Robert Oostenveld (Donders Institute, Nijmegen)
- Zeynep Akalin Acar (SCCN, UCSD)
- Arnaud Delorme (SCCN)