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Signals — EEG

Goals
— Describe dynamic characteristics of brain activity
— Describe relation between different regions of brain

Approaches

— Time domain

— Frequency domain
— Time/Frequency
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Different meanings traditionally given to different
; . frequency bands
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Beta 15-30 Hz

Delta Theta
Awake, normal alert
consciousness

Alpha 9-14 Hz
Relaxed, calm, meditation,
creative visualisation i I

Theta 4-8 Hz

Deep relaxation and I
meditation, problem

solving

Delta 1-3 Hz

Deep, dreamless
sleep
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MEEG spectrum

ERP ~  Beta Gamma

MEG Power
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Time varying frequency content
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Time-varying frequency content
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Power Spectrum does not describe temporal variation
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Swartz
Center for
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\
Multiresolution Short-Time Wigner-Ville
Wavelets / vier Transf4 Distributions

S. Makeig, 2005

EEGLAB Workshop XXV, Sep 26-29, 2017, Tokyo, Japan — John Iversen — Time-Frequency Analysis



Plan

Part 1: Frequency Analysis
— Power Spectrum
* Approaches
— FFT
— Welch’s Method
« Windowing

Part 2: Time-Frequency Analysis
— Short Time Fourier Transform

— Wavelet Transform
— ERSP

Part 3: Coherence Analysis
— Inter-Trial Coherence
— Event-Related Coherence
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Part 1: Frequency Analysis

« Goal: What frequencies are present in signal?
« What is power at each frequency?

* Principle: Fourier Analysis
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Fourier Analysis
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| Power Spectrum. Approach 1: FFT
-
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Why not just take FFT of our signal of interest?

Advantage — fine frequency resolution
— AF =1/ signal duration (s)
— E.g. 100s signal has 0.01 Hz resolution
— But, do we really need this?

Disadvantage 1 — high variance
— Solution: e.g. Welch’s method

Disadvantage 2 — no temporal resolution
— Solution 1: Short-Time Fourier Transform
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Amplitude and phase

Power spectra describe the amount of a given frequency
present

NOT a complete description of a signal: We also must
know the phase at each frequency

FFT/STFT/Wavelet return an amplitude and phase at
each time and frequency (represented as complex #).

To find power, we compute the magnitude, which
discards phase.

EEGLAB Workshop XXV, Sep 26-29, 2017, Tokyo, Japan — John Iversen — Time-Frequency Analysis 13



Phasor representation

\‘\"c—:‘?
* A complex number x + yi can be expressed in terms of
amplitude and phase: ae®

amplitude*exp(i*phase)
amplitude = sqrt(x"2 + y"2); phase = atan(y/x);

-
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Approach 2: Welch’s Method

EEG amplitude

Time

Calculate power spectrum of short windows, average.
Advantage: Smoother estimate of power spectrum

Frequency resolution set by window length
e.g. 1s window -> 1 Hz resolution
In practice: taper, don’t use rectangular window
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Windowing

When we pick a short segment of signal, we typically
window it with a smooth function.

Windowing in time = convolving (filtering) the spectrum
with the Fourier transform of the window

No window (=rectangular window) results in the most
smearing of the spectrum

There are many other windows optimized for different
purposes. Hamming, Gaussian...
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Windows and their Fourier transforms
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Rectangular window Fourier transform
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Close-up view

Frequency response of popular window functions ”
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Part 2: Time-Frequency Analysis

Short-Time Fourier Transform
— Find power spectrum of short windows
— “Spectrogram”

Advantage: Can visualize time-varying frequency content

Disadvantage: Fixed temporal resolution is not optimal
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Time-Frequency Uncertainty

You cannot have both | = —]
arbitrarily good temporal gouf e
and frequency resolution! .l
— 0,*0;21/2

time t, / (Not)

If you want sharper

temporal resolution, you will - | R e E
sacrifice frequency ‘; N AA - — ot
resolution, and vice versa. ! W "\ f\\/\/\/\ﬁ\

B
(Optimal: Confined o b LL L LD

frequency o / 5o

GaUSS|an) Starosielec S, Hagele D (2014) Discrete-time windows
with minimal RMS bandwidth for given RMS temporal
width. Signal Processing 102:240—6.
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Consequence for STFT
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poorer frequency resolution finer frequency resolution
freq freq
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03s time 1s time
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Time-Frequency Tradeoff
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Signal: 10, 25, 50, 100 Hz

Spectrogram with T= 25 ms Spectrogram with T = 125 ms
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A better way: Wavelet transform

Wavelet transform is a ‘'multi-resolution’ time-frequency
decomposition.

Intuition: Higher frequency signals have a faster time
scale

So, vary window length with frequency!
— longer window at lower frequencies
— shorter window at higher frequencies
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Comparison of FFT & Wavelet

FFT
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Wavelet

Scaled versions of one shape

Constant number of cycles
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Comparison of FFT & Wavelet
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EEG amplitude
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For each time point
Analyze signal using the wavelets

for different frequencies.
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Exercise
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* Create a signal

>> t = 0:0.01:100;

>> X = sin(2*pi*10*t); plot(t,x)
e Find FFT

>> F = fft(x);

>> F(1:3) %complex

>> power = F.*conj(F);
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Spectrogram of one epoch of data
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Computing Spectrogram Power
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Definition: ERSP

* Event Related Spectral Perturbation

« Change in power in different frequency bands relative to
a baseline. ERS (Event-Related Synchronization), ERD (Event-

Related Desynchronization)
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Try it out

2
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[ N | EEGLAB v13.1.1
File Edit Tools QJdldd Study Datasets Help
__#2:faces 41 Channellocations 4
Channel data (scroll)
Filename: none Channel spectra and maps

Channels per frami  Channel properties
Frames per epoch | Channel ERP image
=Eoche Channel ERPs >
Fsabe ERP map series >
Sum/Compare ERPs

Sampling rate (Hz

Epoch start (sec)

Epoch end (sec) Component activations (scroll)

Reference Component spectra and maps

Channel locations Component maps »

ICA weights Component properties

Pataset size (M) Component ERP image
Component ERPs >

— Sum/Compare comp. ERPs
Data statistics >
\
Time-frequency transforms > Channel time-frequency

Channel cross-coherence

Component time-frequency

Component cross-coherence

pvaf topo

(Load faces_4.set

Epoch on 'face’ event)
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Event-related

Spectrogram

Event-Related
Spectral Perturbation
(ERSP)

Display ERS vs. ERSP

0 e Plot component time frequency -- pop_newtimef()
Component number 1
Sub epoch time limits [min max] (msec) -1000 1996 . Use 200 time points % |
Frequency limits [min max] (Hz) or sequence _ Use limits, paddin... 7 | | Log spaced
Baseline limits [min max] (msec) (0->pre-stim.) 0 Use divisive basel... * v No baseline
Wavelet cycles [min max/fact] or sequence 30.5 | Use FFT
ERSP color limits [max] (min=-max) [V see log power (set)
ITC color limits [max] | plot ITC phase (set)
Bootstrap significance level (Ex: 0.01 -> 1%) | FDR correct (set)
Optional newtimef() arguments (see Help)
[V Plot Event Related Spectral Power (¥ Plot Inter Trial Coherence | Plot curve at each frequency

Help | (

Cancel | [ Ok |

" [ NN ) Plot component time frequency -- pop_newtimef()
Component number 1
Sub epoch time limits [min max] (msec) -1000 1996 . Use 200 time points % |
Frequency limits [min max] (Hz) or sequence . Use limits, paddin... 7 | | Log spaced
Baseline limits [min max] (msec) (0->pre-stim.) 0 Use divisive basel... % | No baseline
Wavelet cycles [min max/fact] or sequence 30.5 | Use FFT
ERSP color limits [max] (min=-max) [V see log power (set)
ITC color limits [max] | plot ITC phase (set)
Bootstrap significance level (Ex: 0.01 -> 1%) | FDR correct (set)
Optional newtimef() arguments (see Help)
[V Plot Event Related Spectral Power [V Plot Inter Trial Coherence | Plot curve at each frequency

= ( Cacel ) [ Ok |

Cente:
Computational
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Exercises

Try different wavelet specifications

Wavelet cycles [min max/fact] or sequence 30.5

— Default: 3 0.5
« 3 cycles. Try 2. How do the time limits of the plot change?
 Whatis the 0.5?7 Try 0. Try 1...what do you observe?

Try different low-frequency limit

Frequency limits [min max] (Hz) or sequence

— what is the effect on the time limits of the ERSP?

Try different baseline methods
— divisive
— standard deviation (express spectral perturbations in #sd relative to
baseline sd)
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Wavelet Specification

< e Center!

Computational

3“;‘? Neuroscience
Wavelet cycles [min max/fact] or sequence 30.5

Answer: The first #cycles controls the basic duration of the wavelet in cycles.

The second factor controls the degree of shortening of time windows as frequency increases
0 = no shortening = FFT (duration remains constant with frequency)
1 = pure wavelet (#cycles remains constant with frequency)

0.5 = intermediate, a compromise that reduces HF time resolution to gain more
frequency resolution.

30 31 30.5

— —

SR
W W
__\/\/\/\/\ﬂ/\__

e U A
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Comparison of FFT & Wavelet
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Time loss at edge of ERSP
e S
-

Center!
Computational
Neuroscience

« Settings for wavelet cycles and MIN FREQ: 3 Hz

IC1
lowest frequency impact the time 0 : e
limits of analysis £l . ﬂ
Ll : —~— N
g i ’
. | ( | — = :
-400 =200 (1] 200 ?i?ne [rgg? BOO 10 1200 1400

MIN FREQ: 1 Hz

- ERSP(dB)
15
. 1,
L
— G L N ——————— 0'5
*more wavelet cycles, or a lower minimum I -_ 0
r 0.5
frequency loses time at edges of epoch  p; , — - .
2040 e —12
dB e — —\\_r_ h=]
L ={ -4
ZCIIO 34']0 4{I|0 SCIIO B{IIICI PCIICI B0O
Time (ms)

Solution: If you need low frequencies, be sure to extract longer epochs to counteract this. Barring this, try reducing

the number of wavelet cycles.
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Part 3: Coherence Analysis

Goal: How much do two signals resemble each other?

Coherence = complex version of correlation: how similar
are power and phase at each frequency?

Variant: phase coherence (phase locking, etc.) considers
only phase similarity, ignoring power
— Regular coherence is simply a power-weighted phase coherence
— Inter-trial coherence is useful!

NOTE: For understanding connectivity between regions, channel
coherence is a poor choice due to volume conduction. For IC
connectivity, directional, 'causal' measures of connectivity have
been developed (See SIFT lecture).
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Coherence
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Part 3a: Inter-Trial Coherence

Goal: How much do different trials resemble each other?

Phase coherence not between two processes, but
between multiple trials of the same process

Defined over a (generally) narrow frequency range

EEGLAB Workshop XXV, Sep 26-29, 2017, Tokyo, Japan — John Iversen — Time-Frequency Analysis 41



EEGLAB'’s Inter-Trial Coherence is phase ITC
£

Center!
Computational
euroscience

Phase ITC

1T & F(f.1)
TP =5 &1r (7 1)

Normalized
(no amplitude information)

same time, different trials

Trial 1

amplitude 0.5 phase 0 O

% amplitude 1 phase 90 @

=

S amplitude 0.25 phase 180 Q
POWER = mean(amplitudes? ) COHERENCE = mean(phase vector)

0.44 or -8.3 dB
Norm 0.33
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ITC Example (3 trials)

Intertrial Coherence (ITC)

10+ Single trials

0 pedypliminprsttoL w

10} Single trials

| ]
0 ettt | WM

-10 -10}
-05 0 05 -05 0 05
10 10
ERP ERP
0 WV\MMMN\/\/\«K\/\WW OM‘WM/\/\/\/\/\JM"‘
-10 -10
-0.5 0 05 -05 0 05

25
Total power

15

5

Slide courtesy of Stefan Debener
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Several possible origins of an ERP

« Event Related Potential can result from
— ITC increase (with no change in power)
— ITC & Power change

ITC

EEGLAB Workshop XXV, Sep 26-29, 2017, Tokyo, Japan — John Iversen — Time-Frequency Analysis

eer || ;
|

r
| Base .

|
‘&\I\‘L“'

0
ERSP (AdB)

Frequency

44



>
5,

I
I d
|H-' |

E= e

T
}
i

f

Trial

———. e S — S —— e -
S e
= = : — ey
— = = > Z -

et —
—— = e

ERP-IMAGE PLOT

— ——— =

0.95

I
il

!

'l

10.48

e — .

— —— e — — -
e — S e e ~ =
——— . —— — - P e 0
e e e - e ]
e ———— ——
_—;- o : e i =T
C— e —— T o ——
Po——i = 3o IS = e
CEnpa ety N — = —— —
— E — — B = e
- e e e —d —
E I cv— e — oL
- T ——
e et ST T, _0 48
R e— ____.___ .
e e d s
e o
Se— e ——

- = el sty b
— — —

0.4

resetting)

————

-0.95

—

TR N R

-0.4 NO AMPLITUDE INCREASE

1 -9.433 dB

P=0.02

/ INTER-TRIAL COHERENCE
5 Hz

P =0.02

| T |

0 |
-1000 -500

500 1000

Time imes)

1500 45



Compare: ‘Pure’ ERP

- ) . 26
400k ti-: = Phase-sorted ERP Image- 1.3
0 300+ 1 ’ ——
© . ="
= 200F = = - - -
100+ £ ‘ e L
+ S e -26
‘8 AVERAGE ERP

AMPLITUDE INCREASE

10 ~9.203 4B
5
0 T —
4
1 / INTER-TRIAL COHERENCE
o 7.588 Hz
=
0
-200 0 200 400 800 a00 1000
Time (ms) J. Onton & S. Makeig, 2005
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Component ERP Image: Activation vs. Amplitude

Component ERPimage -- pop_erpimage() - 0O

Component(s) | 3

Project to channel # | Figure title |

Smoothing | 10 M FPlot scalp map

Downsampling | 1 W Plot ERP ERP limits

Time limits (ms) | -200 1000 W Plot colorbar Color limits (see Help) |

Sort/align trials by epoch event values

Epoch-sorting field | Event type(s) | Eventtime range Rescale Align _|Don't sort by value
| | | | no | _|Don't plot values
) Figure 11: erpimage() = |[EL| 1% ) Figure 10: erpimage() = |[E3)| X
File Edit Yiew Insert Tools Desktop Window Help ~ - File Edit ¥iew Inset Tools Desktop Window Help ~
n@n@.\kl@@@@‘@‘[‘@'g n@nmluL@lQ@@‘@‘D@‘E@
() Image amps 1 Image amps |
% time-varying voltage time-varying 10Hz Power
5 Comp. 3 . "
= By e ) B 13 |plit @ 16.
~ 300 e oL - — =
E o £ o 7 8.4
'é 200 : — < 0 S 200 0
@ : @
5 100 ! - -0.9 T 100F -84
= 1 4 ! L 1 L aqaftim S -16.
<< — <
17 17
PN
_—— v T i
—157 -1.7
Help
¢ -0.2066 dB 7
aoq e P o
7] f & 0
-10 -10
1 1
o) 10.99 Hz an 10.99 Hz
E E
-800  -600  -400 -200 0 200 400 600 800 1000 Os00 800 400 -200 0 200 400 600 800 1000
Time (ms) Time (ms)
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Putting it all together
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O OO0 Figure 5 Exercise
File Edit View Insert Tools Desktop Window Help
" N adY h KO D E "{ -8 0 ® O All: Compute ERSP/'TC for a
o component of your choice
o ERSP(dE)

- ; Compute ERP Image (with ERSP
and ITC displayed®)

Use all of this information to explain
= the origin of the Evoked Response
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Significance Testing
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x Scale of ERSP & ITC vales also give a clue:
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S o Large values are often encouraging of a significant effect
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s For exploratory purposes, can try 0.0 1 without FDR correction
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Part 3b: Event Related Coherence

Goal: How similar is the
event-related response of
two signals?

Between channels
(problematic due to volume
conduction)

Between ICs

Useful to quickly begin to
understand relationships
between components

SIFT provides more complete
solution

Filename: none
Channels per fram(
Frames per epoch
Epochs

Events

Sampling rate (Hz|
Epoch start (sec)
Epoch end (sec)
Reference

Channel locations
ICA weights
Dataset size (Mb)

" Time-frequency transforms >

) EEGLAB v13.1.1
File Edit Tools mrmmy Datasets Help |
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Channel data (scroll)
Channel spectra and maps
Channel properties
Channel ERP image

Channel ERPs
ERP map series

Sum/Compare ERPs

Component activations (scroll)
Component spectra and maps
Component maps

Component properties
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Component ERPs
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Data statistics
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Channel time-frequency
Channel cross-coherence

Component time-frequency

Component cross-coherence
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TWO SIMULATED THETA PROCESSES

Event-related

Coherence
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______ Cross coherence betweenIC1and IC 3
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Significant event-related coherence (as well as tonic
coherence) in alpha/beta bands

IC 1 tonically leads IC 3 (negative phase), but phase
relationships are changed post-stimulus

More advanced, directional, measures of effective connectivity are present in the SIFT toolbox (a later lecture).
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Event-Related Coherence Exercise

« Examine event-related coherence between two ICs
— Which pair did you pick, and why? What do you predict?
— What did you learn?

« EXxplore other options:
— Significance threshold
— Figure out how to subtract a baseline
— Phase vs. Linear Coherence
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Possible fix to enable significance testing

topoplot.m I pop_newcrossf.m ~Inewcrossf.m 1+1
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end;
% compute epoch limits

if isempty(tlimits)

tlimits = [EEG.xmin, EEG.xmax];
end;
pointrangel = round(max((tlimits(1)/1000-EEG.xmin)*EEG.srate, 1));
pointrange2 = round(min((tlimits(2)/1000-EEG.xmin)*EEG.srate, EEG.pnts));
pointrange = [pointrangel:pointrange?];

% call function sample either on raw data or ICA data

if typeproc == 1
tmpsigl = EEG.data(numl,pointrange,:);
tmpsig? = EEG.data(num2,pointrange,:);
else
if ~isempty( EEG.icasphere )
eeglab_options; % changed from eeglaboptions 3/30/02 -sm
tmpsigl = eeg_getdatact(EEG, 'component', numl, 'samples',pointrange);
tmpsig? = eeg_getdatact(EEG, 'component', num2, 'samples',pointrange);
else
error('You must run ICA first');
end;
end;

% JRI 1/15/17 Needed to comment these to be able to do significance testing.
% tmpsigl = reshape( tmpsigl, 1, size(tmpsigl,2)*size(tmpsigl,3));
% tmpsig2 = reshape( tmpsig2, 1, size(tmpsig2,2)*size(tmpsigZ2,3));

% outputs

outstr = '';

if ~popup
for io = 1l:nargout, outstr = [outstr 'varargout{' int2str(io) '},"' ]; end;
if ~isempty(outstr), outstr = [ '[' outstr(l:end-1) '] =" ]; end;

end;

% nlnt+ the datnc and aenerate niitniit command
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