

Understanding Hierarchical Linear Models and their application to EEG

Cyril Pernet, PhD Centre for Clinical Brain Sciences The University of Edinburgh

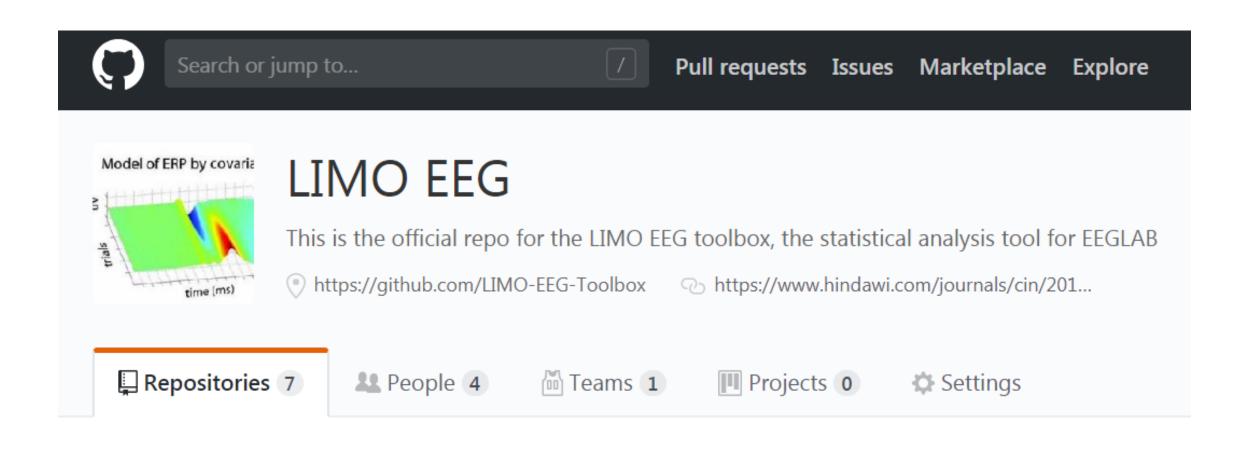
EEGLAB Workshop, SanDiego – Nov 2018

Motivations

Motivation for hierarchical models

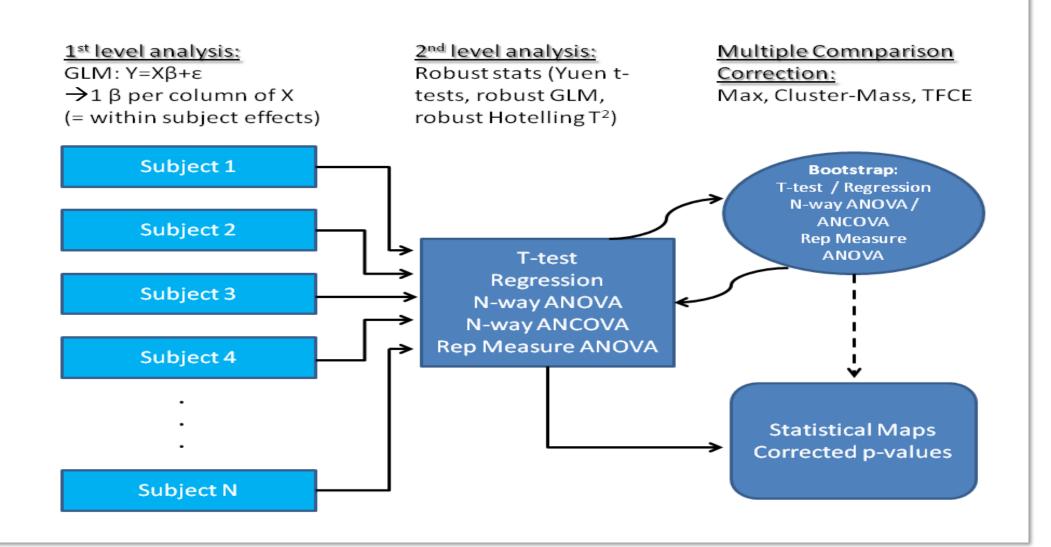
- Most often, we compute averages per condition and do statistics on peak latencies and amplitudes
- Univariate methods extract information among trials in time and/or frequency across space
- Multivariate methods extract information across space, time, or both, in individual trials
- Averages don't account for trial variability, fixed effect can be biased these methods allow to get around these problems

LIMO EEG Toolbox



Framework

Hierarchical Linear Model Framework



Fixed, Random, Mixed and Hierarchical

Fixed effect: Something the experimenter directly manipulates

y=XB+e	data = beta * effects + error
y=XB+u+e	data = beta * effects + constant subject effect + error

Random effect: Source of random variation e.g., individuals drawn (at random) from a population. **Mixed effect**: Includes both, the fixed effect (estimating the population level coefficients) and random effects to account for individual differences in response to an effect

Y=XB+Zu+e data = beta * effects + zeta * subject variable effect + error

Hierarchical models are a mean to look at mixed effects.

Hierarchical model = 2-stage LM

Single subject Each subject's EEG trials are modelled Single subject parameter estimates

Single subject parameter estimates or combinations taken to 2nd level

Group/s of subjects

For a given effect, the whole group is modelled Parameter estimates apply to group effect/s

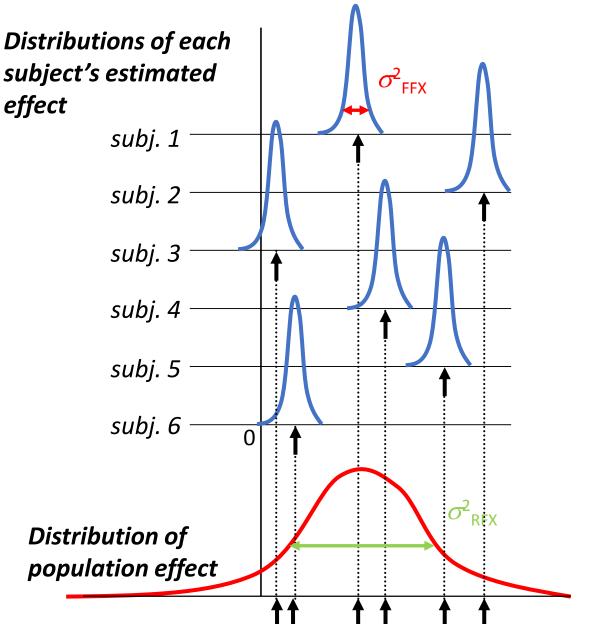
Group level of 2nd level parameter estimates are used to form statistics

Fixed vs Random

Fixed effects: Intra-subjects variation

suggests all these subjects different from zero

Random effects: Inter-subjects variation suggests population not different from zero



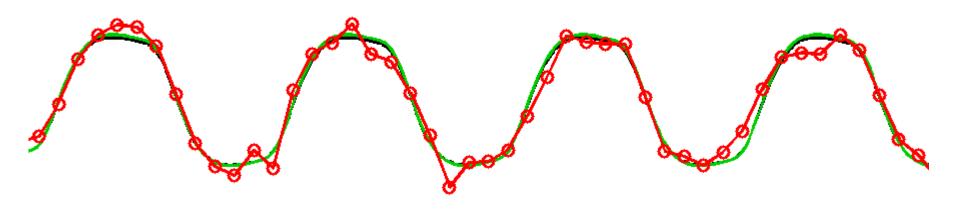
Fixed effects

Only source of variation (over trials)

is measurement error

True response magnitude is *fixed*

Random effects



- Two sources of variation
 - measurement errors
 - response magnitude (over subjects)
- Response magnitude is *random*
 - each subject has random magnitude

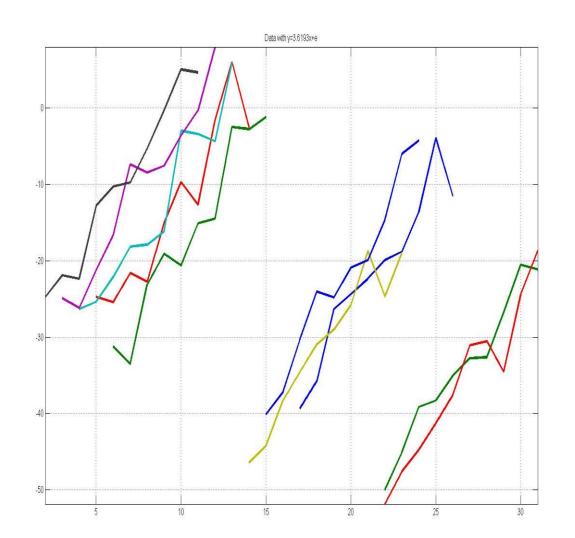
Random effects

- Two sources of variation
 - measurement errors
 - response magnitude (over subjects)
- Response magnitude is *random*
 - each subject has random magnitude
 - but note, population mean magnitude is *fixed*

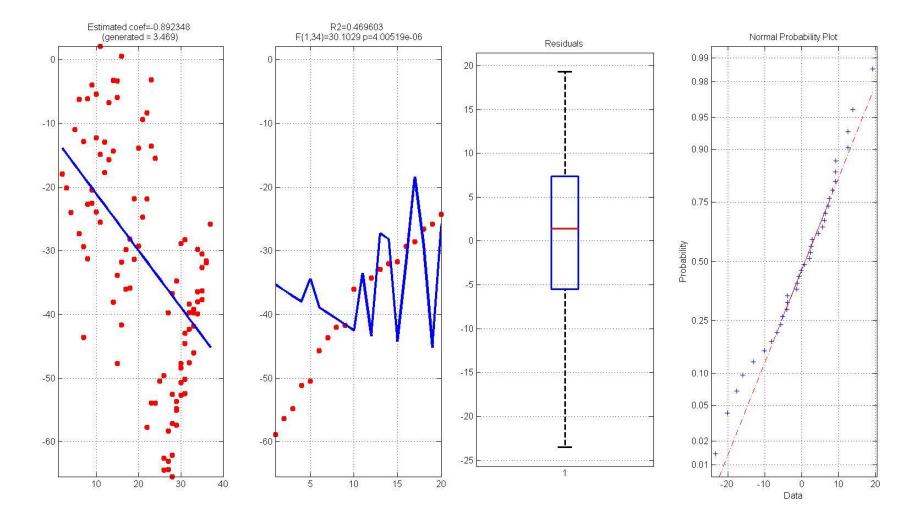
An example

<u>Example</u>: present stimuli from intensity -5 units to +5 units around the subject perceptual threshold and measure RT

 \rightarrow There is a strong positive effect of intensity on responses

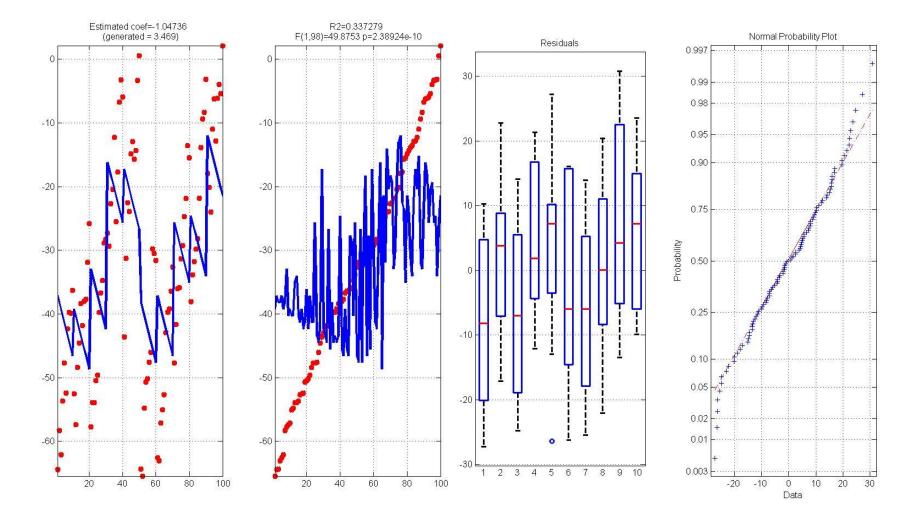


Fixed Effect Model 1: average subjects



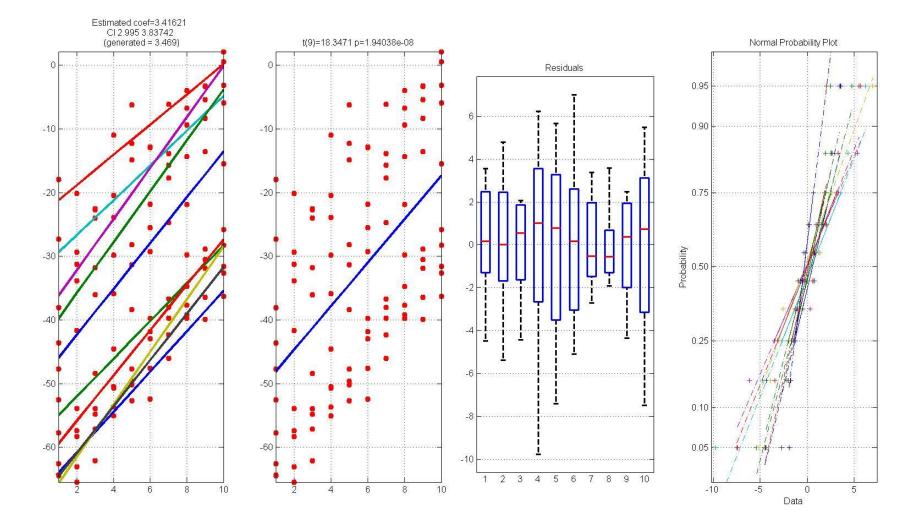
Fixed effect without subject effect \rightarrow negative effect

Fixed Effect Model 2: constant over subjects



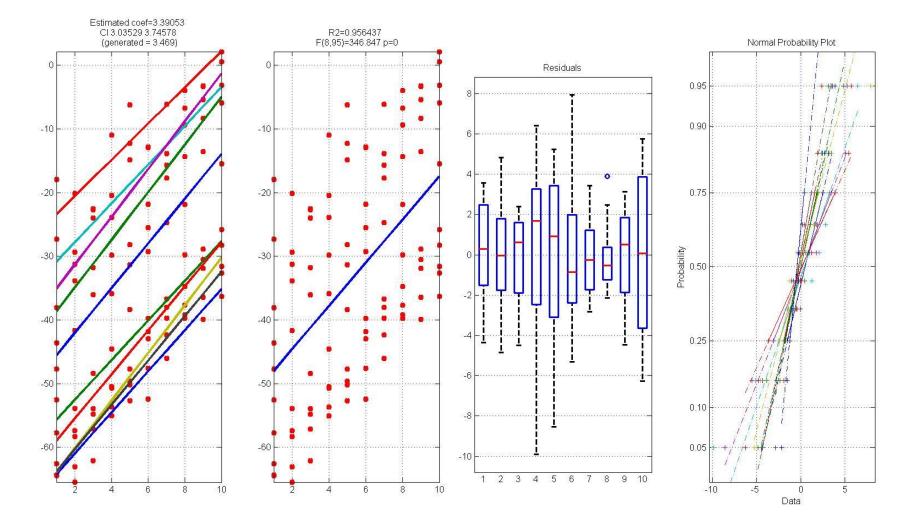
Fixed effect with a constant (fixed) subject effect \rightarrow positive effect but biased result

HLM: random subject effect



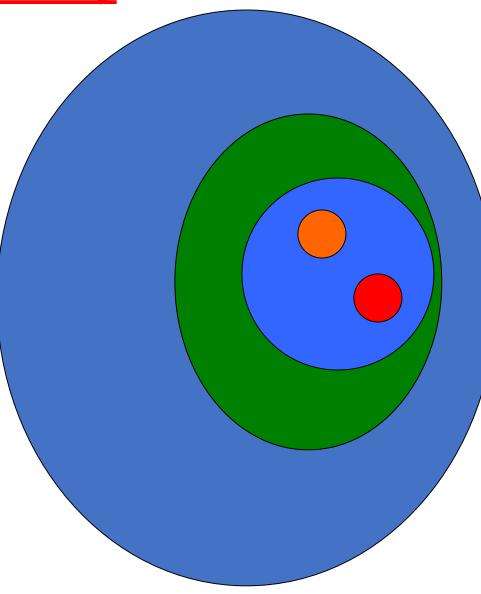
Mixed effect with a random subject effect \rightarrow positive effect with good estimate of the truth

MLE: random subject effect



Mixed effect with a random subject effect \rightarrow positive effect with good estimate of the truth

The GLM Family



T-tests				
Simple regression				
ANOVA				
Multiple regression				
General linear model				
Mixed effects/hierarchical				
 Timeseries models (e.g., autoregressive) 				
Robust regression				
 Penalized regression (LASSO, Ridge) 				
Generalized linear models				
Non-normal errors				
 Binary/categorical outcomes (logistic regression) 				

One-step solution

Tor Wager's slide

What is a linear model?

• An equation or a set of equations that models data and which corresponds geometrically to straight lines, planes, hyper-planes and satisfy the properties of additivity and scaling.

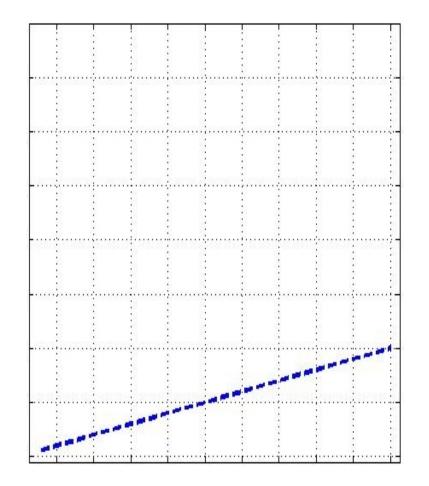
- Simple regression: $y = \beta 1x + \beta 2 + \epsilon$
- Multiple regression: $y = \beta 1x1 + \beta 2x2 + \beta 3 + \epsilon$
- One way ANOVA: $y = u + \alpha i + \epsilon$

• ...

• Repeated measure ANOVA: $y=u+\alpha i+\epsilon$

A regression is a linear model

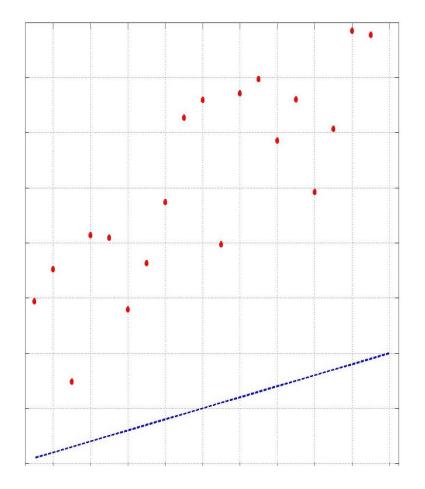
• We have an experimental measure x (e.g. stimulus intensity from 0 to 20)



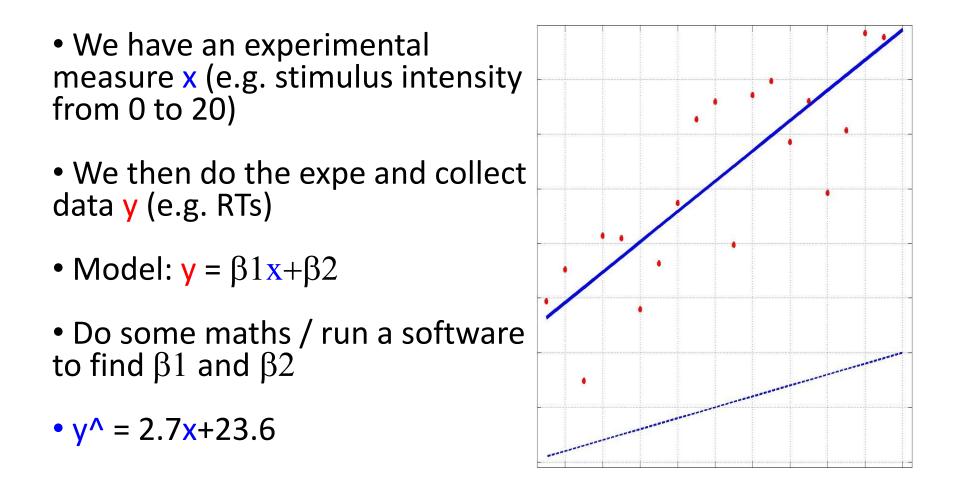
A regression is a linear model

• We have an experimental measure x (e.g. stimulus intensity from 0 to 20)

• We then do the expe and collect data y (e.g. RTs)



A regression is a linear model

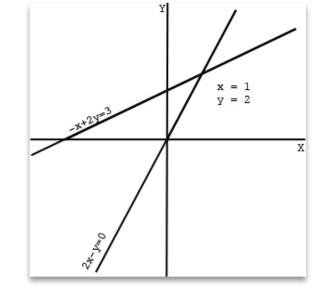


Linear algebra for regression

- Linear algebra has to do with solving linear systems, i.e. a set of linear equations
- For instance we have observations (y) for a stimulus characterized by its properties x_1 and x_2 such as $y = x_1 \beta_1 + x_2 \beta_2$

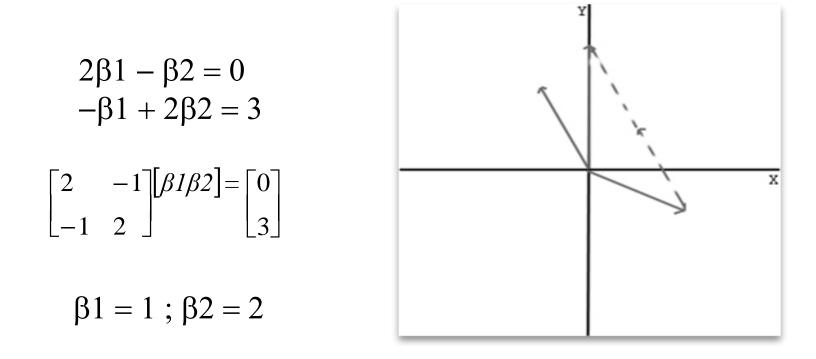
 $2\beta 1 - \beta 2 = 0$ $-\beta 1 + 2\beta 2 = 3$

$$\beta 1 = 1; \beta 2 = 2$$



Linear algebra for regression

• With matrices, we change the perspective and try to combine columns instead of rows, i.e. we look for the coefficients with allow the linear combination of vectors



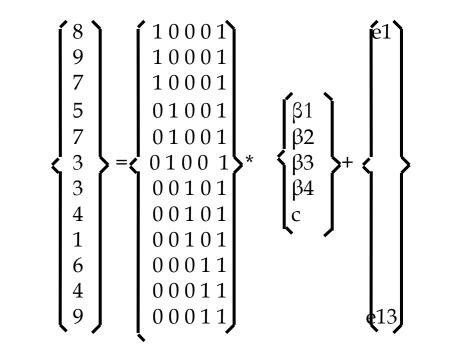
Linear algebra for ANOVA

- In text books we have y = u + xi + ε, that is to say the data (e.g. RT) = a constant term (grand mean u) + the effect of a treatment (xi) and the error term (ε)
- In a regression xi takes several values like e.g. [1:20]
- In an ANOVA xi is designed to represent groups using 1 and 0

Linear algebra for ANOVA

Y	Gp
8	1
9	1
7	1
5	2
7	2
3	2
3	3
4	3
1	3
6	4
4	4
9	4

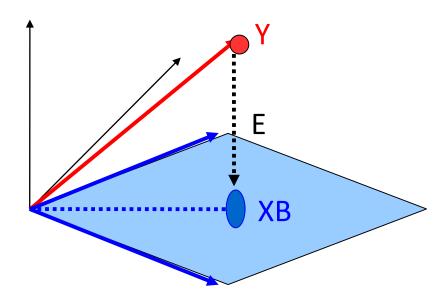
 $\begin{array}{l} y(1..3)1 = 1x1 + 0x2 + 0x3 + 0x4 + c + e11 \\ y(1..3)2 = 0x1 + 1x2 + 0x3 + 0x4 + c + e12 \\ y(1..3)3 = 0x1 + 0x2 + 1x3 + 0x4 + c + e13 \\ y(1..3)4 = 0x1 + 0x2 + 0x3 + 1x4 + c + e13 \end{array}$



 \rightarrow This is like the multiple regression except that we have ones and zeros instead of 'real' values so we can solve the same way

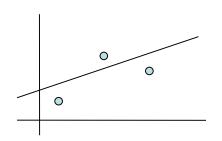
Linear Algebra, geometry and Statistics

- Y = 3 observations X = 2 regressors
- $Y = XB + E \rightarrow B = inv(X'X)X'Y \rightarrow Y^{-}XB$

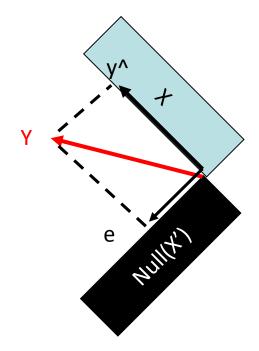


SS total = variance in Y SS effect = variance in XB SS error = variance in E R2 = SS effect / SS total F = SS effect/df / SS error/dfe

Linear Algebra, geometry and Statistics



 $y = \beta x + c$ Projecting the points on the line at perpendicular angles minimizes the distance^2



Y = y^+e P = X inv(X'X) X' y^ = PY e = (I-P)Y

An 'effect' is defined by which part of X to test (i.e. project on a subspace)

R0 = I - (X0*pinv(X0)); P = R0 - R; Effect = (B'*X'*P*X*B);

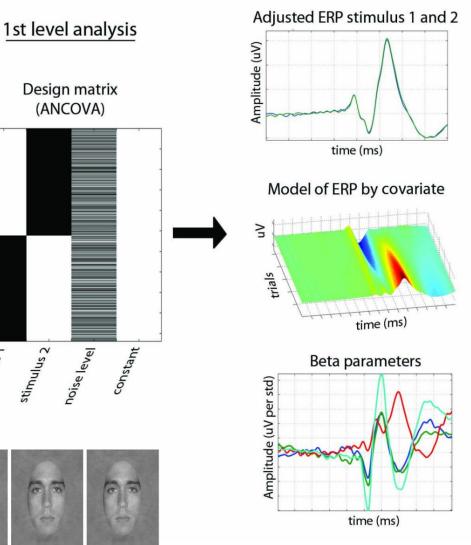
Linear Algebra, geometry and Statistics

- Projections are great because we can now constrain
 Y[^] to move along any combinations of the columns of
 X
- Say you now want to contrast gp1 vs gp2 in a ANOVA with 3 gp, do C = [1 -1 0 0]
- Compute B so we have XB based on the full model X then using P(C(X)) we project Y^ onto the constrained model (think doing a multiple regression gives different coef than multiple simple regression → project on different spaces)

Application for EEG

Design considerations

Illustration with a set of studies looking at the effect of stimulus phase information



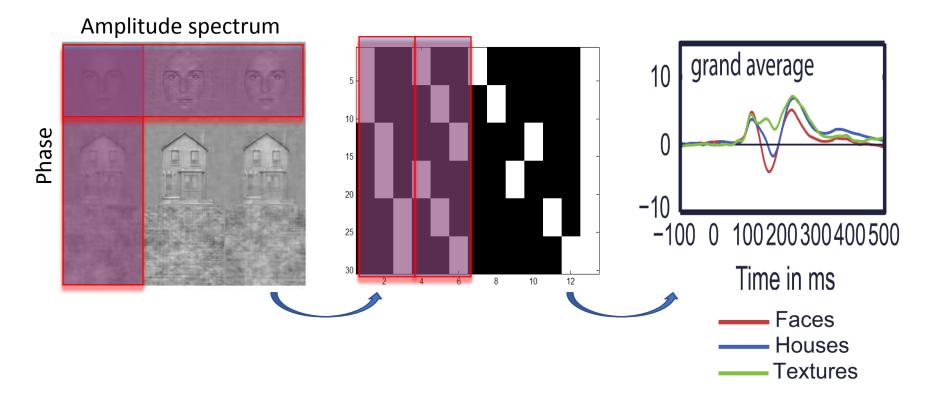
Rousselet, Pernet, Bennet, Sekuler (2008). Face phase processing. BMC Neuroscience 9:98

^{stim}ulus 1

^{stimulus} 2

Factorial Designs: N*N*N*...

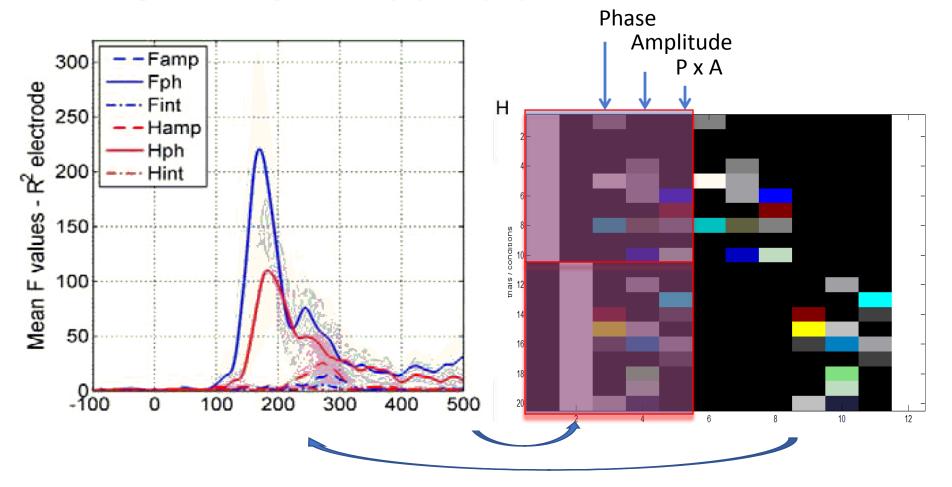
Categorical designs: Group level analyses of course but also Individual analyses with bootstrap



Bienek, Pernet, Rousselet (2012). Phase vs Amplitude Spectrum. Journal of Vision 12(13), 1–24

Regression based designs

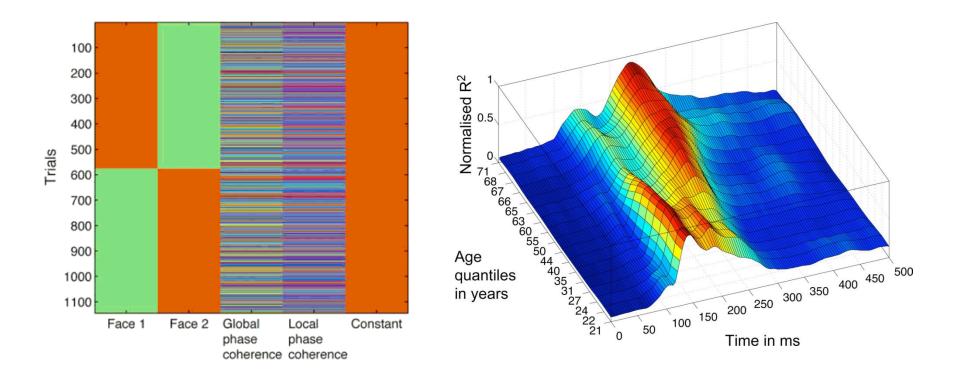
Mixed design: Control of low level physical properties



Bienek, Pernet, Rousselet (2012). Phase vs Amplitude Spectrum. Journal of Vision 12(13), 1–24

Regression based designs (2 levels)

Parametric designs: study the effect of stimulus properties within subjects effect of aging between subjects



Rousselet, Gaspar, Pernet, Husk, Bennett, Sekuler (2010). Aging and face perception. Front Psy

Conclusion

- HLM allows you to model any designs
- Not just designs, also confounds (e.g. stimulus properties)
- 1st level is like getting averages for each condition but better because
 (i) it removes subjects effect (ii) accounts for trial variability
- GLM is just your usual statistics but using generic approach, i.e. it's better because more flexible