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Motivations



Motivation for hierarchical models

• Most often, we compute averages per condition and do statistics on peak latencies
and amplitudes

➢Univariate methods extract information among trials in time and/or frequency 
across space

➢Multivariate methods extract information across space, time, or both, in individual 
trials  

➢Averages don’t account for trial variability, fixed effect can be biased – these 
methods allow to get around these problems

Pernet, Sajda & Rousselet – Single trial analyses, why bother? Front. Psychol., 2011, 2, 322



LIMO EEG Toolbox



Framework



Hierarchical Linear Model Framework



Fixed, Random, Mixed and Hierarchical

Fixed effect: Something the experimenter directly manipulates  

y=XB+e data = beta * effects + error
y=XB+u+e data = beta * effects + constant subject effect + error

Random effect: Source of random variation e.g., individuals drawn (at random) from a 
population. Mixed effect: Includes both, the fixed effect (estimating the population level 
coefficients) and random effects to  account for individual differences in response to an 
effect

Y=XB+Zu+e data = beta * effects + zeta * subject variable effect + error

Hierarchical models are a mean to look at mixed effects.



Hierarchical model = 2-stage LM

For a given effect, the whole group is modelled
Parameter estimates apply to group effect/s 

Each subject’s EEG trials are modelled
Single subject parameter estimates

Single 
subject

Group/s of 
subjects

1st

level

2nd

level

Single subject parameter estimates or 
combinations taken to 2nd level 

Group level of 2nd level parameter estimates are 
used to form statistics



Fixed effects:

Intra-subjects variation

suggests all these subjects 

different from zero

Random effects:

Inter-subjects variation

suggests population 

not different from zero
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Fixed effects

❑Only source of variation (over trials)

is measurement error

❑True response magnitude is fixed



Random effects

• Two sources of variation

• measurement errors

• response magnitude (over subjects)

• Response magnitude is random

• each subject has random magnitude



Random effects

• Two sources of variation

• measurement errors

• response magnitude (over subjects)

• Response magnitude is random

• each subject has random magnitude

• but note, population mean magnitude is fixed



An example

Example: present stimuli from
intensity -5 units to +5 units
around the subject perceptual
threshold and measure RT

→ There is a strong positive
effect of intensity on responses



Fixed Effect Model 1: average subjects

Fixed effect without subject effect → negative effect



Fixed Effect Model 2: constant over subjects

Fixed effect with a constant (fixed) subject effect → positive effect but biased result



HLM: random subject effect

Mixed effect with a random subject effect → positive effect with good estimate of the truth



MLE: random subject effect

Mixed effect with a random subject effect → positive effect with good estimate of the truth



T-tests

Simple regression

ANOVA

Multiple regression

General linear model
• Mixed effects/hierarchical

• Timeseries models (e.g., 
autoregressive)

• Robust regression

• Penalized regression (LASSO, 
Ridge)

Generalized linear 
models

• Non-normal errors

• Binary/categorical outcomes 
(logistic regression)
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The GLM Family

Tor Wager’s slide



What is a linear model?

• An equation or a set of equations that models data and which corresponds
geometrically to straight lines, planes, hyper-planes and satisfy the properties of
additivity and scaling.

• Simple regression: y = x++

• Multiple regression: y = x+x++

• One way ANOVA: y = u+i+

• Repeated measure ANOVA: y=u+i+

• 



• We have an experimental 
measure x (e.g. stimulus 
intensity from 0 to 20)

A regression is a linear model



• We have an experimental 
measure x (e.g. stimulus 
intensity from 0 to 20)

• We then do the expe and 
collect data y (e.g. RTs)

A regression is a linear model



• We have an experimental 
measure x (e.g. stimulus intensity 
from 0 to 20)

• We then do the expe and collect 
data y (e.g. RTs)

• Model: y = x+

• Do some maths / run a software 
to find  and 

• y^ = 2.7x+23.6

A regression is a linear model



Linear algebra for regression

• Linear algebra has to do with solving linear systems, i.e. a set of linear
equations

• For instance we have observations (y) for a stimulus characterized by its
properties x1 and x2 such as y = x1 β1+ x2β2

 -  = 0

- +  = 

 =  ;  = 



Linear algebra for regression

• With matrices, we change the perspective and try to combine columns instead of rows,
i.e. we look for the coefficients with allow the linear combination of vectors

 -  = 0

- +  = 

 

















-

-

3

0

21

12 =β1β2

 =  ;  = 



Linear algebra for ANOVA

• In text books we have y = u + xi + , that is to say the data (e.g. RT) = a 
constant term (grand mean u) + the effect of a treatment (xi) and the error 
term ()

• In a regression xi takes several values like e.g. [1:20]

• In an ANOVA xi is designed to represent groups using 1 and 0



y(1..3)1= 1x1+0x2+0x3+0x4+c+e11
y(1..3)2= 0x1+1x2+0x3+0x4+c+e12
y(1..3)3= 0x1+0x2+1x3+0x4+c+e13
y(1..3)4= 0x1+0x2+0x3+1x4+c+e13

→ This is like the
multiple regression
except that we have
ones and zeros
instead of ‘real’
values so we can
solve the same way

8             1 0 0 0 1                           e1
9             1 0 0 0 1
7             1 0 0 0 1

5             0 1 0 0 1            β1
7             0 1 0 0 1            β2
3      =    0 1 0 0  1   *       β3     +
3             0 0 1 0 1 β4
4             0 0 1 0 1 c
1             0 0 1 0 1
6             0 0 0 1 1
4             0 0 0 1 1
9             0 0 0 1 1                          e13

Y Gp

8 1

9 1

7 1

5 2

7 2

3 2

3 3

4 3

1 3

6 4

4 4

9 4

Linear algebra for ANOVA



Linear Algebra, geometry and Statistics

• Y = 3 observations X = 2 regressors

• Y = XB+E → B = inv(X’X)X’Y → Y^=XB

Y

XB

E

SS total = variance in Y
SS effect = variance in XB
SS error = variance in E
R2 = SS effect / SS total
F = SS effect/df  /  SS error/dfe



y = x + c
Projecting the points on the line at 
perpendicular angles minimizes the distance^2

Y

y^

e

Y = y^+e
P = X inv(X’X) X’ 
y^ = PY
e = (I-P)Y

An ‘effect’ is defined by 
which part of X to test
(i.e. project on a subspace)

R0 = I - (X0*pinv(X0));
P = R0 - R;
Effect  = (B'*X'*P*X*B);

Linear Algebra, geometry and Statistics



• Projections are great because we can now constrain
Y^ to move along any combinations of the columns of
X

• Say you now want to contrast gp1 vs gp2 in a ANOVA
with 3 gp, do C = [1 -1 0 0]

• Compute B so we have XB based on the full model X
then using P(C(X)) we project Y^ onto the constrained
model (think doing a multiple regression gives
different coef than multiple simple regression →

project on different spaces)

Linear Algebra, geometry and Statistics





Application for EEG



Design considerations

Illustration with a set of studies looking at the effect of 
stimulus phase information

Rousselet, Pernet, Bennet, Sekuler (2008).  Face phase processing. BMC Neuroscience 9:98

http://www.biomedcentral.com/1471-2202/9/98


Factorial Designs: N*N*N*…

Categorical designs: Group level analyses of course but also Individual analyses 
with bootstrap

Bienek, Pernet, Rousselet  (2012). Phase vs Amplitude Spectrum. Journal of Vision 12(13), 1–24
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Amplitude spectrum

http://www.journalofvision.org/content/12/13/12.full


Regression based designs
Mixed design: Control of low level physical properties

Phase
Amplitude

P x A

Bienek, Pernet, Rousselet  (2012). Phase vs Amplitude Spectrum. Journal of Vision 12(13), 1–24

http://www.journalofvision.org/content/12/13/12.full


Regression based designs (2 levels)

Parametric designs: 
study the effect of stimulus properties within subjects 
effect of aging between subjects

Rousselet, Gaspar, Pernet, Husk, Bennett, Sekuler (2010). Aging and face perception. Front Psy

http://journal.frontiersin.org/Journal/10.3389/fpsyg.2010.00019/full


Conclusion

• HLM allows you to model any designs

• Not just designs, also confounds (e.g. stimulus properties)

• 1st level is like getting averages for each condition but better because 
(i) it removes subjects effect (ii) accounts for trial variability

• GLM is just your usual statistics but using generic approach, i.e. it’s 
better because more flexible


