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Motivation for whole channel/IC analyses

* Data collection consists in recording electromagnetic events over the whole brain
and for a relatively long period of time, with regards to neural spiking.

* In the majority of cases, data analysis consists in looking where we have signal and
restrict our analysis to these channels and components.

» Are we missing the forest by choosing working on a single, or a few trees?

» By analysing where we see an effect, we increase the type 1 FWER because the

effect is partly driven by random noise (solved if chosen based on prior results or
split the data)

Rousselet & Pernet — It’s time to up the Game Front. Psychol., 2011, 2, 107



Motivation for whole channel/IC analyses

* Statistics on peak latencies and amplitudes? But several lines of evidence suggest
that peaks mark the end of a process and therefore it is likely that most of the
interesting effects lie in a component before a peak

e Neurophysiology: whether ERPs are due to additional signal or to phase resetting
effects a peak will mark a transition such as neurons returning to baseline, a new
population of neurons increasing their firing rate, a population of neurons getting
on / off synchrony.

e Neurocognition: reverse correlation techniques showed that e.g. the N170
component reflects the integration of visual facial features relevant to a task at hand
(Schyns and Smith) and that the peak marks the end of this process.

Rousselet & Pernet — It’s time to up the Game Front. Psychol., 2011, 2, 107



Pearson-Newman hypothesis testing

* HO: no effect Type I error Type II error
(false positive) (false negative)

e H1: there is an effect

‘ You're not
pregnant

=3

You're
pregnant

https://chemicalstatistician.wordpress.com



https://chemicalstatistician.wordpress.com/

What is the problem?

* FWER is the probability of making one or more Type | errors (false
positive) in a family of tests, under HO

* Assuming tests are independents from each other, the family-wise error
rate FWER =1 - (1 - alpha)”*n

* for alpha =5/100, if we do 2 tests we should get about 1-(1-5/100)"2 ~
9% false positives, if we do 126 electrodes * 150 time frames tests, we
should get about 1-(1-5/100)*18900 ~ 100% false positives! i.e. you
can’t be certain of any of the statistical results you observe



What is the problem?

* |[lustration with 5 independent variables from N(O,1)
* Repeat 1000 times and measures type 1 error rate
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What is the problem?

* |llustration with 18900 independent variables (126 electrodes and 150 time
frames)
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we know there are false positives — which ones is it?



Types of error
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Detect an effect of unknown extent & location
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Decision

Types of error and control

Reality

H,

False positive (FP)

ay,

Type 1 error

True positive (TP)

True negative (TN)

False negative (FN)

P

specificity: 1- &,
=TN /(TN + FP)

= proportion of actual
negatives which are
correctly identified

sensitivity (power): 1- 5,
=TP /(TP + FN)

= proportion of actual
positives which are correctly
identified

False discovery rate

Among all positives control the

rate q
FDR = FP / (FP + TP)

From J Chumbley’s slide 2015



False Discovery Rate

 Whereas family wise approach corrects for any false positive, the FDR
approach aim at correcting among positive results only.

1. Run an analysis with alpha = x%
2. Sort the resulting positive data
3. Threshold to remove the false positives



False Discovery Rate
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FWER

 Since the type 1 FWER is the prob that any stats > u, then it is also the
prob. that the max stats > u

* All we have to do, is thus to find a threshold u such that the max only
exceed u alpha percent of the time.

Distribution of max F value under HO
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Bonferroni Correction

Bonferroni correction allows to keep the FWER at 5% by simply dividing alpha
by the number of tests — it find the threshold u

P(T; = u|HO) < Find u to keep the FWER < a/m

x
m
FWER = P(U;epiT; = u}|Hy) < «

< ). P(T; =2 u|HO) Boole’s inequality
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Bonferroni Correction

« 10000 Z-scores ; alpha = 5% * 2D homogeneous smoothing — 100
+ alpha corrected = .000005 independent observations

e 7-score = 4.42 * alpha corrected = .0005

e z-score = 3.29
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Maximum Statistics based on resampling

* Estimate the distribution of max under HO (bootstrap/permutation) and
simply threshold the observed results a threshold u like Bonferroni

e Accounts inherently for smoothness but still assumes all tests are
independent

correction by F max
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Solutions for imaging data

* An important feature of neuroimaging data is that we have a family of stat
values that has topological features (Bonferroni for instance consider tests
as independent) and we can thus considering data as a smooth lattice, i.e.

based our inference on clusters

* fMRI/PET are projection methods of data points onto the whole space —
MEEG forms continuous functions in time and are smooth by the scalp

(space)
* Neural activity propagate locally through intrinsic/lateral connections and is
distributed via extrinsic connections / Hemodynamic correlates are initiated

by diffusing signals (e.g. NO)

Chumbley et al., 2009 Neurolmage 44



Random Field Theory

* 10000 Z-scores ; alpha =5%
e Gaussian kernel smoothing —
* How many independent observations ?

100 voxels

100 voxels



“lattice
approximation”

Random Field Theory

* RFT relies on theoretical results for smooth statistical maps (hence the need for
smoothing), allowing to find a threshold in a set of data where it’s not easy to
find the number of independent variables. Uses the expected Euler
characteristic (EC density)

* 1 Estimation of the smoothness = number of resel (resolution element) = f(nb
voxels, FWHM)

* 2 expected Euler characteristic = number of clusters above the threshold
* 3 Calculation of the threshold



Cluster inference via resampling methods



Let’s analyse clusters

* Instead of the max, we consider clusters as it is much less likely that

statistics are significant in groups

0.0476% significant cells cluster size distribution
7 Wi : 350 T . .

300

250

200

S9P0J123|9

150

100

50

time

One samplettest>07? 20 40 60 80 100



Let’s analyse clusters

* Instead of the max, we consider clusters as it is much less likely that
statistics are significant in groups because data are smooth in space and
time!

0.0466% significant cells cluster size distribution
100 . T .
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One sample ttest >0 ? 20 40 60 80 100



The clustering solution

 Clustering is a good option because it accounts for topological features in
the data. Techniques like Bonferroni, FDR, max(stats) control the FWER but
independently of the correlation between tests.

* To use clustering we need to consider cluster statistics rather than
individual statistics

 Cluster statistics depend on (i) the cluster size, which depends on the data
at hand (how correlated data are in space and in time/frequency), and (ii)
the strength of the signal (how strong are the t, F values in a cluster) or (iii)
a combination of both.
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The clustering solution

* In LIMO EEG, we bootstrap the data under HO: center the data or break the link
between the design matrix and the data and then resample and test. This way we
can find u for a single bin, the the whole space, or for clusters.

Observed F values > F values under HO




The clustering solution

* Spatial-Temporal clustering: for each bootstrap, threshold at
alpha and record the max(cluster mass), i.e. sum of F values
within a cluster. Then threshold the observed clusters based on
there mass using this distribution = accounts for correlations

in space and time.
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Loss of resolution: inference is about the cluster, not max in time or a specific electrode !



TFCE for MEEG



Threshold Free Cluster Enhancement

* Threshold Free Cluster Enhancement (TFCE): Integrate the
cluster mass at multiple thresholds. A TFCE score is thus obtain
per cell but the value is a weighted function of the statistics by
it’s belonging to a cluster.

original
h signal
__TFCE
enhancement

0 //. '\\ N/ \ ll,

e

Figure 1: Ilustration of the TFCE approach. Left: The TFCE score at voxel p is given by the sum of the scores of all incremental
supporting sections (one such is shown as the dark grey band) within the area of “support” of p (light grey). The score for each
section is a simple function of its height /» and extent ¢. Right: Example input image and TFCE-enhanced output. The input contains
a focal, high signal, a much more spatially extended, lower, signal and a pair of overlapping signals of intermediate extent and height.
The TFCE output has the same maximal values for all three cases, and preserves the distinct local maxima in the third case.
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Threshold Free Cluster Enhancement

* Threshold Free Cluster Enhancement (TFCE): Integrate the
cluster mass at multiple thresholds. A TFCE score is thus obtain
per cell but the value is a weighted function of the statistics by
it’s belonging to a cluster. As before, bootstrap under HO and
get max(tfce).

correction using TFCE
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Excellent resolution: inference is about cells, but we accounted for space/time dependence



MCC summary

 Simulation work show that overall permutation / bootstrap / cluster-
mass / TFCE control well the type 1 FWER.

* a minimum of 800 iterations are necessary to obtain stable results
* for low critical family-wise error rates (e.g. p = 1%), permutations can
be too liberal;

* For within subject bootstrap, a min of 50 trials per condition is
requested at the risk to be too conservative



Conclusions

* When performing multiple tests, statistical correction MUST be applied.

* All techniques provide a FWER at the specified level but not all techniques
have the same power.

* Spatial-temporal clustering and TFCE seem to provide good estimates, with
TFCE giving higher spatio-temporal inference resolution, but at the cost of
long computing time.
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