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Motivation for whole channel/IC analyses

• Data collection consists in recording electromagnetic events over the whole brain
and for a relatively long period of time, with regards to neural spiking.

• In the majority of cases, data analysis consists in looking where we have signal and
restrict our analysis to these channels and components.

➢ Are we missing the forest by choosing working on a single, or a few trees?

➢ By analysing where we see an effect, we increase the type 1 FWER because the
effect is partly driven by random noise (solved if chosen based on prior results or
split the data)

Rousselet & Pernet – It’s time to up the Game Front. Psychol., 2011, 2, 107



Motivation for whole channel/IC analyses
• Statistics on peak latencies and amplitudes? But several lines of evidence suggest

that peaks mark the end of a process and therefore it is likely that most of the
interesting effects lie in a component before a peak

• Neurophysiology: whether ERPs are due to additional signal or to phase resetting
effects a peak will mark a transition such as neurons returning to baseline, a new
population of neurons increasing their firing rate, a population of neurons getting
on / off synchrony.

• Neurocognition: reverse correlation techniques showed that e.g. the N170
component reflects the integration of visual facial features relevant to a task at hand
(Schyns and Smith) and that the peak marks the end of this process.

Rousselet & Pernet – It’s time to up the Game Front. Psychol., 2011, 2, 107



Pearson-Newman hypothesis testing

• H0: no effect 

• H1: there is an effect
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https://chemicalstatistician.wordpress.com
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• FWER is the probability of making one or more Type I errors (false
positive) in a family of tests, under H0

• Assuming tests are independents from each other, the family-wise error
rate FWER = 1 - (1 - alpha)^n

• for alpha =5/100, if we do 2 tests we should get about 1-(1-5/100)^2 ~
9% false positives, if we do 126 electrodes * 150 time frames tests, we
should get about 1-(1-5/100)^18900 ~ 100% false positives! i.e. you
can’t be certain of any of the statistical results you observe

What is the problem?



What is the problem?

• Illustration with 5 independent variables from N(0,1)

• Repeat 1000 times and measures type 1 error rate
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What is the problem?

• Illustration with 18900 independent variables (126 electrodes and 150 time
frames)

we know there are false positives – which ones is it?



Types of error
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From J Chumbley’s slide 2015
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Types of error and control

Reality

H1

H0

H0 H1

True negative (TN)

True positive (TP)False positive (FP)

False negative (FN)

specificity: 1-
= TN / (TN + FP)
= proportion of actual 
negatives which are 
correctly identified

sensitivity (power): 1-
= TP / (TP + FN)
= proportion of actual 
positives which are correctly 
identified
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Decision

From J Chumbley’s slide 2015

False discovery rate
Among all positives control the 
rate q
FDR = FP / (FP + TP) 

Type 1 error



False Discovery Rate

• Whereas family wise approach corrects for any false positive, the FDR
approach aim at correcting among positive results only.

1. Run an analysis with alpha = x%

2. Sort the resulting positive data

3. Threshold to remove the false positives



False Discovery Rate

Signal+Noise

FEW correction

FDR correction



FWER

• Since the type 1 FWER is the prob that any stats > u, then it is also the 
prob. that the max stats > u

• All we have to do, is thus to find a threshold u such that the max only 
exceed u alpha percent of the time.

Distribution of max F value under H0

Threshold u such alpha 
percent are above it



Bonferroni Correction

Bonferroni correction allows to keep the FWER at 5% by simply dividing alpha 
by the number of tests – it find the threshold u



• 10000 Z-scores ; alpha = 5%

• alpha corrected = .000005 

• z-score = 4.42

100 voxels

100 

voxels

Bonferroni Correction

• 2D homogeneous smoothing – 100 
independent observations

• alpha corrected = .0005

• z-score = 3.29

100 voxels

100 voxels



Maximum Statistics based on resampling

• Estimate the distribution of max under H0 (bootstrap/permutation) and
simply threshold the observed results a threshold u like Bonferroni

• Accounts inherently for smoothness but still  assumes all tests are 
independent

Max F values
Under H0



Solutions for imaging data

• An important feature of neuroimaging data is that we have a family of stat
values that has topological features (Bonferroni for instance consider tests
as independent) and we can thus considering data as a smooth lattice, i.e.
based our inference on clusters

• fMRI/PET are projection methods of data points onto the whole space –
MEEG forms continuous functions in time and are smooth by the scalp
(space)

• Neural activity propagate locally through intrinsic/lateral connections and is
distributed via extrinsic connections / Hemodynamic correlates are initiated
by diffusing signals (e.g. NO)

Chumbley et al., 2009 NeuroImage 44



Random Field Theory

• 10000 Z-scores ; alpha = 5%

• Gaussian kernel smoothing –

• How many independent observations ?

100 voxels

100 voxels



• RFT relies on theoretical results for smooth statistical maps (hence the need for
smoothing), allowing to find a threshold in a set of data where it’s not easy to
find the number of independent variables. Uses the expected Euler
characteristic (EC density)

• 1 Estimation of the smoothness = number of resel (resolution element) = f(nb
voxels, FWHM)

• 2 expected Euler characteristic = number of clusters above the threshold

• 3 Calculation of the threshold

“lattice

approximation”
Random Field Theory



Cluster inference via resampling methods



Let’s analyse clusters

• Instead of the max, we consider clusters as it is much less likely that
statistics are significant in groups

time

One sample t test > 0 ?



Let’s analyse clusters

• Instead of the max, we consider clusters as it is much less likely that 
statistics are significant in groups because data are smooth in space and 
time!

time

One sample t test > 0 ?



The clustering solution

• Clustering is a good option because it accounts for topological features in
the data. Techniques like Bonferroni, FDR, max(stats) control the FWER but
independently of the correlation between tests.

• To use clustering we need to consider cluster statistics rather than
individual statistics

• Cluster statistics depend on (i) the cluster size, which depends on the data
at hand (how correlated data are in space and in time/frequency), and (ii)
the strength of the signal (how strong are the t, F values in a cluster) or (iii)
a combination of both.









The clustering solution

• In LIMO EEG, we bootstrap the data under H0: center the data or break the link
between the design matrix and the data and then resample and test. This way we
can find u for a single bin, the the whole space, or for clusters.

Observed F values F values under H0



The clustering solution

• Spatial-Temporal clustering: for each bootstrap, threshold at
alpha and record the max(cluster mass), i.e. sum of F values
within a cluster. Then threshold the observed clusters based on
there mass using this distribution → accounts for correlations
in space and time.

Loss of resolution: inference is about the cluster, not max in time or a specific electrode !

Max cluster mass
Under H0



TFCE for MEEG



Threshold Free Cluster Enhancement

• Threshold Free Cluster Enhancement (TFCE): Integrate the
cluster mass at multiple thresholds. A TFCE score is thus obtain
per cell but the value is a weighted function of the statistics by
it’s belonging to a cluster.



Threshold Free Cluster Enhancement

• Threshold Free Cluster Enhancement (TFCE): Integrate the
cluster mass at multiple thresholds. A TFCE score is thus obtain
per cell but the value is a weighted function of the statistics by
it’s belonging to a cluster. As before, bootstrap under H0 and
get max(tfce).

Excellent resolution: inference is about cells, but we accounted for space/time dependence

Observed F values TFCE scores

Max tfce values
Under H0



MCC summary

• Simulation work show that overall permutation / bootstrap / cluster-
mass / TFCE control well the type 1 FWER.

• a minimum of 800 iterations are necessary to obtain stable results

• for low critical family-wise error rates (e.g. p = 1%), permutations can
be too liberal;

• For within subject bootstrap, a min of 50 trials per condition is
requested at the risk to be too conservative



Conclusions

• When performing multiple tests, statistical correction MUST be applied.

• All techniques provide a FWER at the specified level but not all techniques
have the same power.

• Spatial-temporal clustering and TFCE seem to provide good estimates, with
TFCE giving higher spatio-temporal inference resolution, but at the cost of
long computing time.
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