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= Structural Connectivity

®x gnatomical

= Functional Connectivity

® symmetric, correlative

= Effective Connectivity

® asymmetric, causal,
iInformation flow
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Many ways to model effective
connectivity in EEG

®x Coherence, Phase-locking value
» Cross-correlation
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x Dynamic Causal Models
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Granger Causality

® [irst introduced by Wiener (1958). Later reformulated by
Granger (1969) in the context of linear stochastic

autoregressive models
® Relies on two assumptions:

1. causes should precede their effects in time

2. Information in a cause’s past should improve the
prediction of the effect, above and beyond the
iInformation contained in the effect’s own past.



Granger Causality

® [irst introduced by Wiener (1958). Later reformulated by
Granger (1969) in the context of linear stochastic

autoregressive models
® Relies on two assumptions:

1. causes should precede their effects in time

2. Information in a cause’s past should improve the
prediction of the effect, above and beyond the
iInformation contained in the effect’s own past.

This is not the same as (cross-)correlation!

eeeeeeeeeeee



Multivariate Autoregressive
(MVAR) Modeling

X, (1) “\r\f\ Vb g A
O X, “JV\NW\Nm\ N A,r"“&v&

|
| X (t) "‘!V\ A DA S

X, () o V\N\ﬁr’v\ I SRURPYN r’“'m&

}

\\

Granger Causality Coherence Spectrum

eeeeeeeeeee



Multivariate Autoregressive
(MVAR) Modeling

= \\Ve have M variables (e.g., EEG channels or source activations):
X(t) = [X4(t), Xo(t), weey Xm(t)]”



Multivariate Autoregressive
(MVAR) Modeling

= \\Ve have M variables (e.g., EEG channels or source activations):
X(t) = [X4(t), Xo(t), weey Xm(t)]”

X(1)=),  A()X(t—k)+E()

MVAR
model



Multivariate Autoregressive
(MVAR) Modeling

= \\Ve have M variables (e.g., EEG channels or source activations):
X(t) = [X4(t), Xo(t), weey Xm(t)]”

X(1)=),  A()X(t—k)+E()

multichannel data
vector at current time t

MVAR
model



Multivariate Autoregressive
(MVAR) Modeling

= \\Ve have M variables (e.g., EEG channels or source activations):
X(t) = [X4(t), Xo(t), weey Xm(t)]”

C O
@) _ P
S8 X(=), AMDX(t—k)+E(@)
> &
multichannel data M x M matrix of model coefficients
vector at current time t indicating variable dependencies at lag k
( A
a (k) ... a, (k)
A(k) = 7 I
. a,,(k) - a,,/ (k) y



Multivariate Autoregressive
(MVAR) Modeling

= \\Ve have M variables (e.g., EEG channels or source activations):
X(t) = [X4(t), Xo(t), weey Xm(t)]”

<5 p
S8 X(=), AMDX(t—k)+E(@)
multichannel data M x M matrix of model coefficients multichannel data k
vector at current time t indicating variable dependencies at lag k samples in the past

a4 (k) . oa k)

A(k) =

. a,,(k) - aMM(k))



Multivariate Autoregressive
(MVAR) Modeling

= \\Ve have M variables (e.g., EEG channels or source activations):
X(t) = [X4(t), Xo(t), weey Xm(t)]”

model order
<5 p
S8 X(=), AX(t—k)+E(@)
multichannel data M x M matrix of model coefficients multichannel data k
vector at current time t indicating variable dependencies at lag k samples in the past

a4 (k) . oa k)

A(k) =

. a,,(k) - aMM(k))



Multivariate Autoregressive
(MVAR) Modeling

= \\Ve have M variables (e.g., EEG channels or source activations):
X(t) = [Xi(t), Xo(1), veey Xm(t)]”

model order
%: % p random noise process
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such as Akaike Information Criterion (AlC) for varying model order (p):
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Multivariate Autoregressive
(MVAR) Modeling

x Model order is typically determined by minimizing information criteria
such as Akaike Information Criterion (AlIC) for varying model order (p):

A|C(p) — 2|Qg(de’[(\[)) + |\/|2p/N Penalizes high model orders (parsimony)

entropy rate (amount of prediction error)

optimal order

model order
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MVAR Modeling: Assumptions

x “Weak” stationarity of the data
= Mmean and variance do not change with time

®x An EEG trace containing ERPs is a classic example of a
non-stationary time-series

= Stability

= [echnically, an MVAR process is stable if the reverse characteristic polynomial of
the process has all roots outside the complex unit circle (all eigenvalues of A have
modulus less than 1)

x |mportantly, stability implies stationarity and SIFT
orovides you techniques for verifying the stabllity
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Test: Does X4 granger-cause X+ ?
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Granger Causality

Test: Does X4 granger-cause X+ ?
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Granger Causality

B Granger (1969) quantified this definition for bivariate processes in the
form of an F-ratio:

A (W(EI))_ ( var(X (t)| X,()) j
X ex, M =In
var(E ) var(X ()| X,(-), X, ("))

1 2

B Alternately, for a multivariate interpretation we can fit a single MVAR
model to all channels and apply the following definition:

Xj granger-causes X; condition on all other variables in X
fand only if A (k)>>0 forsomelag ke {1, ..., p;




Granger Causality Quiz

® Example: 2-channel MVAR process of order 1
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Granger Causality — Frequency
Domain

X(t)=),  A(k)X(1-k)+E(@)

FOurier-tranSfOrming A(k) we obtain Likewise, X(f) and E(f) correspond to
the fourier transforms of the data
_ P —i27 fk and residuals, respectivel
A(N)==2, Ak pocliad

We can then define the spectral matrix X(f) as follows:

X(f)=A(f) E(f)=H(E(f)

Where H(f) is the transfer matrix of the system.

Definition: f |A(f)| is significantly non-zero, then X; granger-
causes X;(at frequency f) conditioned on all other vars in X



Granger Causality — Frequency
Domain Estimators

B (some) Coherence measures
S.(f)

C.(f)=
JS.(NS,(f) Coherence
S,(/) .
LN T _s'  Partial coheren
JS.(NS,(/) S=S artial coherence
_ |y det(S(/)) |
Gi(f)_\/1 S.(SIM_(f) Multiple coherence

S(H= X(HX(H* is the spectral density matrix of X



Granger Causality — Frequency
Domain Estimators

" . .
some) GG measures (non-normalized) Directed

2

0,(f)=H,(f) Transfer Function (DTF)
2 H,(f)| |
Y:(f)==4 ; Normalized DTF
2 Hi ()

2

H (/)
Z ZM ‘H (f)‘z Direct DTF
f k=11"" ik
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ffDTF
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A(f) Normalized
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® Brain network dynamics often change rapidly with time
® cvent-related responses

» transient network changes during sequential information
processing

» Electrophysiological processes often exhibit oscillatory
phenomena, making them well-suited for frequency-
domain analysis

= HOw can we perform time-varying, frequency-domain
analysis of network dynamics?
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= Many ways to do time-varying MVAR estimation

® Sliding-window adaptive multivariate autoregression
(AMVAR)

= Non-parametric MVAR estimation (minimum-phase
spectral matrix factorization)

» Kalman Filtering
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= What is a good window length?
® Considerations:

= [emporal smoothing

» | ocal stationarity

x Sufficient amount of data

® Process dynamics
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Consideration: Temporal Smoothness

1 point window —
10 point window
20 point window -

Too-large windows may
smooth out interesting
transient dynamic features.

200

Time (msec)
Ding et al, 2000
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Consideration: Local Stationarity
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Consideration: Local Stationarity

1 point window —
10 point window
20 point window -
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locally-stationary

L
o
=
Q

Q
2,
7]
e

o

200

Time (msec)




Time-Frequency GC

Consideration: Local Stationarity

1 point window —
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Consideration: Sufficient data

M = number of variables

P = model order

Nir = number of trials

W = length of each window (sample points)

We have M?p model coefficients to estimate. This requires a

minimum of M?p independent samples.

So we have the constraint M?p <= Ny W.

In practice, however, a better heuristic is M?p <= (1/10)Ng W.
Or: W >= 10(M?p/Nu)

10x more data points than
parameters to estimate

SIFT will let you know if your window length is not optimal
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Consideration: Process dynamics

® Your window must be larger than the maximum expected
iInteraction time lag between any two processes.

® Your window should be large enough to span ~1 cycle of the
lowest frequency of interest



Which Measure to Use?




Ground Truth Coherence Partial Coherence

......... Spurious

—e— {ndirect true flow
— (Jirect true flow

* non-normalized




PDC versus DTF methods
(spectral considerations)
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Scalp or Source?

X(t)= MS(¢) = i MAKYM ™' X (t - k) + ME(t)

k=1

SENSOrs

X(t)= MS(¢)

Volume
Conduction

SOUrces
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Scalp or Source?

OEN/NOE i MA(K)M "' X (t - k) + ME(¢t)

k=1

SENSOrs

X(t)= MS(¢)

Volume
Conduction

SOUrces

O i AK)S(t - k) + E(t)



Scalp or Source?

OEN/NOE i MA(K)M "' X (t - k) + ME(¢t)

k=1

SENSOrs

X(t)= MS(¢)

Volume
Conduction

SOUrces

Solution? Source Separation S(0) =2 A= k)+ E()
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Estimating Dependency of
Independent Components

® [SN’t it a contradiction to examine dependence between
Independent Components”?

® |[nstantaneous (e.q., Infomax) ICA only explicitly enforces
instantaneous independence. Time-delayed dependencies
may be preserved

x |CA seeks to maximize global independence (over entire
recording session), transient dependencies are often
preserved



Estimating Dependency of
Independent Components

SCSA_EM
SCSA
o CSA o
Z CICAAR Connectivity Error
MVARICA | + +
ICA X+ — — —
0.1 0.2 0.3 0.4
SCSA EM[— + — — — —++H+ + +
SCSA +H -+
+ CSA
< CICAAR

ICA

SCSA_EM
SCSA

oy CSA

< CICAAR

on CSA
< CICAAR

SCSA_EM
SCSA

1o CSA

Z CICAAR

SCSA
o CSA
< CICAAR
MVARICA
ICA

Haufe et al, 2008



Source Information Flow Toolbox

Version 0.1-Alpha

o N cate dpoles using LORITA >
File Ednt m Mot Datasets Melp )

Modeling &
Validation

292220995

Connectivity

Frequency (Hz)

Statistics

* 225

Group N 3
Analysis Visualization Time (ms) Time (sec)
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Source Information Flow
Toolbox (SIFT) 0.1-alpha

x A new (alpha) toolbox for source-space electrophysiological information
flow and causality analysis (single-subject or group analysis) integrated
into the EEGLAB software environment

eeeeeeeeeee



eeeeeeeeeee

Source Information Flow
Toolbox (SIFT) 0.1-alpha

x A new (alpha) toolbox for source-space electrophysiological information

flow and causality analysis (single-subject or group analysis) integrated
into the EEGLAB software environment

»x Modular architecture intended to support multiple modeling approaches

31



eeeeeeeeeee

Source Information Flow
Toolbox (SIFT) 0.1-alpha

x A new (alpha) toolbox for source-space electrophysiological information

flow and causality analysis (single-subject or group analysis) integrated
into the EEGLAB software environment

»x Modular architecture intended to support multiple modeling approaches

»x Emphasis on time-frequency domain approaches

31



eeeeeeeeeee

Source Information Flow
Toolbox (SIFT) 0.1-alpha

x A new (alpha) toolbox for source-space electrophysiological information

flow and causality analysis (single-subject or group analysis) integrated
into the EEGLAB software environment

»x Modular architecture intended to support multiple modeling approaches
»x Emphasis on time-frequency domain approaches

= Novel interactive visualization methods for exploratory analysis of
connectivity across time, frequency, and spatial location
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Source Information Flow
Toolbox (SIFT) 0.1-alpha

x A new (alpha) toolbox for source-space electrophysiological information
flow and causality analysis (single-subject or group analysis) integrated
into the EEGLAB software environment

»x Modular architecture intended to support multiple modeling approaches
»x Emphasis on time-frequency domain approaches

= Novel interactive visualization methods for exploratory analysis of
connectivity across time, frequency, and spatial location

x Requirements: EEGLAB, MATLAB™ 2008b, Signal Processing Toolbox,

Statistics Toolbox (the latter two dependencies may be removed in the
future)
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Model fitting and validation
Connectivity

Statistics

FMRIB Tools Visualization

Locate dipoles using DIPFIT 2.x
Peak detection using EEG toolbox

Locate dipoles using LORETA
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File

Edit

Locate dipoles using DIPFIT 2.x
Peak detection using EEG toolbox

FMRIB Tools
Locate dipoles using LORETA

Datasets Help

Model fitting and validation
Connectivity

Statistics

Visualization
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Pre-processing
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Model fitting and validation
Connectivity

Statistics

FMRIB Tools Visualization

Locate dipoles using DIPFIT 2.x
Peak detection using EEG toolbox

Locate dipoles using LORETA
N X - : A J V‘\ jv \f‘f”\’\.-f”"\\'v‘v\ A WAl J“J"
File Edit Datasets Help VA ot T

#1: Button press epochs

Pre-processing

o Model Fitting <
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and Validation =

)
Connectivity 3
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Statistics

Group Analysis —»  Vjsualization
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Model fitting and validation
Connectivity

Statistics

FMRIB Tools Visualization

Locate dipoles using DIPFIT 2.x
Peak detection using EEG toolbox

Locate dipoles using LORETA
N - " A J V‘\ N \j\(v‘\’\_.,(*’\\\'.\,\ A WAL J“J"
File Datasets Help VA ot T

Pre-processing

Model Fitting =
o idati O
and Validation o

D
Connectivity O
(@)

Statistics

Group Analysis —»  Vjsualization
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Preprocessing Modeling Statistics Visualization

= Source-separation and localization
(oerformed externally using EEGLAB or other toolboxes)

x Fltering/Detrending

®x Downsampling

» Differencing

= Normalization (temporal or ensemble)
= [rial balancing

® [ests for stationarity of the data (linear methods)

eeeeeeeeeee
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Preprocessing Modeling Statistics

™ Pre-processing el @é Preprocessing Options

Model fitting and validation »
Connectivity

A oy
. Ta

Statistics
Visualization

Miscellaneous
VerbosityLevel
Data Selection
SelectComponents

ComponentsToKeep 1; 2;3:4:5:6;...
EpochTimeRange (-0.5 0]
TrialSubsetTolUse (]
Filtering
NewSamplingRate
FilterData (0.01 0]
DifferenceData

DifferencingOrder
Detrend

DetrendingMethod linear
Normalization
NormalizeData | & |

Method ensemble

NormalizeData
Data normalization. Normalize trials across
time, ensemble, or both

. Help | . Cancel |

Visualization
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

Linear Nonlinear/Nonstationary
MVAR Modeling Dual Extended Kalman Filtering
S |Sparse MVAR
GE) Bayesian MVAR
® [Kalman Filtering
o
o |Nonparametric MVAR (minimum-  [Transfer Entropy
£ |phase spectral factorization)
&
% Multivariate phase distribution
=
Z

fully implemented - partially-developed - coming soon



Preprocessing
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Pre-processing

Modeling

Validation

Connectivity Validate model

Statistics
Visualization
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Statistics

Connectivity
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Preprocessing Modeling

Model Fitting Validation

Pre-processing

Connectivity Validate model
Statistics
Visualization

™ M Fit AMVAR Model

1. Select MVAR algorithm

ARFIT i

2. Window length (sec) 0.5

Start Window Length Assistant...

3. Step size (sec) 0.03

4, Model order 10
Start Model Order Assistant...

| Cancel 8| Ok

Statistics

Connectivity

Visualization
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Preprocessing Statistics

Modeling

Validation

Model Fitting

Pre-processing

L

Connectivity Validate model

Statistics
Visualization

™ M Fit AMVAR Model

1. Select MVAR algorithm

ARFIT i

2. Window length (sec) 0.5

Start Window Length Assistant...

3. Step size (sec) 0.03

4, Model order 10
Start Model Order Assistant...

| Cancel 8| Ok

e NO

Connectivity

Plot Information Criteria

Select order criteria to estimate
(hold Citrl to select multiple)

FPE

model order range:

% windows to sample

Help Cancel Ok

Visualization
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

ssin

ra —g— validation » * AMVAR Made eno Figure 3: RespWrong - Model Order Selection Results
Connectivity File Edit View Insert Tools Desktop Window Help
Statistics

. . Average info. criteria across sampled windows
Visualization

: aic (28) I
—cbe (10)

™ O Fit AMVAR Model

™ M O Plot Informa
1. Select MVAR algorithm

m;l._j Select order criteria to es
ARFIT
T (hold Ctrl to select multipl i
0 AcC 34 56 78 9101112131415161718192021222324252627282930
FPE
' Start Window Length Assistant... : model order
HQ aic sbc

25

information criteria (bits)

2. Window length (sec)

3. Step size (sec) 0.03 20

4. Model order 10 model order range: 15

| Start Model Order Assistant... % windows to sample 10

histogram count
histogram count

Help S

0 0
. Help | ' Cancel | | Ok | 10 20 10 20

model order model order

Neurosc ience



® \\Vhiteness of Residuals

» Portmanteau tests

. Autocorrelation function

» \Model Consistency

= Model Stability

B fully implemented

. partially-developed

. coming soon
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Preprocessing

Model Fitting

Pre-processing

Connectivity
Statistics
Visualization
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Modeling

Validation

Fit AMVAR Model

Statistics

Connectivity

Visualization
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

Pre-processing
nde 1g ar Fit AMVAR Model

Connectivity alidate moc

Statistics

Visualization

A M M Select Model Validation Methods

W Check Whiteness of Residuals

_

Box-Pierce

G-Mcleod

significance level:
!Zf check percent consistency

¥ check model stability

% windows to sample

Help Cancel
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

. Pre—processing Figure 4: RespWrong - Model Validation Results
o— = View Insert Tools Desktop Window Help

Connectivity
Statistics
Visualization

Ljung-

{larger is better)

o
[N

™ M O Select Model Validation Methods

Significance of whiteness

. . 0 30
@ Check Whiteness of Residuals Window nurmber

_

Box-Pierce

C-Mcleod

Percent Consistency

S
o

significance level: : 2 30

Window number

V] check percent consistency
@ CheCK rnOdeI Stab"lty . (59159 stable)

% windows to sample

Stahility Index
(should ke <0)

o
e

Help Cancel

Window number

Compuutlonal
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

WAVANR Other
-Power spectrum (ERSP) - Transfer Entropy *
-Coherence (Coh), Partial Coherence (pCoh), Multiple
Coherence (mCoh) -Multivariate phase-locking value
-Partial Directed Coherence (PDC) (MmPLV) *

-Generalized PDC (GPDC)

-Partial Directed Coherence Factor (PDCF)
-Renormalized PDC (rPDC) *

-Directed Transfer Function (DTF)

-Direct Directed Transfer Function (dDTF)
-Granger-Geweke Causality (GGCO)
-Conditional GGC

-Blockwise GGC *

@ . fully implemented . partially-developed . coming soon
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

M M O Calculate Connectivity Measures

Pre-processing
Model flttmg and validation »

Statlstlcs Select connectivity measures to calculate

Visualization

(hold Ctrl to select multlple)

Directed Tranfer Function (DTF)
Normalized DTF (nDTF)

Direct DTF (dDTF)

Direct DTF (with full causal normalization)
FuII fre uency DTF ffDTF]

Partlal D|rected Coherence PDC]

Normalized PDC (nPDC)

Generalized Partial Directed Coherence (GPDC)
Partial Directed Coherence Factor (PDCF)
Fi%normahzed Partial Dlr‘e'cted Cohere{nce

Complex Coherence (Coh)
Imaginary Coherence (iCoh)
Partial Coherence (pCoh)
Multiple Coherence (mCoh)
+SPECTRAL DENSITYMEASURES |
Complex Spectral Density

@ return squared amplitude of complex measures
!zf convert spectral density to decibels

Frequencies (Hz) 1:127

Center
Compuuﬂoml
Neuroscience

Help | | Cancel
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Preprocessing Modeling Statistics Visualization

Parametric

Asymptotic analytic estimates of
confidence intervals
Applies to: PDC, nPDC, DTF,
NDTF, rPDC
Tests: Hnul, Hbase, HaB

Confidence intervals using thin-
plate smoothing splines

Applies to: dDTF

Tests: Hpase, HaB

Hnui @ Gij < Chul Hpoase: Cij < Cpaseline Hpg: C% = C5

@ . fully implemented . partially-developed . coming soon
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Preprocessing

Modeling

Parametric

Asymptotic analytic estimates of
confidence intervals
Applies to: PDC, nPDC, DTF,
NDTF, rPDC
Tests: Hnul, Hbase, HaB

Confidence intervals using thin-
plate smoothing splines

Applies to: dDTF

Tests: Hpase, HaB

Hnui : Gij < Chul

Hpase: Cij < Chpaseline

Statistics

Non-parametric

Phase-randomization
Applies to: all
Tests: Hnui

Permutation Tests
Applies to: all
TeStS: HAB, Hbase

Bootstrap and Jacknife

Applies to: all
Tests: Hap, Hpase

Hag: CAj = CB;

. fully implemented . partially-developed . coming soon

Visualization
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. fully implemented

. partially-developed

. coming soon
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Interactive Time-Frequency Grid

. fully implemented

. partially-developed

. coming soon
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Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

. fully implemented

. partially-developed

. coming soon
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Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Density Movie

. fully implemented

. partially-developed

. coming soon
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—reprocessing viodelr 1)

Interactive Time-Frequency Grid
Interactive 3D Causal Brainmovie
Causal Density Movie

Directed Graphs on anatomicals (ECoGQG)

. fully implemented . partially-developed . coming soon
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Preprocessing Modeling Statistics Visualization

Interactive Time-Frequency Grid
Interactive 3D Causal Brainmovie
Causal Density Movie

Directed Graphs on anatomicals (ECoG)

and more...

0 B fuly implemented || partially-developed | coming soon
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Preprocessing Modeling Statistics Visualization

Interactive Time-Frequency Grid
Interactive 3D Causal Brainmovie
Causal Density Movie

Directed Graphs on anatomicals (ECoG)

and more...

All of these currently support single-subject or (in beta version) group analysis
ROI connectivity analysis can currently be performed using dipole clustering

(B B fuly implemented || partially-developed | coming soon

eeeeeeeeeee
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Interactive Time-Frequency Grid

e NO Time Frequency Grid Options

l:‘%i = Bl
DisplayProperties
ConnectivityMethods DTF
ColorLimits 100
TimesToPlot [-0.75 0.98828125]
FrequenciesToPlot [1:50]
PlotContour
MatrixLayout all
PlottingOrder (]
SourceMarginPlot dipole
Nodelabels {'g','11','13",'19", '20"...
EventMarkers {{o, 'r', "', 21}
FrequencyScale linear
Colormap jet(300)
Thresholding
Thresholding Simple
| PercentileThreshod 100 |

AbsoluteThreshold (]

DataProcessing
Baseline (]
Smooth2D
SubplotExpansion
SubplotExpansionProperties
FrequencyMarkers
FrequencyMarkers
FrequencyMarkerColor
TextAndFont
TitleString
TitleFontSize
AxesFontSize
TextColor (111]
BackgroundColor [0 0 0]

Pre-processing

Model fitting and validation »
Connectivity

Statistics -

BrainMovie3D

PercentileThreshold
Percentile threshold. If of form [percentile, dimension], percentile
is applied elementwise across the specified dimension.

Help Cancel OK
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Interactive Time-Frequency Grid

e NO Time Frequency Grid Options

l:‘%i = Bl
DisplayProperties
ConnectivityMethods DTF
ColorLimits 100
TimesToPlot [-0.75 0.98828125]
FrequenciesToPlot [1:50]
PlotContour
MatrixLayout all
PlottingOrder (]
SourceMarginPlot dipole
Nodelabels {'g','11','13",'19", '20"...
EventMarkers {{o, 'r', "', 21}
FrequencyScale linear
Colormap jet(300)
Thresholding
Thresholding Simple
| PercentileThreshod 100 |

AbsoluteThreshold (]

DataProcessing
Baseline (]
Smooth2D
SubplotExpansion
SubplotExpansionProperties
FrequencyMarkers
FrequencyMarkers
FrequencyMarkerColor
TextAndFont
TitleString
TitleFontSize
AxesFontSize
TextColor (111]
BackgroundColor [0 0 0]

Pre-processing

Model fitting and validation »
Connectivity

Statistics -

BrainMovie3D

PercentileThreshold
Percentile threshold. If of form [percentile, dimension], percentile
is applied elementwise across the specified dimension.

Help Cancel OK
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Causal Time-Frequency Grid
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Causal Time-Frequency Grid
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Causal Time-Frequency Grid
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INnteractive BrainMovie3D

Pre-processing
Model fitting and validation »
Connectivity

Statistics
Visualizatic Time~-Frequency Grid
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INnteractive BrainMovie3D

Pre-processing
Model fitting and validation »

Connectivity

Time~-Frequency Grid

BrainMovie3D Control Panel

DataPr ssing
ConnectivityMethod
MovieTimeRange
FrequenciesToCollapse
FreqCollapseMethod
TimeResamplingFactor
SubtractConditions
Baseline
DisplayProperties
Nodelabels
NodesToExclude
EdgeColorMapping
EdgeSizeMapping

nDTF
[-0.75 0.98828125]
[3:7]
mean

0

{'8",'11','13",'19', '20', 2

Connectivity
ConnMagnitude

NodeColorMapping AsymmetryRatio

NodeSizeMapping

FooterPanelDisplaySpec
icaenvelopevars
backprojectedchans

BrainMovieOptions
Visibility
RotationPath3D
InitialView
ProjectGraphOnMRI
RenderCorticalSurface

Transparency

UseOpenGL
EventFlashTimes
DisplayLegendPanel
ShowLatency
DisplayRTProbability
BackgroundColor

NodeColorMapping

None

Outflow
Inflow
CausalFlow
Outdegree
Indegree
CausalDegree

™

[0 00]

Specify mapping for node color. This determines how we index into the
colormap. Options are as follows. None: node color is not modulated.
Outflow: sum connectivity strengths over outgoing edges. Inflow: sum
connectivity strengths over incoming edges. CausalFlow: Qutflow-Inflow.
Asymmetry Ratio: node colors are defined by the equation C = 0.5%(1 +
outflow-inflow/(outflow+inflow)). This is 0 for exclusive inflow, 1 for
exclusive outflow, and 0.5 for balanced inflow/outflow

Preview BrainMovie

Select a time point to image (click to refresh)
(R} < »

0.0898438 0.988281

Make Movie!

Center
Compuuﬂoml
Neuroscience



INnteractive BrainMovie3D

Pre-processing

Model fitting and validation » File Edit View Insert Tools

Neuroscience

Connectivity
Statistics

Time-Frequency Grid

BrainMovie3D Control Panel

ConnectivityMethod
MovieTimeRange
FrequenciesToCollapse
FreqCollapseMethod
TimeResamplingFactor
SubtractConditions
Baseline

[

Nodelabels
NodesToExclude
EdgeColorMapping
EdgeSizeMapping

nDTF
[-0.75 0.98828125]
(3:7)
mean

0

{'8",'11','13",'19', '20', 2

Connectivity
ConnMagnitude

AsymmetryRatio

NodeSizeMapping

FooterPanelDisplaySpec
icaenvelopevars
backprojectedchans

BrainMovieOptions
Visibility
RotationPath3D
InitialView
ProjectGraphOnMRI
RenderCorticalSurface

Transparency

UseOpenGL
EventFlashTimes
DisplayLegendPanel
ShowLatency
DisplayRTProbability
BackgroundColor

NodeColorMapping

None

Outflow
Inflow
CausalFlow
Outdegree
Indegree
CausalDegree

v

(000]

Specify mapping for node color. This determines how we index into the
colormap. Options are as follows. None: node color is not modulated.
Outflow: sum connectivity strengths over outgoing edges. Inflow: sum
connectivity strengths over incoming edges. CausalFlow: Outflow-Inflow.
Asymmetry Ratio: node colors are defined by the equation C = 0.5%(1 +
outflow-inflow/(outflow+inflow)). This is 0 for exclusive inflow, 1 for
exclusive outflow, and 0.5 for balanced inflow/outflow

Preview BrainMovie

Select a time point to image (click to refresh)
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Make Movie!
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INnteractive BrainMovie3D

Error > Correct (p < 0.05, N=24)
dDTF
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Causal Density Movie

Error > Correct (p < 0.05, N=24)
dDTF
3-7 Hz
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Group Analysis

Disjoint Clustering

This approach adopts a 3-stage process:

1. Identify K ROI’s (clusters) by affinity
clustering of sources across subject
population using EEGLAB’s Measure-Product
clustering.

2. Average all incoming and outgoing
statistically significant connections between

each pair of ROlIs to create a [ KX K [x freq x
time | | group connectivity matrix.

3. Visualize the results using any of SIFTs
visualization routines. This method suffers from
low statistical power when subjects do not
have high agreement in terms of source
locations (missing variable problem).
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Group Analysis

Disjoint Clustering

This approach adopts a 3-stage process:

1. Identify K ROI’s (clusters) by affinity
clustering of sources across subject
population using EEGLAB’s Measure-Product
clustering.

2. Average all incoming and outgoing
statistically significant connections between

each pair of ROlIs to create a [ KX K [x freq x
time | | group connectivity matrix.

3. Visualize the results using any of SIFTs
visualization routines. This method suffers from
low statistical power when subjects do not
have high agreement in terms of source
locations (missing variable problem).

Bayesian Mixture Model

A more robust approach (in development with
Wes Thompson and to be released in SIFT
1.0b) uses smoothing splines and Monte-Carlo
methods for joint estimation of posterior
probability (with confidence intervals) of cluster
centroid location and between-cluster
connectivity. This method takes into account

the “missing variable” problem inherent to the
disjoint clustering approach and provides
robust group connectivity statistics.
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Future Work

® |mprovement of architecture, GUI, and EEGLAB integration

x Ongoing implementation/incorporation of state-of-the-art
methods for effective connectivity analysis and visualization

® |mproved group statistics

» Evaluation of relative suitability of various source-separation
algorithms when combined with MVAR modeling



