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Many ways to model effective 
connectivity in EEG

Coherence, Phase-locking value

Cross-correlation

Transfer Entropy

Dynamic Causal Models

Structural Equation Models

Granger-Causal methods

...
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Granger-Causal methods



Granger Causality

First introduced by Wiener (1958). Later reformulated by 
Granger (1969) in the context of linear stochastic 
autoregressive models
Relies on two assumptions:

1. causes should precede their effects in time
2. information in a cause’s past should improve the 

prediction of the effect, above and beyond the 
information contained in the effect’s own past. 
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This is not the same as (cross-)correlation!



Multivariate Autoregressive 
(MVAR) Modeling
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multichannel data  k 
samples in the past

We have M variables (e.g., EEG channels or source activations):  
X(t) = [X1(t), X2(t), ..., XM(t)]T

Multivariate Autoregressive 
(MVAR) Modeling

random noise process

M x M matrix of model coefficients 
indicating variable dependencies at lag k

model order 
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Multivariate Autoregressive 
(MVAR) Modeling

Model order is typically determined by minimizing information criteria 
such as Akaike Information Criterion (AIC) for varying model order (p):
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	 AIC(p) = 2log(det(V)) + M2p/N

entropy rate (amount of prediction error)
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MVAR Modeling: Assumptions

“Weak” stationarity of the data

mean and variance do not change with time

An EEG trace containing ERPs is a classic example of a 
non-stationary time-series

Stability

Technically, an MVAR process is stable if the reverse characteristic polynomial of 
the process has all roots outside the complex unit circle (all eigenvalues of A have 
modulus less than 1)

Importantly, stability implies stationarity and SIFT 
provides you techniques for verifying the stability 
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Granger (1969) quantified this definition for bivariate processes in the 
form of an F-ratio:

   
FX1←X2

= ln
var( E1)
var(E1)
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Alternately, for a multivariate interpretation we can fit a single MVAR 
model to all channels and apply the following definition:  

Xj granger-causes Xi condition on all other variables in X
 if and only if

Granger Causality

Granger (1969) quantified this definition for bivariate processes in the 
form of an F-ratio:

   
FX1←X2

= ln
var( E1)
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A ij (k) >> 0  for some lag  k ∈  {1,  ... ,  p}
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Granger Causality – Frequency 
Domain

   
X(t) = A

k=1

p∑ (k)X(t − k) + E(t)

Fourier-transforming A(k) we obtain

   
A( f ) = − A(k)e− i2π fk

k=0

p∑
Likewise, X(f) and E(f) correspond to 

the fourier transforms of the data 
and residuals, respectively

Where H(f) is the transfer matrix of the system.
   X( f ) = A( f )−1E( f ) = H( f )E( f )

We can then define the spectral matrix X(f) as follows:

Definition: If |Aij(f)| is significantly non-zero, then Xj  granger-
causes Xi (at frequency f )  conditioned on all other vars in X



Granger Causality – Frequency 
Domain Estimators

(some) Coherence measures

  

Pij ( f ) =
Ŝij ( f )

Ŝii ( f )Ŝ jj ( f )    S
 = S−1

  

Cij ( f ) =
Sij ( f )

Sii ( f )S jj ( f )

   
Gi ( f ) = 1− det(S( f ))

Sii ( f )Mii ( f )

Coherence

Partial coherence

Multiple coherence

S(f)= X(f)X(f)* is the spectral density matrix of X



Granger Causality – Frequency 
Domain Estimators

(some) GC measures

  

θij
2 ( f ) = Hij ( f )

2

γ 2
ij ( f ) =

Hij ( f )
2

Hik ( f )
2

k=1

M∑

δ ij
2 ( f ) = ηij

2 ( f )Pij
2 ( f )   where   ηij

2 ( f ) =
Hij ( f )

2

f∑ Hik ( f )
2

k=1

M∑

π ij
2 ( f ) =

Aij ( f )2

Akj ( f )
2

k=1

M∑

(non-normalized) Directed 
Transfer Function (DTF)

Normalized DTF

Direct DTF

Normalized 
Partial Directed 
Coherence (PDC)

partial 
coherence

ffDTF
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Time-Frequency GC

Brain network dynamics often change rapidly with time

event-related responses

transient network changes during sequential information 
processing

Electrophysiological processes often exhibit oscillatory 
phenomena, making them well-suited for frequency-
domain analysis

How can we perform time-varying, frequency-domain 
analysis of network dynamics?
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Time-Frequency GC

What is a good window length?

Considerations:

Temporal smoothing

Local stationarity 

Sufficient amount of data

Process dynamics
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Consideration: Temporal Smoothness

Too- l a rge w indows may 
s m o o t h o u t i n t e r e s t i n g 
transient dynamic features.
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Consideration: Sufficient data

M = number of variables
p = model order
Ntr = number of trials
W = length of each window (sample points)

We have M2p  model coefficients to estimate. This requires a 
minimum of M2p independent samples. 
So we have the constraint M2p <= Ntr W. 
In practice, however, a better heuristic is M2p <= (1/10)Ntr W.  

Or:   W >= 10(M2p/Ntr)

SIFT will let you know if your window length is not optimal

10x more data points than 
parameters to estimate
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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
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Dotted arrows: false flows found by the applied method.
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on June 15,2010 at 13:07:27 UTC from IEEE Xplore.  Restrictions apply. 

1504 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 9, SEPTEMBER 2004

Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (
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It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.
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and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.
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The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
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Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
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Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 6. (A) PDC functions for simulation I. (B) Resulting pattern of flows.
Organization of the picture is the same as in Fig. 3.

since they reveal the direct coupling between them [20]. For
scalp electrodes, the overall picture of propagations found
by DTF is usually sufficient. Both estimators can be easily
computed from the MVAR transfer matrix. Inspection of both
gives unequivocal information about the pattern of propagation
and makes the distinction between direct and indirect flows
possible.

In Fig. 6, the results obtained by the PDC method for the
same simulation scheme (Fig. 1) are illustrated. One can see that
they are quite similar to those obtained by dDTF. The spectral
properties of PDC and DTF are different—the PDC measure
depends on frequency very weakly.

However, there are situations where PDC results may be mis-
leading to a certain extent. In order to clarify the differences be-
tween DTF and PDC, the series of simulations were performed.
In simulation II (Fig. 7), the signal in channel 1 is the same as
the signal in channel 1 of simulation I. This signal is transmitted
with the weight 0.8 and the delay of 1 sample to channels 2,
3, and 4, but with the noise components drawn from different
distributions. The time series in channel 5 is constructed in the
same way as channel 1 in the simulations I and II, but the input
EEG comes from a different subject. This signal plus a noise
component is transmitted with the delay of one sample and vari-
ance four times smaller than the variance of signal 1: in simu-
lation II to channel 4 and in the simulation III to channels 2,
3, and 4 (with different noise components). In simulation IV,
the scheme is similar to simulation III, except that the strengths
of all the transmitted activities are equal. The results of these
simulations are illustrated in Fig. 7. It is easy to see that DTF
and PDC show the same correct directions of flows, however
there are differences in their intensities. For simulation II, the
pattern of flows is well reproduced by DTF; however, for PDC,

Fig. 7. DTF (left) and PDC (right) results for simulations II, III, IV
(described in the text). Below the pictures representing the DTF and PDC
functions, deduced flows are presented for each simulation. The schemes of
the simulations are shown in the middle column.

the weak propagation from channel 5 becomes predominant in
the absence of other flows from that channel. In simulation III,
PDC shows similar intensities of flows from electrodes 1 and 5,
although originally the flows from electrode 5 are much weaker.
In the case of simulation IV, when the intensities of flows are the
same for both sources, the results for DTF and PDC are very
similar. These results follow from the different normalizations
in DTF and PDC. DTF is normalized in respect of the inflows to
the destination channel and PDF in respect to the outflows from
a given channel. Therefore, for PDC, it is difficult to estimate the
strengths of the flows. As the authors of the PDC method [19]
admit, PDC portrays the relative strengths of direct pair-wise
structure interactions, while DTF represents a balance of signal
power that spreads from one structure to different destinations.
Simulations II, II, and IV will help to understand some discrep-
ancies obtained by application of different methods to the same
experimental data.

IV. RESULTS FOR EXPERIMENTAL DATA

A. Alpha Rhythm

A MVAR model was fitted simultaneously to 21 channels
of EEG (10–20 system) of a normal adult in an awake state
with their eyes closed. The epoch length was 20 s. The signal
was high-pass filtered above 3 Hz. The filtering procedure in-
volved filtering forward and backward in order to avoid any
phase disturbance. The model order found by means of the AIC
criterion was 4. The estimates describing transmissions DTF,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 6. (A) PDC functions for simulation I. (B) Resulting pattern of flows.
Organization of the picture is the same as in Fig. 3.

since they reveal the direct coupling between them [20]. For
scalp electrodes, the overall picture of propagations found
by DTF is usually sufficient. Both estimators can be easily
computed from the MVAR transfer matrix. Inspection of both
gives unequivocal information about the pattern of propagation
and makes the distinction between direct and indirect flows
possible.

In Fig. 6, the results obtained by the PDC method for the
same simulation scheme (Fig. 1) are illustrated. One can see that
they are quite similar to those obtained by dDTF. The spectral
properties of PDC and DTF are different—the PDC measure
depends on frequency very weakly.

However, there are situations where PDC results may be mis-
leading to a certain extent. In order to clarify the differences be-
tween DTF and PDC, the series of simulations were performed.
In simulation II (Fig. 7), the signal in channel 1 is the same as
the signal in channel 1 of simulation I. This signal is transmitted
with the weight 0.8 and the delay of 1 sample to channels 2,
3, and 4, but with the noise components drawn from different
distributions. The time series in channel 5 is constructed in the
same way as channel 1 in the simulations I and II, but the input
EEG comes from a different subject. This signal plus a noise
component is transmitted with the delay of one sample and vari-
ance four times smaller than the variance of signal 1: in simu-
lation II to channel 4 and in the simulation III to channels 2,
3, and 4 (with different noise components). In simulation IV,
the scheme is similar to simulation III, except that the strengths
of all the transmitted activities are equal. The results of these
simulations are illustrated in Fig. 7. It is easy to see that DTF
and PDC show the same correct directions of flows, however
there are differences in their intensities. For simulation II, the
pattern of flows is well reproduced by DTF; however, for PDC,

Fig. 7. DTF (left) and PDC (right) results for simulations II, III, IV
(described in the text). Below the pictures representing the DTF and PDC
functions, deduced flows are presented for each simulation. The schemes of
the simulations are shown in the middle column.

the weak propagation from channel 5 becomes predominant in
the absence of other flows from that channel. In simulation III,
PDC shows similar intensities of flows from electrodes 1 and 5,
although originally the flows from electrode 5 are much weaker.
In the case of simulation IV, when the intensities of flows are the
same for both sources, the results for DTF and PDC are very
similar. These results follow from the different normalizations
in DTF and PDC. DTF is normalized in respect of the inflows to
the destination channel and PDF in respect to the outflows from
a given channel. Therefore, for PDC, it is difficult to estimate the
strengths of the flows. As the authors of the PDC method [19]
admit, PDC portrays the relative strengths of direct pair-wise
structure interactions, while DTF represents a balance of signal
power that spreads from one structure to different destinations.
Simulations II, II, and IV will help to understand some discrep-
ancies obtained by application of different methods to the same
experimental data.

IV. RESULTS FOR EXPERIMENTAL DATA

A. Alpha Rhythm

A MVAR model was fitted simultaneously to 21 channels
of EEG (10–20 system) of a normal adult in an awake state
with their eyes closed. The epoch length was 20 s. The signal
was high-pass filtered above 3 Hz. The filtering procedure in-
volved filtering forward and backward in order to avoid any
phase disturbance. The model order found by means of the AIC
criterion was 4. The estimates describing transmissions DTF,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 15.13: Direction of flows for 21-channel EEG (awake state eyes closed) obtained
by means of different methods. The shade of gray of the arrow represents the
strength of the connection (black = the strongest), for each method 40 strongest
flows are shown. Reprinted from with permission [49] (© IEEE 2005).

lot of activity flowing to the destination channels from the posterior electrodes,
so the denominator in Eq. (15.6) is quite large, which diminishes the values of
DTFs showing outflows from Fz. For Granger causality and DTF there is no
propagation from the temporal electrodes. This is practically also the case for
dDTF. The dDTF shows only direct flows, we can see that in this case the pattern
of flows is consistent with anatomy, e.g., a lack of direct connection between Oz
and Pz, Fz, and Fpz—locations where hemispheres are partitioned. The main
sources of the activity—namely, electrodes P3, P4, O2, Oz, O1—are the same as
for the other multivariate estimates.
Inspecting the results of application of the PDC function to the same data

epoch we observe a different picture. One can notice that, unlike the results of
dDTF, some channels became sinks. This is due to the normalization of PDC. In
fact, we do not see the transmission, as is the case for dDTF, but the ratio between
the flow to a given channel with respect to all the outflows from the considered
channel. In this way, a channel propagating activity in all directions will show
weaker flows than a channel propagating only in one direction. Therefore, the
method is not suitable for identification of sources of EEG activity, but it may be
useful when the destination channel is of primary interest.
The pattern of propagations obtained for the bivariate estimates of the Granger

or
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Estimating Dependency of 
Independent Components ?

Isn’t it a contradiction to examine dependence between 
Independent Components?

Instantaneous (e.g., Infomax) ICA only explicitly enforces 
instantaneous independence. Time-delayed dependencies 
may be preserved

ICA seeks to maximize global independence (over entire 
recording session), transient dependencies are often 
preserved 
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rather short time, while the EM implementation of SCSA
is in medium range and CICAAR requires the longest time.
However, for SCSA there is still room for improvement,
since the regularization parameter of this method is currently
selected by the cross-validation procedure, which could be
changed.
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Fig. 3. Estimation errors of the mixing matrix according to the goodness-of-fit
(GOF) criterion. Results are shown for the proposed (Sparsely-) Connected
Sources Analysis variants (SCSA EM, SCSA, CSA) and three alternative
approaches (CICAAR, MVARICA, ICA). Different subfigures depict the
methods’ performance in the noiseless cass (N0), as well as in the presence
of different types of noise (N1-N6, see TABLE I).
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Fig. 4. Localization errors of dipole fits conducted on the estimated mixing
field patterns. Results are shown for the proposed (Sparsely-) Connected
Sources Analysis (SCSA EM, SCSA, CSA) variants and three alternative
approaches (CICAAR, MVARICA, ICA). Different subfigures depict the
methods’ performance in the noiseless cass (N0), as well as in the presence
of different types of noise (N1-N6, see TABLE I).

IV. DISCUSSION

Let us recall the assumptions we make to identify individual
brain sources and to estimate their interactions. While ICA
results in a unique decomposition assuming statistical inde-
pendence, such an assumption is inconsistent when studying
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Fig. 5. Estimation errors regarding the source connectivity structure as
measured by fitting an MVAR model subsequently to the demixed sources and
testing the obtained coefficients for significant interaction. The performance
measure reported is the area under the curve (AUC) score obtained by varying
the significance level.

Mixing Matrix Approximation Error:
Dependence on Connectivity and SNR
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Fig. 6. Mixing matrix approximation performance of (Sparsely-) Connected
Sources Analysis variants (SCSA EM, SCSA, CSA) and three alternative
approaches (CICAAR, MVARICA, ICA) under variation of the degree of
connectedness (left side) and SNR (right side). The performance at different
noise levels is investigated for white sensor noise without temporal structure
(N1), while the influence of connectivity is studied in the noiseless case (N0).

brain interactions. However, all neural interactions require a
minimum delay well within the temporal resolution of electro-
physical measurements of brain activity. Hence, it makes sense
to assume independent innovation processes and to model all
interactions explicitly using AR matrices. In relation to ICA
we pay some price for that: In our case, independence is
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Fig. 7. Average runtime of the proposed (Sparsely-) Connected Sources
Analysis variants (SCSA EM, SCSA, CSA) and three alternative approaches
(CICAAR, MVARICA, ICA), taken over all experiments conducted for this
study.
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Source-separation and localization 
(performed externally using EEGLAB or other toolboxes)

Filtering/Detrending

Downsampling

Differencing

Normalization (temporal or ensemble)

Trial balancing

Tests for stationarity of the data (linear methods)
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Model Stability
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MVAR Other
-Power spectrum (ERSP)
-Coherence (Coh), Partial Coherence (pCoh), Multiple 
Coherence (mCoh)
-Partial Directed Coherence (PDC)
-Generalized PDC  (GPDC)
-Partial Directed Coherence Factor (PDCF)
-Renormalized PDC  (rPDC) *
-Directed Transfer Function (DTF)
-Direct Directed Transfer Function (dDTF)
-Granger-Geweke Causality (GGC)
-Conditional GGC
-Blockwise GGC *

-Transfer Entropy *

-Multivariate phase-locking value 
(mPLV) *

fully implemented partially-developed coming soon
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Hnull : Cij ≤ Cnull         Hbase: Cij ≤ Cbaseline             HAB: CAij = CBij

Statistics VisualizationModelingPreprocessing

Parametric

Asymptotic analytic estimates of 
confidence intervals

Applies to: PDC, nPDC, DTF, 
nDTF, rPDC
Tests: Hnull, Hbase, HAB

Confidence intervals using thin-
plate smoothing splines

Applies to: dDTF
Tests: Hbase, HAB

fully implemented partially-developed coming soon
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Hnull : Cij ≤ Cnull         Hbase: Cij ≤ Cbaseline             HAB: CAij = CBij

Statistics VisualizationModelingPreprocessing

Parametric

Asymptotic analytic estimates of 
confidence intervals

Applies to: PDC, nPDC, DTF, 
nDTF, rPDC
Tests: Hnull, Hbase, HAB

Confidence intervals using thin-
plate smoothing splines

Applies to: dDTF
Tests: Hbase, HAB

Non-parametric

Phase-randomization 
 Applies to: all
 Tests: Hnull

 Permutation Tests
Applies to: all
Tests: HAB, Hbase

Bootstrap and Jacknife
Applies to: all
Tests: HAB, Hbase

fully implemented partially-developed coming soon
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Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Density Movie

Directed Graphs on anatomicals (ECoG)
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Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Density Movie

Directed Graphs on anatomicals (ECoG)

and more...
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VisualizationStatisticsModelingPreprocessing

Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Density Movie

Directed Graphs on anatomicals (ECoG)

and more...
All of these currently support single-subject or (in beta version) group analysis
ROI connectivity analysis can currently be performed using dipole clustering

fully implemented partially-developed coming soon
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Causal Time-Frequency Grid
Error - Correct
p < 0.05, N=24
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Causal Time-Frequency Grid
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Causal Time-Frequency Grid
Error - Correct
p < 0.05, N=24
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Interactive BrainMovie3D
Error > Correct (p < 0.05, N=24)

dDTF

3-7 Hz

ERP envelope (backprojected components)



Causal Density Movie
Error > Correct (p < 0.05, N=24)

dDTF

3-7 Hz



Causal Density Movie
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52

Group Analysis

This approach adopts a 3-stage process: 
1. Identify K ROI’s (clusters) by affinity 
clustering of sources across subject 
population using EEGLAB’s Measure-Product 
clustering. 
2. Average all incoming and outgoing 
statistically significant connections between 
each pair of ROIs to create a [ K X K [x freq x 
time ] ] group connectivity matrix. 
3. Visualize the results using any of SIFTs 
visualization routines. This method suffers from 
low statistical power when subjects do not 
have high agreement in terms of source 
locations (missing variable problem).

Disjoint Clustering

partially-developed
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Group Analysis

A more robust approach (in development with 
Wes Thompson and to be released in SIFT 
1.0b) uses smoothing splines and Monte-Carlo 
methods for joint estimation of posterior 
probability (with confidence intervals) of cluster 
centroid location and between-cluster 
connectivity. This method takes into account 
the “missing variable” problem inherent to the 
disjoint clustering approach and provides 
robust group connectivity statistics.

Bayesian Mixture Model

This approach adopts a 3-stage process: 
1. Identify K ROI’s (clusters) by affinity 
clustering of sources across subject 
population using EEGLAB’s Measure-Product 
clustering. 
2. Average all incoming and outgoing 
statistically significant connections between 
each pair of ROIs to create a [ K X K [x freq x 
time ] ] group connectivity matrix. 
3. Visualize the results using any of SIFTs 
visualization routines. This method suffers from 
low statistical power when subjects do not 
have high agreement in terms of source 
locations (missing variable problem).

Disjoint Clustering

partially-developed



Future Work

Improvement of architecture, GUI, and EEGLAB integration 

Ongoing implementation/incorporation of state-of-the-art 
methods for effective connectivity analysis and visualization

Improved group statistics

Evaluation of relative suitability of various source-separation 
algorithms when combined with MVAR modeling


