The Dynamic Brain: Modeling Neural
Dynamics and Interactions from M/EEG
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The Dynamic Brain

® A key goal: To model temporal changes in neural dynamics
and information flow that index and predict task-relevant
changes in cognitive state and behavior

= Open Challenges:

x Non-invasive measures
(source inference)

= Robustness and Validity
(constraints & statistics)

= Scalability (multivariate)

= Temporal Specificity / Non-
stationarity / Single-trial
(dynamics)

= Multi-subject Inference

= Usability and Data
Visualization (software)

e BA4 (L M1) o BAS(SMA)

o BAS (L SPL)

o BA24 (MCC)

e BA18 (R. Visual)

AP(n0go)-AA(O)
Back-projected ERPs: ICs -> Channels
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Modeling Brain Connectivity

» Model-based approaches mitigate the ‘curse of
dimensionality’ by making some assumptions about the
structure, dynamics, or statistics of the system under
observation

Box and Draper (1987):

“Essentially, all models are wrong, but some
are useful [...] the practical question is how
wrong do they have to be to not be useful”
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Categorizations of Large-Scale
Brain Connectivity Analysis

(Bullmore and Sporns, Nature, 2009)

Structural Functional Effective

state-invariant,  dynamic, state-dependent} dynamic, state-dependent,
anatomical correlative, symmetric asymmetric, causal,
iInformation flow

Hours-Years milliseconds-seconds

Temporal Scale



Estimating Functional
Connectivity

Popular measures

x Cross-Correlation
. Coherence
= Phase-l.ocking Value

= Phase-amplitude coupling
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Estimating Effective
Connectivity

Non-Invasive ® Data-driven
® Rooted in conditional predictability
» P0St-noc analyses ® Scalable waldes-Soss, 2005
applied to measured ® Extendable to nonlinear and/or non-
o stationary systems (Freiwald, 1999; Ding,
neural activity 2001; Chen, 2004; Ge, 2009)
® Extendable to non-parametric
® Confirm atory representations (phamala, 2009a.b)
® Can be (partially) controlled for
x Dynamic Causal Models (Unobserved) exogenous causes

(Guo, 2008a,b; Ge, 2009)
® Equivalent to Transfer Entropy for
Gaussian Variables (setn, 2009)
® Fexibly allows us to examine time-
» EXploratory varying (dynamic) multivariate

causal relationships in either the
» Granger-Causal methods time or frequency domain

» Structural Equation Models




Linear Dynamical Systems
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Vector Autoregressive -
(VAR / MAR / MVAR) Modeling

X () NIAVN \f'r'\’\hx. nﬁ,rmm‘f&

Granger Causality Coherence Spectrum
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VAR Modeling: Assumptions

x “Weak” stationarity of the data
= mean and variance do not change with time

x An EEG trace containing prominent evoked potentials is a
classic example of a non-stationary time-series

= Stability
» All eigenvalues of the system matrix are <1

x A stable process will not “blow up” (diverge to infinity)

® A stable model is always a stationary model (however, the
converse is not necessarily true). If a stable model adequately
fits the data (white residuals), then the data is likewise stationary



VAR|[p] model

The Linear VAR Model

Ordinary Least-Squares
Lattice Filters
Kalman Filtering

t
51 W

X(t)= Bayesian Methods
Sparse methods
model order
random noise process
P (k)
X(1)=Y" AP OX(t-k)+E(r)
k=1
M-channel data vector M x M matrix of (possibly time-varying) multichannel data k
at current time t model coefficients indicating variable samples in the past
dependencies at lag k
k k
ailft) . al )(t)
AP(t) = E(t)=N(0,V)
ay, (t)  dy, (t)




Selecting a VAR Model Order

= Model order is typically determined by minimizing information criteria

Compurstions

such as Akaike Information Criterion (AlC) for varying model order (p):

A|C(p) — 2|Og(de’[(v» + |\/|2p/N Penalizes high model orders (parsimony)

entropy rate (amount of prediction error)

optimal order

7 8 9 1011 12 13 14 15 16 17 18 19 20

model order
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Model Order Selection Criteria

More Schwarz-Bayes Criterion
Conservative (Bayesian Information Criterion)

| ess

A M
Conservative FPE(p) = )2 (p)) + T + Mp+1
T'—-Mp-1

SBC(p) = In If](p)l -+ MTT‘) pM*

Akaike’s Final Prediction Error and its logarithm (used in SIFT)

in(FPE(p)) = in|S(p)| + Min (?1—%)

Intermediate

An(in(T)
Conservative T 7

Hannan-Quinn Criterion HQ(p) = In )2(1))| 7 . p.MQ




I(o) = [Prediction Error] + [Overfitting Penalty]

=——sbc (6)
aic (6)
aicc (6)
pe (6)

—hq (6)

Over—ﬂttmg

More
Conservative

Opt|ma| I\/Iodel Order
popt = arg mm{](p)}

Intermediate
Conservative

N
Qo
—
O
—
O
=
| -
O
-
QO
e
@®©
-
| -
©)
Y
R

| | | ] ]
0111213141516 17 18 19 20 21 22 23 24 25 26 27 28 2¢

Model Order (p)




Canene

» Other considerations:

= A M-dimensional VAR model of order p has at
most Mp/2 spectral peaks distributed
amongst the M variables. This means we can
observe at most p/2 peaks in each variables’
spectrum (or in the cross spectrum between
each pair of variables)

x Optimal model order depends on sampling rate. Higher
sampling rate often requires higher model orders.
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Model Valigation

= |[f 2 model is poorly fit to data, then few, if any, inferences can be
validly drawn from the model. There a number of criteria which
we can use to determine whether we have appropriately fit our
VAR model. Here are three commonly used categories of tests:

= Whiteness Tests: checking the residuals of the model for serial
and cross-correlation

» Consistency Test: testing whether the model generates data
with same correlation structure as the real data

= Stability Test: checking the stability/stationarity of the model.
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Granger Causality

First introduced by Wiener (1958). Later reformulated by
Granger (1969) in the context of linear stochastic

autoregressive models
Relies on two assumptions:

Granger Causality Axioms

1.

Causes should precede their effects in time (Temporal
Precedence)

2.

nformation in a cause’s past should improve the
orediction of the effect, above and beyond the information
contained in past of the effect (and other measured

variables)

18
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Granger Causality

Does X4 granger-cause X7 s s 1
(conditioned on Xz, Xs)
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Granger Causality

B Granger (1969) quantified this definition for bivariate processes in the
form of an F-ratio: £ \equced model

A (W(EI))_ ( var(X (t)| X,()) j
X ex, M =In
var(E ) var(X ()| X,(-), X, ("))

1 2

full model

B Alternately, for a multivariate interpretation we can fit a single VAR
model to all channels and apply the following definition:

Definition 1

Xj granger-causes X; conditioned on all other variables in X
if and only if A (k)>>0 forsomelag k€ {1, ..., p}




Granger Causality Quiz

» Example: 2-channel VAR process of order 1
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Which causal structure does this model correspond to?
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X(0)=), AVX(-k)+E(@)

Fourier-transforming A% we obtain

Likewise, X(f) and E(f) correspond to
the fourier transforms of the data
and residuals, respectively

INGAE _ZZZO A(k)e—iZPfk;A(O) — ]

We can then define the spectral matrix X(f) as follows:

X(f)=A(f) E(f)=H( E(f)

Where H(/) is the transfer matrix of the system.

Definition 2

leads to

Xj granger-causes X; conditioned on all other variables in X e
if and only if |A(f)| >> O for some frequency f




xlifi NWV\’\MM‘” X(¢) = ZZ 1A(k)(t)X(l‘ — k)+E() Ground Truth
X, (1) | arPpa Ve AN - .
; ; A(f,0) == AR @ Pr A0 =]
% (8) bR Attt | X(f,0) = A(f,2) E(f,0) = H(f,)E(f,1)

£ [0 et e o
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Coherence Measures

Spectral M.

Estimator

Spectral
Density Matrix

Formula

S(H)=X(NHX()*
=H()ZH(f)*

Coherency

S;(f)

@)= VS (S, ()

os|c,.j(f)| <1

Imaginary
Coherence
(iCoh)

iCoh,(f)=1Im(C,(f))

Partial
Coherence
(pCoh)

B ()=
808,00
SIS
o<|p ()| <1

Multiple
Coherence
(mCoh)

det(S(f))
G(f) = 1-———
) \/ Si (IM,(f)
M., (f)is the minor of S(f) obtained

by removing the ith row and column of
S(f) and returning the determinant.

Estimator

Normalized
Partial
Directed
Coherence
(PDC)

4;,(f)
\/ZkM=1|Akj (f)|2

0<|z, (| <1

7 (f)=

S rf =1

Partial Directed Coherence Measures

Generalized
PDC (GPDC)

7, (f)=
\/Zk .57 A,00|

0<|z, (N <1

S0 =1

Renormalized
PDC (rPDC)

AN =0,(N*V,(/)"G,(f)

where
e[4, (/)]
= ( A,(f)]]
V,(f)= ZR-I(k DZ.ZQrf k)
Z(w,k,l; .

_ [ cos(ak)cos(al) cos(wk)sin ()
- sin(wk)cos(awl) sin(wk)sin (wl)

R is the [(Mp)? x (Mp)?] covariance
matrix of the VAR[p] process
(Lutkepohl, 2006)

Granger-Geweke

Granger-
Geweke
Causality
(GGQ)

s, —E2))|H,00f
S,(/f)

F,-j(f)—

Directed Transfer Function Measures

‘ Estimator ‘ Formula

H,(f)
VI H L O
0<|y, ([ <1
Yl =1

}/y(f) =

Normalized
Directed
Transfer
Function
(DTF)

Full-
Frequency
DTF (ffDTF)

1, ([
PN NG

m,(f)=

Direct DTF

(dDTF)

8, () =m,(NHE(f)

X()=Y, AV@X(t—k)+E()
A(f == AP0 ™" AV =1
X(f,0)= A(f,0) " E(f,0)= H(f,0)E(f,1)

H(f) Transfer Function
A(f) System Matrix
2. Noise Covariance Matrix

Variance Stabilization

For additional details, see SIFT Handbook (sccn.ucsd.edu/wiki/SIFT)



Scalp or Source?

olf

dDTF08

25



Scalp or Source?

X(t)=HS(t) = iHA(")(t)H S X(t—k)+ HE(1)

k=1

SENSOrs

g
X (1) = HS(2)

Volume
Conduction

ICA
SBL
Beamforming

Minimum-norm
Sources

Solution? Source Separation  S()= Y@ @)s( - k)+ £y
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E“ y
O |
¢ Forward/Inverse Modeling
Method Smoothness Sparsity Independence/Orthogonality
MNE X
LORETA X
dSPM X
Beamforming X
Sparse Bayesian Learning X X
S-FLEX X X
FOCUSS X
ICA/PCA/SOBI X
4 R

Source reconstruction with ICA+SBL
simulated reconstructed

Makeig, Ramirez, Weber, Wipf, Dale, Simpson, 15th Inter. Conf on Biomagnetism (2000)
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Estimating Dependency of
Independent Components 7

® |SN’t it a contradiction to examine dependence between Independent/
Uncorrelated Components?

® |[nstantaneous (e.g., Infomax) ICA only explicitly seeks to maximize
instantaneous independence. Time-delayed dependencies may be preserved.

x [nfomax ICA seeks to maximize global independence (over entire recording
session), transient dependencies may be preserved.

® [ndependence is a very strict criterion that cannot be achieved in general by a
linear transformation (such as ICA). Instead, dependent variables will form a
dependent subspace.

However, the best approach is to use an inverse model that explicitly
preserves time-delayed dependencies or jointly estimates sources (de-mixing
matrix) and connectivity (VAR parameters). See Haufe, 2008 IEEE TBME for a
good treatment (implemented as mvar_scsa in SIFT 2.0).



Estimating Dependency of
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Independent Components 7

SCSA_EM
SCSA

o CSA

< CICAAR

MVARICA {

ICA

SCSA_EM
SCSA

oy CSA
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SCSA_EM
SCSA

1o CSA
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SCSA_EM
SCSA

o CSA

< CICAAR
MVARICA
ICA

0.3 0.4
1-AUC

Connectivity Error

Haufe et al, IEEE TBME 2008
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Adapting to Non—Stationaritys

» [he brain is a dynamic system and measured brain
activity and coupling can change rapidly with time (non-
stationarity)

e
P
Comrpurmions
N

...........

= cvent-related perturbations (ERSP, ERP, etc)

= structural changes due to learning/feedback

= How can we adapt to non-stationarity?

_|_

mV

time



Adapting to Non-Stationarity

= Many ways to do adaptive VAR estimation
= WO popular approaches (adopted in SIFT):

®x Segmentation-based adaptive VAR estimation
(assumes local stationarity)

x State-Space Modeling

mV

time



Adapting to Non—Stationarity%

= Many ways to do adaptive VAR estimation

ane
P
Comrpurmions
N

...........

= WO popular approaches (adopted in SIFT):

x Segmentation-based adaptive VAR estimation
(assumes local stationarity)

x State-Space Modeling

mV

time
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Segmentation-based VAR

(Jansen et al., 1981; Florian and Pfurtscheller, 1995; Ding et al, 2000)

o

Analogous to short-
time Fourier transform

B A e A 4

From

e

//

frequency

X(0)=)," AV(NOX(t—k)+E(r)
A(f == AP P A =1
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Adapting to Non-Stationarity

= What is a good window length?
x Considerations:

® [emporal smoothing

» | ocal stationarity

x Sufficient amount of data

® Process dynamics



v gt ional

Adapting to Non-Stationarity

Consideration: Temporal Smoothness

1 point window —
10 point window
20 point window —-

Too-large windows may
smooth out interesting
transient dynamic features.

200

Time (msec)
Ding et al, 2000




Compurstions

Adapting to Non-Stationarity

Consideration: Local Stationarity

1 point window —
10 point window
20 point window —-

Too-large windows may not be
locally-stationary

ke
o
=
Q
Q
2,
7]
e
O

200

Time (msec)
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Adapting to Non-Stationarity

Consideration: Sufficient data

M = number of variables

P = model order

Nir = number of trials

W = length of each window (sample points)

We have M?p model coefficients to estimate. This requires a

minimum of M2p independent samples.

So we have the constraint M?p <= Ni W.

In practice, however, a better heuristic is M2p <= (1/10)Ni W.
Or: W >=10(M?p/Nu)

10x more data points than
parameters to estimate

SIFT will let you know if your window length is not optimal
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Regularization

» But what if W < (M?p/Ny)?
® single/few trials or continuous data
= short time window

® |arge number of model variables (channels/sources, high
model order)

® [here are insufficient observations to uniquely determine a
solution to the system of equations defining our model and
the problem becomes ol
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Regularization

Solutions? i

Make assumptions (impose constraints)

We want to a priori restrict the range of allowable
values for our parameters -- transforming the problem
from one with infinite number of solutions in the original
oparameter space to one with a unigue (“lbest”) solution
IN the new parameter space

In a Bayesian context, this corresponds to making
assumptions about the prior distribution of the
parameters (Gaussian, Laplacian, ...)



Regularization

Make assumptions (impose constraints)

Solutions?

e Smoothness Constraints (Gaussian prior)
® c.9. Ridge Regression

e Sparsity Constraints (Laplacian prior or mixed prior)
® c.g. Group Lasso
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Constraints Improve Estimation
(iIf prior assumptions are correct)

x Significant improvements using smoothness or sparsity assumptions

x (e.g. Haufe et al, 2009, Valdez-Sosa et al, 2009)

Sensitivity
Sensitivity
Sensitivity

0.5 ' 05 0 05 0
Specifity Specifity Specifity

> > >
£ & -]
= = =
= = =
N N %)
cC c c
) ® @
n n n

05 0 ' 05 0 05 0
Specifity Specifity Specifity

NO NOISE WHITE NOISE MIXED NOISE
-~ Figure 2: Average ROC curves of Granger Causality (red), Ridge Regression (green), Lasso

| / \ ) f \ - - . . .-, 0. ~
(blue) and Group Lasso (black) in three different noise conditions and for two

Haufe, 2009

different model orders.




...........

Adapting to Non-Stationarity

Consideration: Process dynamics

® Your window must be larger than the maximum expected
iInteraction time lag between any two processes.

® Your window should be large enough to span ~1 cycle of the
lowest frequency of interest (remember the Heisenberg uncertainty
principle: increased time resolution —> reduced frequency
resolution)



Statistics

x Different ways to do statistics in SIFT
®x Phase Randomization
= Bootstrapping

® Analytic Tests

Phase randomization

Analytic tests

Bootstrap resampling
Bootstrap resampling

C(i,)) is the measured information flow from process | --> I.
Cnul IS the expected measured information flow when there is no true information flow.
Chase IS the expected information flow in some baseline period.



Statistics

Statistical Approach Test  Parametric Nonparam.

Asymptotic analytic estimates of confidence Hnut,

INntervals. Hbase,
Applies to: PDC, nPDC, DTF, nDTF, rPDC Has

Theller phase randomization Hou
Applies to: all

Bootstrap, Jacknife, Cross-Validation Hag,
Applies to: all Hpase

Confidence intervals using Bayesian smoothing H

splines Hbase’
Applies to: all o3

Hour 2 Cj =0 Hpase: Gij = Cpbaseline Hpg: CAj = CP;




Bootstrap Statistics

n samples
WlTH guEEENg,

replacement :,. BOOTSTRAP.

SAMPLES

b,

x sample = X1, ..., Xn
= for k=1:R (hnumber of bootstrap resamples/iterations)
= resample n observations (trials) with replacement X* = {X*; X"}
= compute estimator E, (fit model, obtain connectivity) based on X*
= repeat
= With R large enough Pg = {E4, ..., Eg} provides a good approximation to the true distribution
of the estimator (connectivity, powet, etc)



Bootstrap Statistics

% self-awarness data, Wilcox, 2005, p58 Sootstrapped estimates

bootstrapped means
1000
3000

Sample with
replacement b times

2500

2000

- b

compute estimate

Distribution of bootstrapped l Sort & get Cl
estimates of the mean

sorted bootstrapped means

Histogram of bootstrapped means
80

70
60
50
40

30

200 300 400 500 600 700 800 900 1000




Bootstrap Statistics

bootstrap

sorted values
(eelj |

thresholds Kk
©) )




Bootstrap Differences

= SUPPOse we have two conditions
A ={al,...ar}

= B ={b1,...,b0}

x \\e want to estimate the distributions of connectivity estimator
applied to A and B separately, as well as the difference
distribution (for testing HO: A=B)

difference Dor




Bootstrap Differences

» For k=1:R (number of bootstrap iterations)
x Resample with replacement from both groups to get Axand Bk
x Fit models and obtain connectivity Cak, Csk
x  Compute difference Dk = Cak-Csk
x Repeat

a,93 ay
A d, dy analyze

difference

51 analyze




Bootstrap Differences

» For k=1:R (number of bootstrap iterations)
x Resample with replacement from both groups to get Axand Bk
x Fit models and obtain connectivity Cak, Csk
x  Compute difference Dk = Cak-Csk
x Repeat

analyze

difference

analyze




Bootstrap Statistics

» The procedure yields a distribution Pp = {D+ ... Dr}

= [f O lies in the right (or left) tail of this “difference distribution”,
then we reject the null hypothesis that A=B at the chosen
confidence level (below: alpha=0.05 for a two-sided test)

signif. diff.
0
b L A

2.5% 97.5% 2.5% 97.5% 2.5% 97 5%

= Difference distribution can take any shape

= [he procedure above also provides estimates of the individual
distributions of Ca and Cg yielding confidence intervals for H1



Phase-Randomization

®x Phase Randomization Procedure (Theiler, 1992)

® Method for testing whether there is non-zero
information flow (Hnur)

. | Phase-randomized
Extract signal amplitude

Original data data
T
FFT — ' IR

f BTN N\J"&(J\F\, PNt I e p SR g /

combine
NV WNWAAWANAN
= 0 (0
)

Random data
Extract (random) phase



Phase-Randomization

» Start with an n-trial sample: X = {X1, ..., Xn}
x for k=1:R (number of resamples)

= randomize phases for all trials

= compute connectivity estimate C,

= repeat
= \With B large enough the B estimates provide a good approximation of the null

distribution of the connectivity estimator
x Compare connectivity Gy from original (non-randomized) samples X to quantiles of

Pour =1{C1, -, Ggl

Signif. value

D) CX
null

2.5% 97.5%



Group Source Statistics ==

® An alternative approach:
For each subject...

1. Perform distributed source localization (possibly after separating a
subspace of brain components using ICA)

2. Select M regions of interest (ROIs) e.g. from a standardized anatomical
atlas (e.g. Desikan-Killiany, Destrieux, etc) and integrate current density
within each ROI. This yields M source time-series for each subject

3. Store results in EEG.srcpot

4. Obtain connectivity estimates for sources using SIFT with the ‘Sources’
option set in pre-processing. Resulting [M X M X Nfeg X Ntimes] cOnnectivity
matrices are stored in EEG.CAT.Conn.

5. Apply your favorite mass-univariate or multivariate statistical approach (e.g.
GLM, t-test, (M)ANOVA, etc) to the collection of connectivity estimates from all
subjects to obtain desired statistics. See LIMO-EEG Toolbox and EEGLAB’s
statcond(). Beware of multiple comparisons issues! FDR may not be suitable.
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Group Source Statistics ==

x Also see Group-SIFT plugin by Makoto Miyakoshi
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