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The Dynamic Brain

Open Challenges: 
Non-invasive measures 
(source inference) 
Robustness and Validity 
(constraints & statistics) 
Scalability (multivariate) 
Temporal Specificity / Non-
stationarity / Single-trial 
(dynamics) 
Multi-subject Inference 
Usability and Data 
Visualization (software) Mullen, 2011

A key goal: To model temporal changes in neural dynamics 
and information flow that index and predict task-relevant 
changes in cognitive state and behavior



Model-based approaches mitigate the ‘curse of 
dimensionality’ by making some assumptions about the 
structure, dynamics, or statistics of the system under 
observation

Modeling Brain Connectivity

“Essentially, all models are wrong, but some 
are useful [...] the practical question is how 
wrong do they have to be to not be useful”

Box and Draper (1987):



milliseconds-secondsHours-Years

Categorizations of Large-Scale 
Brain Connectivity Analysis

5

(Bullmore and Sporns, Nature, 2009)

Structural

state-invariant, 
anatomical

Functional

dynamic, state-dependent, 
correlative, symmetric

Effective

dynamic, state-dependent, 
asymmetric, causal,  
information flow

Temporal Scale



Popular measures
Cross-Correlation 

Coherence 

Phase-Locking Value 

Phase-amplitude coupling 

... 

Estimating Functional 
Connectivity

6



Coherence/CC/PLV indicate functional, but not effective connectivity
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Non-Invasive
Post-hoc analyses 
applied to measured 
neural activity 

Confirmatory 
Dynamic Causal Models 

Structural Equation Models 

Exploratory 
Granger-Causal methods 

Estimating Effective 
Connectivity

8

Granger-Causal methods 

•Data-driven 
• Rooted in conditional predictability 
• Scalable (Valdes-Sosa, 2005) 
• Extendable to nonlinear and/or non-

stationary systems (Freiwald, 1999; Ding, 
2001; Chen, 2004; Ge, 2009) 

• Extendable to non-parametric 
representations (Dhamala, 2009a,b) 

• Can be (partially) controlled for 
(unobserved) exogenous causes 
(Guo, 2008a,b; Ge, 2009) 

• Equivalent to Transfer Entropy for 
Gaussian Variables (Seth, 2009) 

• Flexibly allows us to examine time-
varying (dynamic) multivariate 
causal relationships in either the 
time or frequency domain



Stochastic Linear Dynamical System

Linear Dynamical Systems

time step
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Vector Autoregressive  
(VAR / MAR / MVAR) Modeling

VAR

Granger Causality Coherence Spectrum ...

EE
G

X1(t)
X2 (t)
!

XM (t)
!



VAR Modeling: Assumptions

“Weak” stationarity of the data 

mean and variance do not change with time 

An EEG trace containing prominent evoked potentials is a 
classic example of a non-stationary time-series 

Stability 

All eigenvalues of the system matrix are ≤1 

A stable process will not “blow up” (diverge to infinity) 

A stable model is always a stationary model (however, the 
converse is not necessarily true). If a stable model adequately 
fits the data (white residuals), then the data is likewise stationary



!

multichannel data  k 
samples in the past

The Linear VAR Model

random noise process

M x M matrix of (possibly time-varying) 
model coefficients indicating variable 

dependencies at lag k

model order 

   E(t) = N (0,V)

VA
R[

p]
 m

od
el

M-channel data vector 
at current time t

t

X(t) =

x1(t)
x2 (t)
!

xM (t)

X(t) = A(k ) (t)
k=1

p∑ X(t − k) + E(t)

A(k ) (t) =
a(k )11(t) … a(k )1M (t)
! " !

a(k )M1(t) # a(k )MM (t)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Ordinary Least-Squares 
Lattice Filters 

Kalman Filtering 
Bayesian Methods 
Sparse methods 

...



Selecting a VAR Model Order
Model order is typically determined by minimizing information criteria 
such as Akaike Information Criterion (AIC) for varying model order (p): 

	 AIC(p) = 2log(det(V)) + M2p/N

entropy rate (amount of prediction error)

Penalizes high model orders (parsimony)

model order

AI
C 

(b
its

)

optimal order



Model Order Selection Criteria

More 
Conservative

Less 
Conservative

Intermediate 
Conservative



Model Order Selection Criteria
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Selecting a VAR Model Order
Other considerations: 

A M-dimensional VAR model of order p has at 
most Mp/2 spectral peaks distributed 
amongst the M variables. This means we can 
observe at most p/2 peaks in each variables’ 
spectrum (or in the cross spectrum between 
each pair of variables)

δ

θ

α

β
γ

Optimal model order depends on sampling rate. Higher 
sampling rate often requires higher model orders.



Model Validation
If a model is poorly fit to data, then few, if any, inferences can be 
validly drawn from the model. There a number of criteria which 
we can use to determine whether we have appropriately fit our 
VAR model. Here are three commonly used categories of tests: 

Whiteness Tests: checking the residuals of the model for serial 
and cross-correlation 

Consistency Test: testing whether the model generates data 
with same correlation structure as the real data 

 Stability Test: checking the stability/stationarity of the model.



Granger Causality

First introduced by Wiener (1958). Later reformulated by 
Granger (1969) in the context of linear stochastic 
autoregressive models 
Relies on two assumptions:

18

Granger Causality Axioms

1. Causes should precede their effects in time (Temporal 
Precedence)

2. Information in a cause’s past should improve the 
prediction of the effect, above and beyond the information 
contained in past of the effect (and other measured 
variables)



VAR1 var(E1(t))

VAR2 var(E1(t))

= ?

X1(t)
X2 (t)
X3(t)

X1(t)
X2 (t)
X3(t)
X4 (t)

~

Does X4 granger-cause X1? 
(conditioned on X2, X3)

?

prediction error for X1 

(variance of residuals E1)

X(t) = A(k )
k=1

p∑ X(t − k) + E(t)

X−4 (t) = !A(k )
k=1

p∑ X−4 (t − k) + !E(t)

Granger Causality



Alternately, for a multivariate interpretation we can fit a single VAR 
model to all channels and apply the following definition:  

Granger Causality

Granger (1969) quantified this definition for bivariate processes in the 
form of an F-ratio: 

   
FX1←X2

= ln
var( !E1)
var(E1)

⎛

⎝⎜
⎞

⎠⎟
= ln

var( X1(t) | X1(⋅))
var( X1(t) | X1(⋅), X2 (⋅))

⎛

⎝⎜
⎞

⎠⎟

reduced model

full model

Xj granger-causes Xi conditioned on all other variables in X 
 if and only if A ij (k) >> 0  for some lag  k ∈  {1,  ... ,  p}

Definition 1



Granger Causality Quiz
Example: 2-channel VAR process of order 1

  

X1(t)= −0.5X1(t -1)  +      0X2 (t -1)  +   E1(t)
X2 (t)=  0.7 X1(t -1)  +   0.2X2 (t -1)  +   E2 (t)

X1(t)

X2 (t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= −0.5 0

0.7 0.2

⎛

⎝⎜
⎞

⎠⎟
X1(t −1)

X2 (t −1)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

E1(t)

E2 (t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Which causal structure does this model correspond to?

1 2a) 1 2b) 1 2c)

X



Granger Causality – Frequency Domain

X(t) = A(k )
k=1

p∑ X(t − k) + E(t)

Fourier-transforming A(k) we obtain

A( f ) = − A(k )e− i2p fk
k=0

p∑ ;A(0) = I

Likewise, X(f) and E(f) correspond to 
the fourier transforms of the data 

and residuals, respectively

Where H(f) is the transfer matrix of the system.

X( f ) = A( f )−1E( f ) = H( f )E( f )

We can then define the spectral matrix X(f) as follows:

Xj granger-causes Xi conditioned on all other variables in X 
 if and only if |Aij(f)| >> 0 for some frequency f

Definition 2
leads to 

PDC



X(t) = A(k )
k=1

p∑ (t)X(t − k) + E(t)
A( f ,t) = − A(k ) (t)e− i2p fk

k=0

p∑ ;   A(0) = I
X( f ,t) = A( f ,t)−1E( f ,t) = H( f ,t)E( f ,t)

!

x1(t)
x2 (t)
!

xM (t)

spurious

direct true flow
indirect true flow•

Functional Effective

KUŚ et al.: DETERMINATION OF EEG ACTIVITY PROPAGATION: PAIR-WISE VERSUS MULTICHANNEL ESTIMATE 1503

A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.
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the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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A( f ,t) = − A(k ) (t)e− i2p fk
k=0

p∑ ;   A(0) = I
X( f ,t) = A( f ,t)−1E( f ,t) = H( f ,t)E( f ,t)

X(t) = A(k )
k=1

p∑ (t)X(t − k) + E(t)

  H ( f )

  A( f )

Σ

Transfer Function
System Matrix
Noise Covariance Matrix

For additional details, see SIFT Handbook (sccn.ucsd.edu/wiki/SIFT)
Variance Stabilization
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Fig. 15.13: Direction of flows for 21-channel EEG (awake state eyes closed) obtained
by means of different methods. The shade of gray of the arrow represents the
strength of the connection (black = the strongest), for each method 40 strongest
flows are shown. Reprinted from with permission [49] (© IEEE 2005).

lot of activity flowing to the destination channels from the posterior electrodes,
so the denominator in Eq. (15.6) is quite large, which diminishes the values of
DTFs showing outflows from Fz. For Granger causality and DTF there is no
propagation from the temporal electrodes. This is practically also the case for
dDTF. The dDTF shows only direct flows, we can see that in this case the pattern
of flows is consistent with anatomy, e.g., a lack of direct connection between Oz
and Pz, Fz, and Fpz—locations where hemispheres are partitioned. The main
sources of the activity—namely, electrodes P3, P4, O2, Oz, O1—are the same as
for the other multivariate estimates.
Inspecting the results of application of the PDC function to the same data

epoch we observe a different picture. One can notice that, unlike the results of
dDTF, some channels became sinks. This is due to the normalization of PDC. In
fact, we do not see the transmission, as is the case for dDTF, but the ratio between
the flow to a given channel with respect to all the outflows from the considered
channel. In this way, a channel propagating activity in all directions will show
weaker flows than a channel propagating only in one direction. Therefore, the
method is not suitable for identification of sources of EEG activity, but it may be
useful when the destination channel is of primary interest.
The pattern of propagations obtained for the bivariate estimates of the Granger

or
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sensors

S(t) = A(k )
k=1

p

∑ (t)S(t − k) + E(t)

X (t) = HS(t)

Volume 
Conduction

sources

X (t) = HS(t) = HA(k )
k=1

p

∑ (t)H −1X (t − k) + HE(t)

Solution? Source Separation 

ICA 
SBL 

Beamforming 
Minimum-norm 

...

H −1

Scalp or Source?













































simulated reconstructed error

- =

Makeig, Ramirez, Weber, Wipf, Dale, Simpson, 15th Inter. Conf on Biomagnetism (2006)

Source reconstruction with ICA+SBL

Forward/Inverse ModelingTh
eo

ry

Method Smoothness Sparsity Independence/Orthogonality
MNE X

LORETA X
dSPM X

Beamforming X
Sparse Bayesian Learning X X

S-FLEX X X
FOCUSS X

ICA/PCA/SOBI X



Estimating Dependency of 
Independent Components ?

Isn’t it a contradiction to examine dependence between Independent/
Uncorrelated Components? 

Instantaneous (e.g., Infomax) ICA only explicitly seeks to maximize 
instantaneous independence. Time-delayed dependencies may be preserved. 

Infomax ICA seeks to maximize global independence (over entire recording 
session), transient dependencies may be preserved. 

Independence is a very strict criterion that cannot be achieved in general by a 
linear transformation (such as ICA). Instead, dependent variables will form a 
dependent subspace. 

However, the best approach is to use an inverse model that explicitly 
preserves time-delayed dependencies or jointly estimates sources (de-mixing 
matrix) and connectivity (VAR parameters). See Haufe, 2008 IEEE TBME for a 
good treatment (implemented as mvar_scsa in SIFT 2.0).
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rather short time, while the EM implementation of SCSA
is in medium range and CICAAR requires the longest time.
However, for SCSA there is still room for improvement,
since the regularization parameter of this method is currently
selected by the cross-validation procedure, which could be
changed.
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Fig. 3. Estimation errors of the mixing matrix according to the goodness-of-fit
(GOF) criterion. Results are shown for the proposed (Sparsely-) Connected
Sources Analysis variants (SCSA EM, SCSA, CSA) and three alternative
approaches (CICAAR, MVARICA, ICA). Different subfigures depict the
methods’ performance in the noiseless cass (N0), as well as in the presence
of different types of noise (N1-N6, see TABLE I).
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Fig. 4. Localization errors of dipole fits conducted on the estimated mixing
field patterns. Results are shown for the proposed (Sparsely-) Connected
Sources Analysis (SCSA EM, SCSA, CSA) variants and three alternative
approaches (CICAAR, MVARICA, ICA). Different subfigures depict the
methods’ performance in the noiseless cass (N0), as well as in the presence
of different types of noise (N1-N6, see TABLE I).

IV. DISCUSSION

Let us recall the assumptions we make to identify individual
brain sources and to estimate their interactions. While ICA
results in a unique decomposition assuming statistical inde-
pendence, such an assumption is inconsistent when studying
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Fig. 5. Estimation errors regarding the source connectivity structure as
measured by fitting an MVAR model subsequently to the demixed sources and
testing the obtained coefficients for significant interaction. The performance
measure reported is the area under the curve (AUC) score obtained by varying
the significance level.

Mixing Matrix Approximation Error:
Dependence on Connectivity and SNR
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Fig. 6. Mixing matrix approximation performance of (Sparsely-) Connected
Sources Analysis variants (SCSA EM, SCSA, CSA) and three alternative
approaches (CICAAR, MVARICA, ICA) under variation of the degree of
connectedness (left side) and SNR (right side). The performance at different
noise levels is investigated for white sensor noise without temporal structure
(N1), while the influence of connectivity is studied in the noiseless case (N0).

brain interactions. However, all neural interactions require a
minimum delay well within the temporal resolution of electro-
physical measurements of brain activity. Hence, it makes sense
to assume independent innovation processes and to model all
interactions explicitly using AR matrices. In relation to ICA
we pay some price for that: In our case, independence is
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Fig. 7. Average runtime of the proposed (Sparsely-) Connected Sources
Analysis variants (SCSA EM, SCSA, CSA) and three alternative approaches
(CICAAR, MVARICA, ICA), taken over all experiments conducted for this
study.

Haufe et al, IEEE TBME 2008

Estimating Dependency of 
Independent Components ?



The brain is a dynamic system and measured brain 
activity and coupling can change rapidly with time (non-
stationarity) 

event-related perturbations (ERSP, ERP, etc) 

structural changes due to learning/feedback 

How can we adapt to non-stationarity?

Adapting to Non-Stationarity

mV

+

-
time



Many ways to do adaptive VAR estimation 

Two popular approaches (adopted in SIFT): 

Segmentation-based adaptive VAR estimation 
(assumes local stationarity) 

State-Space Modeling

Adapting to Non-Stationarity
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Many ways to do adaptive VAR estimation 

Two popular approaches (adopted in SIFT): 

Segmentation-based adaptive VAR estimation 
(assumes local stationarity) 

State-Space Modeling

Adapting to Non-Stationarity
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X(t) = A(k )
k=1

p∑ (t)X(t − k) + E(t)
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time

Analogous to short-
time Fourier transform

A( f ,t) = − A(k ) (t)e− i2p fk
k=0

p∑ ;A(0) = I

GCVAR

ensemble normalization

Segmentation-based VAR
(Jansen et al., 1981; Florian and Pfurtscheller, 1995; Ding et al, 2000)

X(t)



Adapting to Non-Stationarity

What is a good window length? 

Considerations: 

Temporal smoothing 

Local stationarity  

Sufficient amount of data 

Process dynamics
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Too-large windows may not be 
locally-stationary

Consideration: Local Stationarity



Adapting to Non-Stationarity

Ding et al, 2000

Consideration: Sufficient data 
M = number of variables 
p = model order 
Ntr = number of trials 
W = length of each window (sample points) 

We have M2p  model coefficients to estimate. This requires a 
minimum of M2p independent samples.  
So we have the constraint M2p <= Ntr W.  
In practice, however, a better heuristic is M2p <= (1/10)Ntr W.   

Or:   W >= 10(M2p/Ntr) 

SIFT will let you know if your window length is not optimal

10x more data points than 
parameters to estimate



But what if W < (M2p/Ntr)?  

single/few trials or continuous data 

short time window 

large number of model variables (channels/sources, high 
model order) 

There are insufficient observations to uniquely determine a 
solution to the system of equations defining our model and 
the problem becomes ill-posed or under-determined.

Regularization



Make assumptions (impose constraints)
We want to a priori restrict the range of allowable 
values for our parameters -- transforming the problem 
from one with infinite number of solutions in the original 
parameter space to one with a unique (“best”) solution 
in the new parameter space 

In a Bayesian context, this corresponds to making 
assumptions about the prior distribution of the 
parameters (Gaussian, Laplacian, ...)

Solutions?

Regularization



Regularization

• Smoothness Constraints (Gaussian prior) 
• e.g. Ridge Regression  

• Sparsity Constraints (Laplacian prior or mixed prior) 
• e.g. Group Lasso

Solutions?
Make assumptions (impose constraints)



Significant improvements using smoothness or sparsity assumptions 

(e.g. Haufe et al, 2009, Valdez-Sosa et al, 2009)

Haufe, 2009

Constraints Improve Estimation 
(if prior assumptions are correct)



Adapting to Non-Stationarity

Ding et al, 2000

Consideration: Process dynamics 

• Your window must be larger than the maximum expected 
interaction time lag between any two processes. 

• Your window should be large enough to span ~1 cycle of the 
lowest frequency of interest (remember the Heisenberg uncertainty 
principle: increased time resolution —> reduced frequency 
resolution) 

 



Different ways to do statistics in SIFT 

Phase Randomization 

Bootstrapping 

Analytic Tests

Statistics

C(i,j) is the measured information flow from process j --> i.  
Cnull is the expected measured information flow when there is no true information flow. 
Cbase is the expected information flow in some baseline period.



Statistics

Hnull : Cij = 0         Hbase: Cij = Cbaseline             HAB: CAij = CBij

Statistical Approach Test Parametric Nonparam.

Asymptotic analytic estimates of confidence 
intervals.  
    Applies to: PDC, nPDC, DTF, nDTF, rPDC

Hnull, 
Hbase, 
HAB

☑

Theiler phase randomization  
 Applies to: all Hnull ☑

Bootstrap, Jacknife, Cross-Validation 
Applies to: all

HAB, 
Hbase

☑

Confidence intervals using Bayesian smoothing 
splines 

Applies to: all

Hbase, 
HAB

☑ ☑



Bootstrap Statistics

sample = X1, ..., Xn 
for k=1:R (number of bootstrap resamples/iterations) 

resample n observations (trials) with replacement X* = {X*1, .... X*n} 
compute estimator Ek (fit model, obtain connectivity) based on X* 
repeat 

with R large enough PE = {E1, ..., ER} provides a good approximation to the true distribution 
of the estimator (connectivity, power, etc) 



Bootstrap Statistics



Bootstrap Statistics

2.5% 97.5% 

bootstrap

sorted values 
(cdf)

thresholds 
(ci)



Bootstrap Differences

a6 
a5 
a7 

a2 a4 

a3 
a1 

b3 
b2 

b4 b6 

b1 

b5 

analyze 

analyze 

difference Dorg 

Suppose we have two conditions  
A = {a1,...a7} 
B = {b1,...,b6} 
We want to estimate the distributions of connectivity estimator 
applied to A and B separately, as well as the difference 
distribution (for testing H0: A=B)

A

B

CA

CB



Bootstrap Differences

a3 
a4 
a7 

a2 a4 

a3 
a2 

b3 
b2 

b4 b5 

b3 

b5 

analyze 

analyze 

difference D1 

For k=1:R  (number of bootstrap iterations) 
Resample with replacement from both groups to get Ak and Bk 
Fit models and obtain connectivity CAk, CBk 
Compute difference Dk = CAk-CBk 
Repeat

A1

B1

CA1

CB1



Bootstrap Differences

a7 
a5 
a7 

a2 a5 

a3 
a2 

b3 
b2 

b6 b6 

b1 

b6 

analyze 

analyze 

difference D2 

For k=1:R  (number of bootstrap iterations) 
Resample with replacement from both groups to get Ak and Bk 
Fit models and obtain connectivity CAk, CBk 
Compute difference Dk = CAk-CBk 
Repeat

A2

B2

CA2

CB2



Difference distribution can take any shape 

The procedure above also provides estimates of the individual 
distributions of CA and CB yielding confidence intervals for H1

Bootstrap Statistics

2.5% 97.5% 

Signif. value 

Non signif. value 

2.5% 97.5% 2.5% 97.5% 

0

The procedure yields a distribution  

If 0 lies in the right (or left) tail of this “difference distribution”, 
then we reject the null hypothesis that A=B at the chosen 
confidence level (below: alpha=0.05 for a two-sided test)

non. signif. diff.

signif. diff.
0

PD = {D1, .... DR}

PD



Phase Randomization Procedure (Theiler, 1992) 

Method for testing whether there is non-zero 
information flow (Hnull)

Phase-Randomization

FFT

FFT θ

A

Extract (random) phase

Extract signal amplitude

iFFT

Phase-randomized  
data

Random data

Original data

combine

θ
A



Phase-Randomization

2.5% 97.5% 

Signif. value 

Non signif. value 

Pnull

Start with an n-trial sample:  X = {X1, ..., Xn} 
for k=1:R  (number of resamples) 

randomize phases for all trials 
compute connectivity estimate Ck 
repeat 

With B large enough the B estimates provide a good approximation of the null 
distribution of the connectivity estimator 
Compare connectivity CX from original  (non-randomized) samples X to quantiles of 
Pnull = {C1, ..., CR}

CX

CX



Group Source Statistics
An alternative approach:  
For each subject… 

1. Perform distributed source localization (possibly after separating a 
subspace of brain components using ICA) 

2. Select M regions of interest (ROIs) e.g. from a standardized anatomical 
atlas (e.g. Desikan-Killiany, Destrieux, etc) and integrate current density 
within each ROI. This yields M source time-series for each subject 

3. Store results in EEG.srcpot 

4. Obtain connectivity estimates for sources using SIFT with the ‘Sources’ 
option set in pre-processing. Resulting [M x M x Nfreq x Ntimes] connectivity 
matrices are stored in EEG.CAT.Conn. 

5. Apply your favorite mass-univariate or multivariate statistical approach (e.g. 
GLM, t-test, (M)ANOVA, etc) to the collection of connectivity estimates from all 
subjects to obtain desired statistics. See LIMO-EEG Toolbox and EEGLAB’s 
statcond(). Beware of multiple comparisons issues! FDR may not be suitable.

Tim Mullen



Group Source Statistics

Also see Group-SIFT plugin by Makoto Miyakoshi

Tim Mullen




