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Correlative Measures

Cross-Correlation

Coherence

Phase-Locking Value

Phase-amplitude coupling

...

Estimating Functional 
Connectivity
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φ = π / 2

any sinusoid can be expressed as the sum 
of two complex numbers...
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Phase-Locking Value (PLV)
Lachaux, J.P., et al (1999) HBM
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would detect a phase-locking between the groups.
When the sampling distribution of a statistic is un-
known, one must rely on recent techniques of random-
ization, or bootstrap [Fisher, 1993]. Our statistical test
is based on randomization and is adapted to our
particular set of data.
The main advantage of this approach is that it does

not require any a priori hypothesis on the signals. We
test the H0 hypothesis that the two series of phase
values !1(n) and !2(n) are independent. For this
purpose, we generate 200 new series of variables,
which have the same characteristics as the original
signal coming from electrode 2, except that we built
them to be independent of the signals coming from
electrode 1. These series are created by shuffling the
trials within the measures of electrode 2 to make new

series y!(n) " y(shuffle (n)), where (y(i) is the signal
recorded at electrode 2 during trial i (Fig. 2).
For each surrogate series y!, we measure the maxi-

mum between x and y! in time. These 200 values are
used to estimate the significance of PLV between the
original signals x and y. The proportion of surrogate
values higher than the original PLV (between x and y)
for a time t is called phase-locking statistics (PLS). It
measures the probability of having false positives for a
given level of significance. In this study, we used a
criterion of 5% (PLS# 5%) to characterize significant
synchrony, but this is, of course, a function of the
required rigor of significance in the context of the
signals being studied. Our method is related to an
approach proposed by Friston et al. [1997] to quantify
MEG data. In fact, they propose to estimate the

Figure 2.
Estimation of phase-locking value. Left: Our synchrony index is
directly related to the intertrial variability of the phase differences
between two electrodes (see description of the method for
details). By averaging these phase differences across the trials, we

obtain a complex value u (for each latency t), which amplitude (abs
(u)) is the phase-locking value. Right: Surrogate data are con-
structed by shuffling the trials of one of the electrodes (see text for
details).

! Phase Synchrony Detection !

! 197 !

would detect a phase-locking between the groups.
When the sampling distribution of a statistic is un-
known, one must rely on recent techniques of random-
ization, or bootstrap [Fisher, 1993]. Our statistical test
is based on randomization and is adapted to our
particular set of data.
The main advantage of this approach is that it does

not require any a priori hypothesis on the signals. We
test the H0 hypothesis that the two series of phase
values !1(n) and !2(n) are independent. For this
purpose, we generate 200 new series of variables,
which have the same characteristics as the original
signal coming from electrode 2, except that we built
them to be independent of the signals coming from
electrode 1. These series are created by shuffling the
trials within the measures of electrode 2 to make new

series y!(n) " y(shuffle (n)), where (y(i) is the signal
recorded at electrode 2 during trial i (Fig. 2).
For each surrogate series y!, we measure the maxi-

mum between x and y! in time. These 200 values are
used to estimate the significance of PLV between the
original signals x and y. The proportion of surrogate
values higher than the original PLV (between x and y)
for a time t is called phase-locking statistics (PLS). It
measures the probability of having false positives for a
given level of significance. In this study, we used a
criterion of 5% (PLS # 5%) to characterize significant
synchrony, but this is, of course, a function of the
required rigor of significance in the context of the
signals being studied. Our method is related to an
approach proposed by Friston et al. [1997] to quantify
MEG data. In fact, they propose to estimate the

Figure 2.
Estimation of phase-locking value. Left: Our synchrony index is
directly related to the intertrial variability of the phase differences
between two electrodes (see description of the method for
details). By averaging these phase differences across the trials, we

obtain a complex value u (for each latency t), which amplitude (abs
(u)) is the phase-locking value. Right: Surrogate data are con-
structed by shuffling the trials of one of the electrodes (see text for
details).

! Phase Synchrony Detection !

! 197 !

difference 
phasor

A2e
iφ2

-

Saturday, September 24, 2011



Phase-Locking Value (PLV)
Lachaux, J.P., et al (1999) HBM

t0

Tr
ia

l 1

X1

X2

φ2 (1,t0 ) −φ1(1,t0 )

ei(φ2 −φ1 )
φ2 (1,t0 ) −φ1(1,t0 )

A1e
iφ1

would detect a phase-locking between the groups.
When the sampling distribution of a statistic is un-
known, one must rely on recent techniques of random-
ization, or bootstrap [Fisher, 1993]. Our statistical test
is based on randomization and is adapted to our
particular set of data.
The main advantage of this approach is that it does

not require any a priori hypothesis on the signals. We
test the H0 hypothesis that the two series of phase
values !1(n) and !2(n) are independent. For this
purpose, we generate 200 new series of variables,
which have the same characteristics as the original
signal coming from electrode 2, except that we built
them to be independent of the signals coming from
electrode 1. These series are created by shuffling the
trials within the measures of electrode 2 to make new

series y!(n) " y(shuffle (n)), where (y(i) is the signal
recorded at electrode 2 during trial i (Fig. 2).
For each surrogate series y!, we measure the maxi-

mum between x and y! in time. These 200 values are
used to estimate the significance of PLV between the
original signals x and y. The proportion of surrogate
values higher than the original PLV (between x and y)
for a time t is called phase-locking statistics (PLS). It
measures the probability of having false positives for a
given level of significance. In this study, we used a
criterion of 5% (PLS# 5%) to characterize significant
synchrony, but this is, of course, a function of the
required rigor of significance in the context of the
signals being studied. Our method is related to an
approach proposed by Friston et al. [1997] to quantify
MEG data. In fact, they propose to estimate the

Figure 2.
Estimation of phase-locking value. Left: Our synchrony index is
directly related to the intertrial variability of the phase differences
between two electrodes (see description of the method for
details). By averaging these phase differences across the trials, we

obtain a complex value u (for each latency t), which amplitude (abs
(u)) is the phase-locking value. Right: Surrogate data are con-
structed by shuffling the trials of one of the electrodes (see text for
details).

! Phase Synchrony Detection !

! 197 !

would detect a phase-locking between the groups.
When the sampling distribution of a statistic is un-
known, one must rely on recent techniques of random-
ization, or bootstrap [Fisher, 1993]. Our statistical test
is based on randomization and is adapted to our
particular set of data.
The main advantage of this approach is that it does

not require any a priori hypothesis on the signals. We
test the H0 hypothesis that the two series of phase
values !1(n) and !2(n) are independent. For this
purpose, we generate 200 new series of variables,
which have the same characteristics as the original
signal coming from electrode 2, except that we built
them to be independent of the signals coming from
electrode 1. These series are created by shuffling the
trials within the measures of electrode 2 to make new

series y!(n) " y(shuffle (n)), where (y(i) is the signal
recorded at electrode 2 during trial i (Fig. 2).
For each surrogate series y!, we measure the maxi-

mum between x and y! in time. These 200 values are
used to estimate the significance of PLV between the
original signals x and y. The proportion of surrogate
values higher than the original PLV (between x and y)
for a time t is called phase-locking statistics (PLS). It
measures the probability of having false positives for a
given level of significance. In this study, we used a
criterion of 5% (PLS # 5%) to characterize significant
synchrony, but this is, of course, a function of the
required rigor of significance in the context of the
signals being studied. Our method is related to an
approach proposed by Friston et al. [1997] to quantify
MEG data. In fact, they propose to estimate the

Figure 2.
Estimation of phase-locking value. Left: Our synchrony index is
directly related to the intertrial variability of the phase differences
between two electrodes (see description of the method for
details). By averaging these phase differences across the trials, we

obtain a complex value u (for each latency t), which amplitude (abs
(u)) is the phase-locking value. Right: Surrogate data are con-
structed by shuffling the trials of one of the electrodes (see text for
details).

! Phase Synchrony Detection !

! 197 !

difference 
phasor

A2e
iφ2

-

Saturday, September 24, 2011



Phase-Locking Value (PLV)
Lachaux, J.P., et al (1999) HBM

t0

Tr
ia

l 1

X1

X2

φ2 (1,t0 ) −φ1(1,t0 )

ei(φ2 −φ1 )

Tr
ia

l 2

X1

X2

φ2 (2,t0 ) −φ1(2,t0 )

φ2 (1,t0 ) −φ1(1,t0 )

A1e
iφ1

would detect a phase-locking between the groups.
When the sampling distribution of a statistic is un-
known, one must rely on recent techniques of random-
ization, or bootstrap [Fisher, 1993]. Our statistical test
is based on randomization and is adapted to our
particular set of data.
The main advantage of this approach is that it does

not require any a priori hypothesis on the signals. We
test the H0 hypothesis that the two series of phase
values !1(n) and !2(n) are independent. For this
purpose, we generate 200 new series of variables,
which have the same characteristics as the original
signal coming from electrode 2, except that we built
them to be independent of the signals coming from
electrode 1. These series are created by shuffling the
trials within the measures of electrode 2 to make new

series y!(n) " y(shuffle (n)), where (y(i) is the signal
recorded at electrode 2 during trial i (Fig. 2).
For each surrogate series y!, we measure the maxi-

mum between x and y! in time. These 200 values are
used to estimate the significance of PLV between the
original signals x and y. The proportion of surrogate
values higher than the original PLV (between x and y)
for a time t is called phase-locking statistics (PLS). It
measures the probability of having false positives for a
given level of significance. In this study, we used a
criterion of 5% (PLS# 5%) to characterize significant
synchrony, but this is, of course, a function of the
required rigor of significance in the context of the
signals being studied. Our method is related to an
approach proposed by Friston et al. [1997] to quantify
MEG data. In fact, they propose to estimate the

Figure 2.
Estimation of phase-locking value. Left: Our synchrony index is
directly related to the intertrial variability of the phase differences
between two electrodes (see description of the method for
details). By averaging these phase differences across the trials, we

obtain a complex value u (for each latency t), which amplitude (abs
(u)) is the phase-locking value. Right: Surrogate data are con-
structed by shuffling the trials of one of the electrodes (see text for
details).

! Phase Synchrony Detection !

! 197 !

would detect a phase-locking between the groups.
When the sampling distribution of a statistic is un-
known, one must rely on recent techniques of random-
ization, or bootstrap [Fisher, 1993]. Our statistical test
is based on randomization and is adapted to our
particular set of data.
The main advantage of this approach is that it does

not require any a priori hypothesis on the signals. We
test the H0 hypothesis that the two series of phase
values !1(n) and !2(n) are independent. For this
purpose, we generate 200 new series of variables,
which have the same characteristics as the original
signal coming from electrode 2, except that we built
them to be independent of the signals coming from
electrode 1. These series are created by shuffling the
trials within the measures of electrode 2 to make new

series y!(n) " y(shuffle (n)), where (y(i) is the signal
recorded at electrode 2 during trial i (Fig. 2).
For each surrogate series y!, we measure the maxi-

mum between x and y! in time. These 200 values are
used to estimate the significance of PLV between the
original signals x and y. The proportion of surrogate
values higher than the original PLV (between x and y)
for a time t is called phase-locking statistics (PLS). It
measures the probability of having false positives for a
given level of significance. In this study, we used a
criterion of 5% (PLS # 5%) to characterize significant
synchrony, but this is, of course, a function of the
required rigor of significance in the context of the
signals being studied. Our method is related to an
approach proposed by Friston et al. [1997] to quantify
MEG data. In fact, they propose to estimate the

Figure 2.
Estimation of phase-locking value. Left: Our synchrony index is
directly related to the intertrial variability of the phase differences
between two electrodes (see description of the method for
details). By averaging these phase differences across the trials, we

obtain a complex value u (for each latency t), which amplitude (abs
(u)) is the phase-locking value. Right: Surrogate data are con-
structed by shuffling the trials of one of the electrodes (see text for
details).

! Phase Synchrony Detection !

! 197 !

difference 
phasor

A2e
iφ2

-

Saturday, September 24, 2011



Phase-Locking Value (PLV)
Lachaux, J.P., et al (1999) HBM

t0

Tr
ia

l 1

X1

X2

φ2 (1,t0 ) −φ1(1,t0 )

Tr
ia

l N

X1

X2

φ2 (N ,t0 ) −φ1(N ,t0 )



ei(φ2 −φ1 )

Tr
ia

l 2

X1

X2

φ2 (2,t0 ) −φ1(2,t0 )

φ2 (1,t0 ) −φ1(1,t0 )

A1e
iφ1

would detect a phase-locking between the groups.
When the sampling distribution of a statistic is un-
known, one must rely on recent techniques of random-
ization, or bootstrap [Fisher, 1993]. Our statistical test
is based on randomization and is adapted to our
particular set of data.
The main advantage of this approach is that it does

not require any a priori hypothesis on the signals. We
test the H0 hypothesis that the two series of phase
values !1(n) and !2(n) are independent. For this
purpose, we generate 200 new series of variables,
which have the same characteristics as the original
signal coming from electrode 2, except that we built
them to be independent of the signals coming from
electrode 1. These series are created by shuffling the
trials within the measures of electrode 2 to make new

series y!(n) " y(shuffle (n)), where (y(i) is the signal
recorded at electrode 2 during trial i (Fig. 2).
For each surrogate series y!, we measure the maxi-

mum between x and y! in time. These 200 values are
used to estimate the significance of PLV between the
original signals x and y. The proportion of surrogate
values higher than the original PLV (between x and y)
for a time t is called phase-locking statistics (PLS). It
measures the probability of having false positives for a
given level of significance. In this study, we used a
criterion of 5% (PLS# 5%) to characterize significant
synchrony, but this is, of course, a function of the
required rigor of significance in the context of the
signals being studied. Our method is related to an
approach proposed by Friston et al. [1997] to quantify
MEG data. In fact, they propose to estimate the

Figure 2.
Estimation of phase-locking value. Left: Our synchrony index is
directly related to the intertrial variability of the phase differences
between two electrodes (see description of the method for
details). By averaging these phase differences across the trials, we

obtain a complex value u (for each latency t), which amplitude (abs
(u)) is the phase-locking value. Right: Surrogate data are con-
structed by shuffling the trials of one of the electrodes (see text for
details).

! Phase Synchrony Detection !

! 197 !

would detect a phase-locking between the groups.
When the sampling distribution of a statistic is un-
known, one must rely on recent techniques of random-
ization, or bootstrap [Fisher, 1993]. Our statistical test
is based on randomization and is adapted to our
particular set of data.
The main advantage of this approach is that it does

not require any a priori hypothesis on the signals. We
test the H0 hypothesis that the two series of phase
values !1(n) and !2(n) are independent. For this
purpose, we generate 200 new series of variables,
which have the same characteristics as the original
signal coming from electrode 2, except that we built
them to be independent of the signals coming from
electrode 1. These series are created by shuffling the
trials within the measures of electrode 2 to make new

series y!(n) " y(shuffle (n)), where (y(i) is the signal
recorded at electrode 2 during trial i (Fig. 2).
For each surrogate series y!, we measure the maxi-

mum between x and y! in time. These 200 values are
used to estimate the significance of PLV between the
original signals x and y. The proportion of surrogate
values higher than the original PLV (between x and y)
for a time t is called phase-locking statistics (PLS). It
measures the probability of having false positives for a
given level of significance. In this study, we used a
criterion of 5% (PLS # 5%) to characterize significant
synchrony, but this is, of course, a function of the
required rigor of significance in the context of the
signals being studied. Our method is related to an
approach proposed by Friston et al. [1997] to quantify
MEG data. In fact, they propose to estimate the

Figure 2.
Estimation of phase-locking value. Left: Our synchrony index is
directly related to the intertrial variability of the phase differences
between two electrodes (see description of the method for
details). By averaging these phase differences across the trials, we

obtain a complex value u (for each latency t), which amplitude (abs
(u)) is the phase-locking value. Right: Surrogate data are con-
structed by shuffling the trials of one of the electrodes (see text for
details).

! Phase Synchrony Detection !

! 197 !

difference 
phasor

A2e
iφ2

-

Saturday, September 24, 2011



Phase-Locking Value (PLV)
Lachaux, J.P., et al (1999) HBM

t0

Tr
ia

l 1

X1

X2

φ2 (1,t0 ) −φ1(1,t0 )

Tr
ia

l N

X1

X2

φ2 (N ,t0 ) −φ1(N ,t0 )



ei(φ2 −φ1 )

Tr
ia

l 2

X1

X2

φ2 (2,t0 ) −φ1(2,t0 )

φ2 (1,t0 ) −φ1(1,t0 )

other trials

A1e
iφ1

would detect a phase-locking between the groups.
When the sampling distribution of a statistic is un-
known, one must rely on recent techniques of random-
ization, or bootstrap [Fisher, 1993]. Our statistical test
is based on randomization and is adapted to our
particular set of data.
The main advantage of this approach is that it does

not require any a priori hypothesis on the signals. We
test the H0 hypothesis that the two series of phase
values !1(n) and !2(n) are independent. For this
purpose, we generate 200 new series of variables,
which have the same characteristics as the original
signal coming from electrode 2, except that we built
them to be independent of the signals coming from
electrode 1. These series are created by shuffling the
trials within the measures of electrode 2 to make new

series y!(n) " y(shuffle (n)), where (y(i) is the signal
recorded at electrode 2 during trial i (Fig. 2).
For each surrogate series y!, we measure the maxi-

mum between x and y! in time. These 200 values are
used to estimate the significance of PLV between the
original signals x and y. The proportion of surrogate
values higher than the original PLV (between x and y)
for a time t is called phase-locking statistics (PLS). It
measures the probability of having false positives for a
given level of significance. In this study, we used a
criterion of 5% (PLS# 5%) to characterize significant
synchrony, but this is, of course, a function of the
required rigor of significance in the context of the
signals being studied. Our method is related to an
approach proposed by Friston et al. [1997] to quantify
MEG data. In fact, they propose to estimate the

Figure 2.
Estimation of phase-locking value. Left: Our synchrony index is
directly related to the intertrial variability of the phase differences
between two electrodes (see description of the method for
details). By averaging these phase differences across the trials, we

obtain a complex value u (for each latency t), which amplitude (abs
(u)) is the phase-locking value. Right: Surrogate data are con-
structed by shuffling the trials of one of the electrodes (see text for
details).

! Phase Synchrony Detection !

! 197 !

would detect a phase-locking between the groups.
When the sampling distribution of a statistic is un-
known, one must rely on recent techniques of random-
ization, or bootstrap [Fisher, 1993]. Our statistical test
is based on randomization and is adapted to our
particular set of data.
The main advantage of this approach is that it does

not require any a priori hypothesis on the signals. We
test the H0 hypothesis that the two series of phase
values !1(n) and !2(n) are independent. For this
purpose, we generate 200 new series of variables,
which have the same characteristics as the original
signal coming from electrode 2, except that we built
them to be independent of the signals coming from
electrode 1. These series are created by shuffling the
trials within the measures of electrode 2 to make new

series y!(n) " y(shuffle (n)), where (y(i) is the signal
recorded at electrode 2 during trial i (Fig. 2).
For each surrogate series y!, we measure the maxi-

mum between x and y! in time. These 200 values are
used to estimate the significance of PLV between the
original signals x and y. The proportion of surrogate
values higher than the original PLV (between x and y)
for a time t is called phase-locking statistics (PLS). It
measures the probability of having false positives for a
given level of significance. In this study, we used a
criterion of 5% (PLS # 5%) to characterize significant
synchrony, but this is, of course, a function of the
required rigor of significance in the context of the
signals being studied. Our method is related to an
approach proposed by Friston et al. [1997] to quantify
MEG data. In fact, they propose to estimate the

Figure 2.
Estimation of phase-locking value. Left: Our synchrony index is
directly related to the intertrial variability of the phase differences
between two electrodes (see description of the method for
details). By averaging these phase differences across the trials, we

obtain a complex value u (for each latency t), which amplitude (abs
(u)) is the phase-locking value. Right: Surrogate data are con-
structed by shuffling the trials of one of the electrodes (see text for
details).
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Fig. 5. Hippocampal interneuron network. (a) Network model comprising a slow spiking population of GABA-A cells that causes a fast population of GABA-A cells to pause
periodically and so generate a nested theta–gamma oscillation. All cells are driven with an externally applied current and the strength of the inhibition from the slow to
the fast population is determined by the coupling parameter a. (b) Exemplar membrane potentials for fully synchronized slow spiking population (top) and fast spiking
population (bottom) for a = 0.6. The plots in the bottom row show the area under the curve (AUC) as a function of observation noise, !e, for the correlation measure (red),
GLM measure (green), phase-locking value (black) and modulation index (blue) for (c) fully synchronized and (d) partially synchronized populations. (For interpretation of
the references to color in the figure legend, the reader is referred to the web version of the article.)

and 100 null trials, and varying the threshold over all empirically
observed PAC values to compute the false positive and false nega-
tive rates. The AUC metric was then computed from these values
(Swets, 1995) with a value of 0.5 indicating discrimination at the
chance level and a value of 1 indicating perfect discrimination.

Fig. 5(c) and (d) shows how the AUC values fall off with increas-
ing noise level for the different PAC measures. Each AUC value
in these curves was derived by generating 100 trials of PAC data
using coupling parameter a = 0.6 and 100 trials of null data using
a = 0. The results were obtained using a ‘theta’ band from 5 to 20
Hz and a ‘gamma’ band from 50 to 130 Hz. The AUC curves have
been smoothed for presentation purposes using a first-order bi-
directional moving average filter. The modulation index performs
significantly worse than the GLM, PLV or ESC measures for both
fully and partially synchronized network dynamics.

The following subsections systematically examine the depen-
dence of the PAC measures on signal to noise level, coupling phase,
epoch length, sample rate, signal nonstationarity, and multi-phasic
coupling. This examination takes place using a variety of synthetic
signals which provide control over the type of coupling produced,
e.g. preferred phase.

3.3. Sigmoidal coupling

We first generate a stationary theta oscillation

x"[n] = a" sin(2#f"t[n]) (17)

for samples n = 1, . . . , N and then relate the amplitude of a gamma
oscillation to it via the following sigmoidal nonlinearity

a$ [n] = k
1 + exp(−c(x"[n] − tc))

(18)

The gamma oscillation is given by

x$ [n] = a$ [n] sin(2#f$ t[n]) (19)

and an observed time series is then formed as follows:

x[n] = x"[n − n0] + x$ [n] + e[n] (20)

where e[n] is zero mean Gaussian noise of standard deviation !e.
The observed theta oscillation is delayed by a number of samples
n0 = %0(fs/f") which corresponds to a fraction, %0, of a cycle. This
allowed us to generate gamma bursts at different phases of the
theta cycle. For the simulations in this section we use the following
parameters. Theta amplitude and frequency are set to a" = 1, f" =
6 Hz, gamma frequency to f$ = 35 Hz and sigmoidal parameters to
c = 1, tc = 0.95. Fig. 6 shows an example time series of epoch length
L = 3 s and its spectrogram computed using a Morlet-wavelet time-
frequency method. This data was generated using parameters k = 2,
!e = 1, n0 = 0 and fs = 240 Hz.

Fig. 7 shows, for each of the measures, how the AUC varies as
a function of observation noise, coupling phase, epoch length and
sample rate. Each AUC value in these curves was derived by gener-
ating 100 trials of PAC data using gamma amplitude k = 2 and 100
trials of null data using k = 0. Parameters that were not varied for
each plot were set to the default values of epoch length L = 3 s, noise
level !e = 1.5, coupling phase %0 = 0 and sample rate fs = 256 Hz.
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Fig. 5. Hippocampal interneuron network. (a) Network model comprising a slow spiking population of GABA-A cells that causes a fast population of GABA-A cells to pause
periodically and so generate a nested theta–gamma oscillation. All cells are driven with an externally applied current and the strength of the inhibition from the slow to
the fast population is determined by the coupling parameter a. (b) Exemplar membrane potentials for fully synchronized slow spiking population (top) and fast spiking
population (bottom) for a = 0.6. The plots in the bottom row show the area under the curve (AUC) as a function of observation noise, !e, for the correlation measure (red),
GLM measure (green), phase-locking value (black) and modulation index (blue) for (c) fully synchronized and (d) partially synchronized populations. (For interpretation of
the references to color in the figure legend, the reader is referred to the web version of the article.)

and 100 null trials, and varying the threshold over all empirically
observed PAC values to compute the false positive and false nega-
tive rates. The AUC metric was then computed from these values
(Swets, 1995) with a value of 0.5 indicating discrimination at the
chance level and a value of 1 indicating perfect discrimination.

Fig. 5(c) and (d) shows how the AUC values fall off with increas-
ing noise level for the different PAC measures. Each AUC value
in these curves was derived by generating 100 trials of PAC data
using coupling parameter a = 0.6 and 100 trials of null data using
a = 0. The results were obtained using a ‘theta’ band from 5 to 20
Hz and a ‘gamma’ band from 50 to 130 Hz. The AUC curves have
been smoothed for presentation purposes using a first-order bi-
directional moving average filter. The modulation index performs
significantly worse than the GLM, PLV or ESC measures for both
fully and partially synchronized network dynamics.

The following subsections systematically examine the depen-
dence of the PAC measures on signal to noise level, coupling phase,
epoch length, sample rate, signal nonstationarity, and multi-phasic
coupling. This examination takes place using a variety of synthetic
signals which provide control over the type of coupling produced,
e.g. preferred phase.

3.3. Sigmoidal coupling

We first generate a stationary theta oscillation

x"[n] = a" sin(2#f"t[n]) (17)

for samples n = 1, . . . , N and then relate the amplitude of a gamma
oscillation to it via the following sigmoidal nonlinearity

a$ [n] = k
1 + exp(−c(x"[n] − tc))

(18)

The gamma oscillation is given by

x$ [n] = a$ [n] sin(2#f$ t[n]) (19)

and an observed time series is then formed as follows:

x[n] = x"[n − n0] + x$ [n] + e[n] (20)

where e[n] is zero mean Gaussian noise of standard deviation !e.
The observed theta oscillation is delayed by a number of samples
n0 = %0(fs/f") which corresponds to a fraction, %0, of a cycle. This
allowed us to generate gamma bursts at different phases of the
theta cycle. For the simulations in this section we use the following
parameters. Theta amplitude and frequency are set to a" = 1, f" =
6 Hz, gamma frequency to f$ = 35 Hz and sigmoidal parameters to
c = 1, tc = 0.95. Fig. 6 shows an example time series of epoch length
L = 3 s and its spectrogram computed using a Morlet-wavelet time-
frequency method. This data was generated using parameters k = 2,
!e = 1, n0 = 0 and fs = 240 Hz.

Fig. 7 shows, for each of the measures, how the AUC varies as
a function of observation noise, coupling phase, epoch length and
sample rate. Each AUC value in these curves was derived by gener-
ating 100 trials of PAC data using gamma amplitude k = 2 and 100
trials of null data using k = 0. Parameters that were not varied for
each plot were set to the default values of epoch length L = 3 s, noise
level !e = 1.5, coupling phase %0 = 0 and sample rate fs = 256 Hz.
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Fig. 5. Hippocampal interneuron network. (a) Network model comprising a slow spiking population of GABA-A cells that causes a fast population of GABA-A cells to pause
periodically and so generate a nested theta–gamma oscillation. All cells are driven with an externally applied current and the strength of the inhibition from the slow to
the fast population is determined by the coupling parameter a. (b) Exemplar membrane potentials for fully synchronized slow spiking population (top) and fast spiking
population (bottom) for a = 0.6. The plots in the bottom row show the area under the curve (AUC) as a function of observation noise, !e, for the correlation measure (red),
GLM measure (green), phase-locking value (black) and modulation index (blue) for (c) fully synchronized and (d) partially synchronized populations. (For interpretation of
the references to color in the figure legend, the reader is referred to the web version of the article.)

and 100 null trials, and varying the threshold over all empirically
observed PAC values to compute the false positive and false nega-
tive rates. The AUC metric was then computed from these values
(Swets, 1995) with a value of 0.5 indicating discrimination at the
chance level and a value of 1 indicating perfect discrimination.

Fig. 5(c) and (d) shows how the AUC values fall off with increas-
ing noise level for the different PAC measures. Each AUC value
in these curves was derived by generating 100 trials of PAC data
using coupling parameter a = 0.6 and 100 trials of null data using
a = 0. The results were obtained using a ‘theta’ band from 5 to 20
Hz and a ‘gamma’ band from 50 to 130 Hz. The AUC curves have
been smoothed for presentation purposes using a first-order bi-
directional moving average filter. The modulation index performs
significantly worse than the GLM, PLV or ESC measures for both
fully and partially synchronized network dynamics.

The following subsections systematically examine the depen-
dence of the PAC measures on signal to noise level, coupling phase,
epoch length, sample rate, signal nonstationarity, and multi-phasic
coupling. This examination takes place using a variety of synthetic
signals which provide control over the type of coupling produced,
e.g. preferred phase.

3.3. Sigmoidal coupling

We first generate a stationary theta oscillation

x"[n] = a" sin(2#f"t[n]) (17)

for samples n = 1, . . . , N and then relate the amplitude of a gamma
oscillation to it via the following sigmoidal nonlinearity

a$ [n] = k
1 + exp(−c(x"[n] − tc))

(18)

The gamma oscillation is given by

x$ [n] = a$ [n] sin(2#f$ t[n]) (19)

and an observed time series is then formed as follows:

x[n] = x"[n − n0] + x$ [n] + e[n] (20)

where e[n] is zero mean Gaussian noise of standard deviation !e.
The observed theta oscillation is delayed by a number of samples
n0 = %0(fs/f") which corresponds to a fraction, %0, of a cycle. This
allowed us to generate gamma bursts at different phases of the
theta cycle. For the simulations in this section we use the following
parameters. Theta amplitude and frequency are set to a" = 1, f" =
6 Hz, gamma frequency to f$ = 35 Hz and sigmoidal parameters to
c = 1, tc = 0.95. Fig. 6 shows an example time series of epoch length
L = 3 s and its spectrogram computed using a Morlet-wavelet time-
frequency method. This data was generated using parameters k = 2,
!e = 1, n0 = 0 and fs = 240 Hz.

Fig. 7 shows, for each of the measures, how the AUC varies as
a function of observation noise, coupling phase, epoch length and
sample rate. Each AUC value in these curves was derived by gener-
ating 100 trials of PAC data using gamma amplitude k = 2 and 100
trials of null data using k = 0. Parameters that were not varied for
each plot were set to the default values of epoch length L = 3 s, noise
level !e = 1.5, coupling phase %0 = 0 and sample rate fs = 256 Hz.
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Fig. 5. Hippocampal interneuron network. (a) Network model comprising a slow spiking population of GABA-A cells that causes a fast population of GABA-A cells to pause
periodically and so generate a nested theta–gamma oscillation. All cells are driven with an externally applied current and the strength of the inhibition from the slow to
the fast population is determined by the coupling parameter a. (b) Exemplar membrane potentials for fully synchronized slow spiking population (top) and fast spiking
population (bottom) for a = 0.6. The plots in the bottom row show the area under the curve (AUC) as a function of observation noise, !e, for the correlation measure (red),
GLM measure (green), phase-locking value (black) and modulation index (blue) for (c) fully synchronized and (d) partially synchronized populations. (For interpretation of
the references to color in the figure legend, the reader is referred to the web version of the article.)

and 100 null trials, and varying the threshold over all empirically
observed PAC values to compute the false positive and false nega-
tive rates. The AUC metric was then computed from these values
(Swets, 1995) with a value of 0.5 indicating discrimination at the
chance level and a value of 1 indicating perfect discrimination.

Fig. 5(c) and (d) shows how the AUC values fall off with increas-
ing noise level for the different PAC measures. Each AUC value
in these curves was derived by generating 100 trials of PAC data
using coupling parameter a = 0.6 and 100 trials of null data using
a = 0. The results were obtained using a ‘theta’ band from 5 to 20
Hz and a ‘gamma’ band from 50 to 130 Hz. The AUC curves have
been smoothed for presentation purposes using a first-order bi-
directional moving average filter. The modulation index performs
significantly worse than the GLM, PLV or ESC measures for both
fully and partially synchronized network dynamics.

The following subsections systematically examine the depen-
dence of the PAC measures on signal to noise level, coupling phase,
epoch length, sample rate, signal nonstationarity, and multi-phasic
coupling. This examination takes place using a variety of synthetic
signals which provide control over the type of coupling produced,
e.g. preferred phase.

3.3. Sigmoidal coupling

We first generate a stationary theta oscillation

x"[n] = a" sin(2#f"t[n]) (17)

for samples n = 1, . . . , N and then relate the amplitude of a gamma
oscillation to it via the following sigmoidal nonlinearity

a$ [n] = k
1 + exp(−c(x"[n] − tc))

(18)

The gamma oscillation is given by

x$ [n] = a$ [n] sin(2#f$ t[n]) (19)

and an observed time series is then formed as follows:

x[n] = x"[n − n0] + x$ [n] + e[n] (20)

where e[n] is zero mean Gaussian noise of standard deviation !e.
The observed theta oscillation is delayed by a number of samples
n0 = %0(fs/f") which corresponds to a fraction, %0, of a cycle. This
allowed us to generate gamma bursts at different phases of the
theta cycle. For the simulations in this section we use the following
parameters. Theta amplitude and frequency are set to a" = 1, f" =
6 Hz, gamma frequency to f$ = 35 Hz and sigmoidal parameters to
c = 1, tc = 0.95. Fig. 6 shows an example time series of epoch length
L = 3 s and its spectrogram computed using a Morlet-wavelet time-
frequency method. This data was generated using parameters k = 2,
!e = 1, n0 = 0 and fs = 240 Hz.

Fig. 7 shows, for each of the measures, how the AUC varies as
a function of observation noise, coupling phase, epoch length and
sample rate. Each AUC value in these curves was derived by gener-
ating 100 trials of PAC data using gamma amplitude k = 2 and 100
trials of null data using k = 0. Parameters that were not varied for
each plot were set to the default values of epoch length L = 3 s, noise
level !e = 1.5, coupling phase %0 = 0 and sample rate fs = 256 Hz.
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Fig. 5. Hippocampal interneuron network. (a) Network model comprising a slow spiking population of GABA-A cells that causes a fast population of GABA-A cells to pause
periodically and so generate a nested theta–gamma oscillation. All cells are driven with an externally applied current and the strength of the inhibition from the slow to
the fast population is determined by the coupling parameter a. (b) Exemplar membrane potentials for fully synchronized slow spiking population (top) and fast spiking
population (bottom) for a = 0.6. The plots in the bottom row show the area under the curve (AUC) as a function of observation noise, !e, for the correlation measure (red),
GLM measure (green), phase-locking value (black) and modulation index (blue) for (c) fully synchronized and (d) partially synchronized populations. (For interpretation of
the references to color in the figure legend, the reader is referred to the web version of the article.)

and 100 null trials, and varying the threshold over all empirically
observed PAC values to compute the false positive and false nega-
tive rates. The AUC metric was then computed from these values
(Swets, 1995) with a value of 0.5 indicating discrimination at the
chance level and a value of 1 indicating perfect discrimination.

Fig. 5(c) and (d) shows how the AUC values fall off with increas-
ing noise level for the different PAC measures. Each AUC value
in these curves was derived by generating 100 trials of PAC data
using coupling parameter a = 0.6 and 100 trials of null data using
a = 0. The results were obtained using a ‘theta’ band from 5 to 20
Hz and a ‘gamma’ band from 50 to 130 Hz. The AUC curves have
been smoothed for presentation purposes using a first-order bi-
directional moving average filter. The modulation index performs
significantly worse than the GLM, PLV or ESC measures for both
fully and partially synchronized network dynamics.

The following subsections systematically examine the depen-
dence of the PAC measures on signal to noise level, coupling phase,
epoch length, sample rate, signal nonstationarity, and multi-phasic
coupling. This examination takes place using a variety of synthetic
signals which provide control over the type of coupling produced,
e.g. preferred phase.

3.3. Sigmoidal coupling

We first generate a stationary theta oscillation
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for samples n = 1, . . . , N and then relate the amplitude of a gamma
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The gamma oscillation is given by
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and an observed time series is then formed as follows:

x[n] = x"[n − n0] + x$ [n] + e[n] (20)

where e[n] is zero mean Gaussian noise of standard deviation !e.
The observed theta oscillation is delayed by a number of samples
n0 = %0(fs/f") which corresponds to a fraction, %0, of a cycle. This
allowed us to generate gamma bursts at different phases of the
theta cycle. For the simulations in this section we use the following
parameters. Theta amplitude and frequency are set to a" = 1, f" =
6 Hz, gamma frequency to f$ = 35 Hz and sigmoidal parameters to
c = 1, tc = 0.95. Fig. 6 shows an example time series of epoch length
L = 3 s and its spectrogram computed using a Morlet-wavelet time-
frequency method. This data was generated using parameters k = 2,
!e = 1, n0 = 0 and fs = 240 Hz.

Fig. 7 shows, for each of the measures, how the AUC varies as
a function of observation noise, coupling phase, epoch length and
sample rate. Each AUC value in these curves was derived by gener-
ating 100 trials of PAC data using gamma amplitude k = 2 and 100
trials of null data using k = 0. Parameters that were not varied for
each plot were set to the default values of epoch length L = 3 s, noise
level !e = 1.5, coupling phase %0 = 0 and sample rate fs = 256 Hz.
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Fig. 5. Hippocampal interneuron network. (a) Network model comprising a slow spiking population of GABA-A cells that causes a fast population of GABA-A cells to pause
periodically and so generate a nested theta–gamma oscillation. All cells are driven with an externally applied current and the strength of the inhibition from the slow to
the fast population is determined by the coupling parameter a. (b) Exemplar membrane potentials for fully synchronized slow spiking population (top) and fast spiking
population (bottom) for a = 0.6. The plots in the bottom row show the area under the curve (AUC) as a function of observation noise, !e, for the correlation measure (red),
GLM measure (green), phase-locking value (black) and modulation index (blue) for (c) fully synchronized and (d) partially synchronized populations. (For interpretation of
the references to color in the figure legend, the reader is referred to the web version of the article.)

and 100 null trials, and varying the threshold over all empirically
observed PAC values to compute the false positive and false nega-
tive rates. The AUC metric was then computed from these values
(Swets, 1995) with a value of 0.5 indicating discrimination at the
chance level and a value of 1 indicating perfect discrimination.

Fig. 5(c) and (d) shows how the AUC values fall off with increas-
ing noise level for the different PAC measures. Each AUC value
in these curves was derived by generating 100 trials of PAC data
using coupling parameter a = 0.6 and 100 trials of null data using
a = 0. The results were obtained using a ‘theta’ band from 5 to 20
Hz and a ‘gamma’ band from 50 to 130 Hz. The AUC curves have
been smoothed for presentation purposes using a first-order bi-
directional moving average filter. The modulation index performs
significantly worse than the GLM, PLV or ESC measures for both
fully and partially synchronized network dynamics.

The following subsections systematically examine the depen-
dence of the PAC measures on signal to noise level, coupling phase,
epoch length, sample rate, signal nonstationarity, and multi-phasic
coupling. This examination takes place using a variety of synthetic
signals which provide control over the type of coupling produced,
e.g. preferred phase.

3.3. Sigmoidal coupling

We first generate a stationary theta oscillation

x"[n] = a" sin(2#f"t[n]) (17)

for samples n = 1, . . . , N and then relate the amplitude of a gamma
oscillation to it via the following sigmoidal nonlinearity

a$ [n] = k
1 + exp(−c(x"[n] − tc))

(18)

The gamma oscillation is given by

x$ [n] = a$ [n] sin(2#f$ t[n]) (19)

and an observed time series is then formed as follows:

x[n] = x"[n − n0] + x$ [n] + e[n] (20)

where e[n] is zero mean Gaussian noise of standard deviation !e.
The observed theta oscillation is delayed by a number of samples
n0 = %0(fs/f") which corresponds to a fraction, %0, of a cycle. This
allowed us to generate gamma bursts at different phases of the
theta cycle. For the simulations in this section we use the following
parameters. Theta amplitude and frequency are set to a" = 1, f" =
6 Hz, gamma frequency to f$ = 35 Hz and sigmoidal parameters to
c = 1, tc = 0.95. Fig. 6 shows an example time series of epoch length
L = 3 s and its spectrogram computed using a Morlet-wavelet time-
frequency method. This data was generated using parameters k = 2,
!e = 1, n0 = 0 and fs = 240 Hz.

Fig. 7 shows, for each of the measures, how the AUC varies as
a function of observation noise, coupling phase, epoch length and
sample rate. Each AUC value in these curves was derived by gener-
ating 100 trials of PAC data using gamma amplitude k = 2 and 100
trials of null data using k = 0. Parameters that were not varied for
each plot were set to the default values of epoch length L = 3 s, noise
level !e = 1.5, coupling phase %0 = 0 and sample rate fs = 256 Hz.

‘burst-suppress’ oscillators

Phase-Amplitude Coupling

Penny et al (2008) J. Neuro Methods
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Fig. 5. Hippocampal interneuron network. (a) Network model comprising a slow spiking population of GABA-A cells that causes a fast population of GABA-A cells to pause
periodically and so generate a nested theta–gamma oscillation. All cells are driven with an externally applied current and the strength of the inhibition from the slow to
the fast population is determined by the coupling parameter a. (b) Exemplar membrane potentials for fully synchronized slow spiking population (top) and fast spiking
population (bottom) for a = 0.6. The plots in the bottom row show the area under the curve (AUC) as a function of observation noise, !e, for the correlation measure (red),
GLM measure (green), phase-locking value (black) and modulation index (blue) for (c) fully synchronized and (d) partially synchronized populations. (For interpretation of
the references to color in the figure legend, the reader is referred to the web version of the article.)

and 100 null trials, and varying the threshold over all empirically
observed PAC values to compute the false positive and false nega-
tive rates. The AUC metric was then computed from these values
(Swets, 1995) with a value of 0.5 indicating discrimination at the
chance level and a value of 1 indicating perfect discrimination.

Fig. 5(c) and (d) shows how the AUC values fall off with increas-
ing noise level for the different PAC measures. Each AUC value
in these curves was derived by generating 100 trials of PAC data
using coupling parameter a = 0.6 and 100 trials of null data using
a = 0. The results were obtained using a ‘theta’ band from 5 to 20
Hz and a ‘gamma’ band from 50 to 130 Hz. The AUC curves have
been smoothed for presentation purposes using a first-order bi-
directional moving average filter. The modulation index performs
significantly worse than the GLM, PLV or ESC measures for both
fully and partially synchronized network dynamics.

The following subsections systematically examine the depen-
dence of the PAC measures on signal to noise level, coupling phase,
epoch length, sample rate, signal nonstationarity, and multi-phasic
coupling. This examination takes place using a variety of synthetic
signals which provide control over the type of coupling produced,
e.g. preferred phase.

3.3. Sigmoidal coupling

We first generate a stationary theta oscillation

x"[n] = a" sin(2#f"t[n]) (17)

for samples n = 1, . . . , N and then relate the amplitude of a gamma
oscillation to it via the following sigmoidal nonlinearity

a$ [n] = k
1 + exp(−c(x"[n] − tc))

(18)

The gamma oscillation is given by

x$ [n] = a$ [n] sin(2#f$ t[n]) (19)

and an observed time series is then formed as follows:

x[n] = x"[n − n0] + x$ [n] + e[n] (20)

where e[n] is zero mean Gaussian noise of standard deviation !e.
The observed theta oscillation is delayed by a number of samples
n0 = %0(fs/f") which corresponds to a fraction, %0, of a cycle. This
allowed us to generate gamma bursts at different phases of the
theta cycle. For the simulations in this section we use the following
parameters. Theta amplitude and frequency are set to a" = 1, f" =
6 Hz, gamma frequency to f$ = 35 Hz and sigmoidal parameters to
c = 1, tc = 0.95. Fig. 6 shows an example time series of epoch length
L = 3 s and its spectrogram computed using a Morlet-wavelet time-
frequency method. This data was generated using parameters k = 2,
!e = 1, n0 = 0 and fs = 240 Hz.

Fig. 7 shows, for each of the measures, how the AUC varies as
a function of observation noise, coupling phase, epoch length and
sample rate. Each AUC value in these curves was derived by gener-
ating 100 trials of PAC data using gamma amplitude k = 2 and 100
trials of null data using k = 0. Parameters that were not varied for
each plot were set to the default values of epoch length L = 3 s, noise
level !e = 1.5, coupling phase %0 = 0 and sample rate fs = 256 Hz.
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Fig. 5. Hippocampal interneuron network. (a) Network model comprising a slow spiking population of GABA-A cells that causes a fast population of GABA-A cells to pause
periodically and so generate a nested theta–gamma oscillation. All cells are driven with an externally applied current and the strength of the inhibition from the slow to
the fast population is determined by the coupling parameter a. (b) Exemplar membrane potentials for fully synchronized slow spiking population (top) and fast spiking
population (bottom) for a = 0.6. The plots in the bottom row show the area under the curve (AUC) as a function of observation noise, !e, for the correlation measure (red),
GLM measure (green), phase-locking value (black) and modulation index (blue) for (c) fully synchronized and (d) partially synchronized populations. (For interpretation of
the references to color in the figure legend, the reader is referred to the web version of the article.)

and 100 null trials, and varying the threshold over all empirically
observed PAC values to compute the false positive and false nega-
tive rates. The AUC metric was then computed from these values
(Swets, 1995) with a value of 0.5 indicating discrimination at the
chance level and a value of 1 indicating perfect discrimination.

Fig. 5(c) and (d) shows how the AUC values fall off with increas-
ing noise level for the different PAC measures. Each AUC value
in these curves was derived by generating 100 trials of PAC data
using coupling parameter a = 0.6 and 100 trials of null data using
a = 0. The results were obtained using a ‘theta’ band from 5 to 20
Hz and a ‘gamma’ band from 50 to 130 Hz. The AUC curves have
been smoothed for presentation purposes using a first-order bi-
directional moving average filter. The modulation index performs
significantly worse than the GLM, PLV or ESC measures for both
fully and partially synchronized network dynamics.

The following subsections systematically examine the depen-
dence of the PAC measures on signal to noise level, coupling phase,
epoch length, sample rate, signal nonstationarity, and multi-phasic
coupling. This examination takes place using a variety of synthetic
signals which provide control over the type of coupling produced,
e.g. preferred phase.

3.3. Sigmoidal coupling

We first generate a stationary theta oscillation

x"[n] = a" sin(2#f"t[n]) (17)

for samples n = 1, . . . , N and then relate the amplitude of a gamma
oscillation to it via the following sigmoidal nonlinearity

a$ [n] = k
1 + exp(−c(x"[n] − tc))

(18)

The gamma oscillation is given by

x$ [n] = a$ [n] sin(2#f$ t[n]) (19)

and an observed time series is then formed as follows:

x[n] = x"[n − n0] + x$ [n] + e[n] (20)

where e[n] is zero mean Gaussian noise of standard deviation !e.
The observed theta oscillation is delayed by a number of samples
n0 = %0(fs/f") which corresponds to a fraction, %0, of a cycle. This
allowed us to generate gamma bursts at different phases of the
theta cycle. For the simulations in this section we use the following
parameters. Theta amplitude and frequency are set to a" = 1, f" =
6 Hz, gamma frequency to f$ = 35 Hz and sigmoidal parameters to
c = 1, tc = 0.95. Fig. 6 shows an example time series of epoch length
L = 3 s and its spectrogram computed using a Morlet-wavelet time-
frequency method. This data was generated using parameters k = 2,
!e = 1, n0 = 0 and fs = 240 Hz.

Fig. 7 shows, for each of the measures, how the AUC varies as
a function of observation noise, coupling phase, epoch length and
sample rate. Each AUC value in these curves was derived by gener-
ating 100 trials of PAC data using gamma amplitude k = 2 and 100
trials of null data using k = 0. Parameters that were not varied for
each plot were set to the default values of epoch length L = 3 s, noise
level !e = 1.5, coupling phase %0 = 0 and sample rate fs = 256 Hz.

‘burst-suppress’ oscillators

Phase-Amplitude Coupling

Penny et al (2008) J. Neuro Methods
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• May present a functional role in execution of cognitive 
functions (Axmacher et al. 2010; Cohen et al. 2009a,b; 
Lakatos et al. 2008; Tort et al. 2008, 2009). 

• Suggested involvement in sensory signal detection 
(Handel and Haarmeier 2009), attentional selection 
(Schroeder and Lakatos 2009), and memory processes 
(Axmacher et al. 2010; Tort et al. 2009)

Phase-Amplitude Coupling
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Phase-Amplitude Coupling: 
PLV Method Vanhatalo, S et al (2004) PNAS

X1
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t0

Phase-Amplitude Coupling: 
PLV Method Vanhatalo, S et al (2004) PNAS

φAfA
(1,t0 ) −φ fp

(1,t0 )

φ fp
(1,t0 )

φAfA
(1,t0 )

PLV(t0)=abs(u)

other trials

ar
g(

u)

ab
s(

u)

mean 
complex phasor 

u(t0)

AVERAGE difference 
phasors across trials

u(t0 ) =
1
N

ei(φAfA (k ,t0 )−φ fp (k ,t0 ))
k

N

∑

fp

AfA

Compute PLV between phase-
modulation time-series (fp) and 
amplitude envelope of amplitude 
modulat ion t ime-series (A fA ) . 
Significant PLV indicates that the 
central frequency of fp modulates 
the ampl i tude of the centra l 
frequency of fA
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Problem: 

PLV is invariant to differences in amplitude between the two time-series (it only 
considers phase). Thus PLV-PAC doesn’t take into account the amplitude of the 
co-modulation. 

In the example below, X1 and X2 both would produce the same PAC, even though 
the high-frequency amplitude of X2 clearly is more strongly modulated by the 
low-frequency rhythm.

Phase-Amplitude Coupling: 
PLV Method Vanhatalo, S et al (2004) PNAS

X1

X2

Same PLV-PAC
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Phase-Amplitude Coupling: 
Modulation Index Method

Canolty et al, (2006) Science

X1

t0
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Saturday, September 24, 2011



Phase-Amplitude Coupling: 
Modulation Index Method

Canolty et al, (2006) Science

X1

t0

original raw signal

fp filter X1 at phase-modulation band
(e.g. theta)

Saturday, September 24, 2011



Phase-Amplitude Coupling: 
Modulation Index Method

Canolty et al, (2006) Science

X1

t0

π

−π
0φ fp

original raw signal

fp filter X1 at phase-modulation band
(e.g. theta)

extract the instantaneous phase of fp

Saturday, September 24, 2011



Phase-Amplitude Coupling: 
Modulation Index Method

Canolty et al, (2006) Science

X1

t0

π

−π
0φ fp

fA filter X1 at amp-modulation band 
(e.g. gamma)

original raw signal

fp filter X1 at phase-modulation band
(e.g. theta)

extract the instantaneous phase of fp

Saturday, September 24, 2011



Phase-Amplitude Coupling: 
Modulation Index Method

Canolty et al, (2006) Science

X1

t0

π

−π
0φ fp

AfA

fA filter X1 at amp-modulation band 
(e.g. gamma)

get amplitude envelope of filtered signal

original raw signal

fp filter X1 at phase-modulation band
(e.g. theta)

extract the instantaneous phase of fp

Saturday, September 24, 2011



15

t0

π

−π
0φ fp

AfA

Phase-Amplitude Coupling: 
Modulation Index Method

Canolty et al, (2006) Science
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Trial 1
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0φ fp

AfA

φ fp
(t0 )

AfA
(t0 )

z1(t0 ) = AfA
eiφ fpTrial 1

Phase-Amplitude Coupling: 
Modulation Index Method

Canolty et al, (2006) Science

build complex phasor 
with instantaneous 

amplitude and phase
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build complex phasor 
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mean 
complex phasor 

u(t0)

Comparison:
PLV-PAC
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Computing PAC in EEGLAB:

pac(IC1,IC2,...,‘method’,‘mod’)

For Modulation Index method
(other modes also available)

Phase-Amplitude Coupling: 
Modulation Index Method

Canolty et al, (2006) Science

PAC can also be applied 
between sources/channels (e.g. 
determine whether the phase of 
oscillation at freq. wp in IC1 
modulates the amplitude of 
oscillation at freq. wA in IC2. This 
leads to a measure of cross-
frequency (non-linear) functional 
connectivity.
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(Cross)-Correlation ≠ Causation

Coherence/CC/PLV/PAC indicate functional, 
but not effective connectivity
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Non-Invasive

Post-hoc analyses 
applied to measured 
neural activity

Confirmatory

Dynamic Causal Models

Structural Equation Models

Exploratory

Granger-Causal methods

Estimating Effective 
Connectivity

18

Granger-Causal methods
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Granger-Causal methods

•Data-driven
• Simple, but powerful
• Scalable (Valdes-Sosa, 2005)

• Extendable to nonlinear and/or non-
stationary systems (Freiwald, 1999; Ding, 
2001; Chen, 2004; Ge, 2009)

• Extendable to non-parametric 
representations (Dhamala, 2009a,b)

• Can be (partially) controlled for 
(unobserved) exogenous causes 
(Guo, 2008a,b; Ge, 2009)

• Equivalent to Transfer Entropy for 
Gaussian Variables (Seth, 2009)

• Flexibly allows us to examine time-
varying (dynamic) multivariate 
causal relationships in either the 
time or frequency domain
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Granger Causality

First introduced by Wiener (1958). Later reformulated by 
Granger (1969) in the context of linear stochastic 
autoregressive models
Relies on two assumptions:

19
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Granger Causality Axioms

1. Causes should precede their effects in time (Temporal 
Precedence)

2. Information in a cause’s past should improve the 
prediction of the effect, above and beyond the information 
contained in past of the effect (and other measured 
variables)
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Multivariate (Vector) 
Autoregressive (VAR) Modeling

VAR

Granger Causality Coherence Spectrum ...

E
E

G
X1(t)
X2 (t)


XM (t)
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Stochastic Linear Dynamical System

The VAR Process

look at page 808 of Neural Networks and 
Learning Machines (Haykin) for 2-neuron 

example

X1 X2Δt = 1

1(t)

X1(t) = a(t)11X1(t −1) + a(t)12 X2 (t −1) + 1(t)

2 (t)

a(t)21a(t)11

a(t)12 a(t)22

X2 (t) = a(t)22 X2 (t −1) + a(t)21X1(t −1) + 2 (t)
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The VAR Model
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Ordinary Least-Squares
Lattice Filters

Bayesian Estimation
...
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Selecting a VAR Model Order

Model order is typically determined by minimizing information criteria 
such as Akaike Information Criterion (AIC) for varying model order (p):

	 AIC(p) = 2log(det(V)) + M2p/N
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Selecting a VAR Model Order

Model order is typically determined by minimizing information criteria 
such as Akaike Information Criterion (AIC) for varying model order (p):

	 AIC(p) = 2log(det(V)) + M2p/N

entropy rate (amount of prediction error)

Penalizes high model orders (parsimony)

model order

A
IC

 (b
its

)

optimal order
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Selecting a VAR Model Order

Other considerations:

A M-dimensional VAR model of order p has at most Mp/2 spectral 
peaks distributed amongst the M variables. This means we can 
observe at most p/2 peaks in each variables’ spectrum (or in the 
causal spectrum between two each pair of variables)

Optimal model order depends on sampling rate (higher sampling 
rate often requires higher model orders)

Saturday, September 24, 2011



Selecting a VAR Model Order

Saturday, September 24, 2011



Selecting a VAR Model Order

Jansen (1981) and Florian and Pfurtscheller (1995) 
demonstrated that a model order of 10 was 
generally quite adequate for describing EEG spectra

δ

θ

α

β
γ
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Selecting a VAR Model Order

Jansen (1981) and Florian and Pfurtscheller (1995) 
demonstrated that a model order of 10 was 
generally quite adequate for describing EEG spectra

VAR model is an “all-pole” filter well-suited for 
modeling oscillatory processes with “peaky” spectra 
(like EEG!)

δ

θ

α

β
γ
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VAR Modeling: Assumptions
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An EEG trace containing prominent evoked potentials is 
a classic example of a non-stationary time-series
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A stable process will not “blow up” (diverge to infinity)
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VAR Modeling: Assumptions

“Weak” stationarity of the data

mean and variance do not change with time

An EEG trace containing prominent evoked potentials is 
a classic example of a non-stationary time-series

Stability

A stable process will not “blow up” (diverge to infinity)

Importantly, stability implies stationarity and SIFT 
provides you techniques for verifying the stability 
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Granger Causality

X1(t)
X2 (t)
X3(t)
X4 (t)

Does X4 granger-cause X1?
(conditioned on X2, X3)

?
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Granger Causality

VAR1

X1(t)
X2 (t)
X3(t)
X4 (t)

Does X4 granger-cause X1?
(conditioned on X2, X3)

?

X(t) = A(k )
k=1

p∑ X(t − k) + E(t)
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Granger Causality

VAR1 var(E1(t))

X1(t)
X2 (t)
X3(t)
X4 (t)

Does X4 granger-cause X1?
(conditioned on X2, X3)

?

prediction error for X1

(variance of residuals E1)

X(t) = A(k )
k=1

p∑ X(t − k) + E(t)
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Granger Causality

VAR1 var(E1(t))
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X2 (t)
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Does X4 granger-cause X1?
(conditioned on X2, X3)

?

prediction error for X1

(variance of residuals E1)

X(t) = A(k )
k=1

p∑ X(t − k) + E(t)

X−4 (t) = A(k )
k=1

p∑ X−4 (t − k) + E(t)
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Granger Causality

Granger (1969) quantified this definition for bivariate processes in the 
form of an F-ratio:

   
FX1←X2

= ln
var( E1)
var(E1)

⎛

⎝⎜
⎞

⎠⎟
= ln

var( X1(t) | X1(⋅))
var( X1(t) | X1(⋅), X2 (⋅))

⎛

⎝⎜
⎞

⎠⎟

reduced model

full model

Saturday, September 24, 2011



Alternately, for a multivariate interpretation we can fit a single MVAR 
model to all channels and apply the following definition:  

Granger Causality

Granger (1969) quantified this definition for bivariate processes in the 
form of an F-ratio:

   
FX1←X2

= ln
var( E1)
var(E1)

⎛

⎝⎜
⎞

⎠⎟
= ln

var( X1(t) | X1(⋅))
var( X1(t) | X1(⋅), X2 (⋅))

⎛

⎝⎜
⎞

⎠⎟

reduced model

full model

Xj granger-causes Xi conditioned on all other variables in X
 if and only if A ij (k) >> 0  for some lag  k ∈  {1,  ... ,  p}

Definition 1
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Granger Causality Quiz

Example: 2-channel MVAR process of order 1

  

X1(t)= −0.5X1(t -1)  +      0X2 (t -1)  +   E1(t)
X2 (t)=  0.7 X1(t -1)  +   0.2X2 (t -1)  +   E2 (t)

X1(t)

X2 (t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= −0.5 0

0.7 0.2

⎛

⎝⎜
⎞

⎠⎟
X1(t −1)

X2 (t −1)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

E1(t)

E2 (t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Which causal structure does this model correspond to?

1 2a) 1 2b) 1 2c)
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Granger Causality Quiz

Example: 2-channel MVAR process of order 1
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Granger Causality – Frequency 
Domain

X(t) = A(k )
k=1

p∑ X(t − k) + E(t)
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Granger Causality – Frequency 
Domain

X(t) = A(k )
k=1

p∑ X(t − k) + E(t)

Fourier-transforming A(k) we obtain

A( f ) = − A(k )e− i2π fk
k=0

p∑ ;A(0) = I

Likewise, X(f) and E(f) correspond to 
the fourier transforms of the data 

and residuals, respectively
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A( f ) = − A(k )e− i2π fk
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Likewise, X(f) and E(f) correspond to 
the fourier transforms of the data 

and residuals, respectively

Where H(f) is the transfer matrix of the system.

X( f ) = A( f )−1E( f ) = H( f )E( f )

We can then define the spectral matrix X(f) as follows:
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X(t) = A(k )
k=1

p∑ X(t − k) + E(t)

Fourier-transforming A(k) we obtain

A( f ) = − A(k )e− i2π fk
k=0

p∑ ;A(0) = I

Likewise, X(f) and E(f) correspond to 
the fourier transforms of the data 

and residuals, respectively

Where H(f) is the transfer matrix of the system.

X( f ) = A( f )−1E( f ) = H( f )E( f )

We can then define the spectral matrix X(f) as follows:

Xj granger-causes Xi conditioned on all other variables in X
 if and only if |Aij(f)| >> 0 for some frequency f

Definition 2
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Granger Causality – Frequency 
Domain

X(t) = A(k )
k=1

p∑ X(t − k) + E(t)

Fourier-transforming A(k) we obtain

A( f ) = − A(k )e− i2π fk
k=0

p∑ ;A(0) = I

Likewise, X(f) and E(f) correspond to 
the fourier transforms of the data 

and residuals, respectively

Where H(f) is the transfer matrix of the system.

X( f ) = A( f )−1E( f ) = H( f )E( f )

We can then define the spectral matrix X(f) as follows:

Xj granger-causes Xi conditioned on all other variables in X
 if and only if |Aij(f)| >> 0 for some frequency f

Definition 2
leads to 

PDC
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X(t) = A(k )
k=1
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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on June 15,2010 at 13:07:27 UTC from IEEE Xplore.  Restrictions apply. 

• ••

C
oh

er
en

cy

(Brillinger, 2001)

Frequency	  (Hz)

Po
w
erS( f ) = X( f )X( f )*

       = H( f )ΣH( f )*

S
p

ec
tr

um

(Brillinger, 2001)

M=2

M=2

M>2

M=1

Saturday, September 24, 2011



X(t) = A(k )
k=1

p∑ X(t − k) + E(t)
A( f ) = − A(k )e− i2π fk

k=0

p∑ ;   A(0) = I
X( f ) = A( f )−1E( f ) = H( f )E( f )



x1(t)
x2 (t)


xM (t)

spurious

direct true flow

indirect true flow•

Functional Effective
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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on June 15,2010 at 13:07:27 UTC from IEEE Xplore.  Restrictions apply. 

• ••

C
oh

er
en

cy

(Brillinger, 2001)

Frequency	  (Hz)

Po
w
erS( f ) = X( f )X( f )*

       = H( f )ΣH( f )*

S
p

ec
tr

um

(Brillinger, 2001)

M=2

M=2

M>2

M>2

M>2

M=1

Saturday, September 24, 2011



X(t) = A(k )
k=1

p∑ X(t − k) + E(t)
A( f ) = − A(k )e− i2π fk

k=0

p∑ ;   A(0) = I
X( f ) = A( f )−1E( f ) = H( f )E( f )



x1(t)
x2 (t)


xM (t)

spurious

direct true flow

indirect true flow•

Functional Effective
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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 6. (A) PDC functions for simulation I. (B) Resulting pattern of flows.
Organization of the picture is the same as in Fig. 3.

since they reveal the direct coupling between them [20]. For
scalp electrodes, the overall picture of propagations found
by DTF is usually sufficient. Both estimators can be easily
computed from the MVAR transfer matrix. Inspection of both
gives unequivocal information about the pattern of propagation
and makes the distinction between direct and indirect flows
possible.

In Fig. 6, the results obtained by the PDC method for the
same simulation scheme (Fig. 1) are illustrated. One can see that
they are quite similar to those obtained by dDTF. The spectral
properties of PDC and DTF are different—the PDC measure
depends on frequency very weakly.

However, there are situations where PDC results may be mis-
leading to a certain extent. In order to clarify the differences be-
tween DTF and PDC, the series of simulations were performed.
In simulation II (Fig. 7), the signal in channel 1 is the same as
the signal in channel 1 of simulation I. This signal is transmitted
with the weight 0.8 and the delay of 1 sample to channels 2,
3, and 4, but with the noise components drawn from different
distributions. The time series in channel 5 is constructed in the
same way as channel 1 in the simulations I and II, but the input
EEG comes from a different subject. This signal plus a noise
component is transmitted with the delay of one sample and vari-
ance four times smaller than the variance of signal 1: in simu-
lation II to channel 4 and in the simulation III to channels 2,
3, and 4 (with different noise components). In simulation IV,
the scheme is similar to simulation III, except that the strengths
of all the transmitted activities are equal. The results of these
simulations are illustrated in Fig. 7. It is easy to see that DTF
and PDC show the same correct directions of flows, however
there are differences in their intensities. For simulation II, the
pattern of flows is well reproduced by DTF; however, for PDC,

Fig. 7. DTF (left) and PDC (right) results for simulations II, III, IV
(described in the text). Below the pictures representing the DTF and PDC
functions, deduced flows are presented for each simulation. The schemes of
the simulations are shown in the middle column.

the weak propagation from channel 5 becomes predominant in
the absence of other flows from that channel. In simulation III,
PDC shows similar intensities of flows from electrodes 1 and 5,
although originally the flows from electrode 5 are much weaker.
In the case of simulation IV, when the intensities of flows are the
same for both sources, the results for DTF and PDC are very
similar. These results follow from the different normalizations
in DTF and PDC. DTF is normalized in respect of the inflows to
the destination channel and PDF in respect to the outflows from
a given channel. Therefore, for PDC, it is difficult to estimate the
strengths of the flows. As the authors of the PDC method [19]
admit, PDC portrays the relative strengths of direct pair-wise
structure interactions, while DTF represents a balance of signal
power that spreads from one structure to different destinations.
Simulations II, II, and IV will help to understand some discrep-
ancies obtained by application of different methods to the same
experimental data.

IV. RESULTS FOR EXPERIMENTAL DATA

A. Alpha Rhythm

A MVAR model was fitted simultaneously to 21 channels
of EEG (10–20 system) of a normal adult in an awake state
with their eyes closed. The epoch length was 20 s. The signal
was high-pass filtered above 3 Hz. The filtering procedure in-
volved filtering forward and backward in order to avoid any
phase disturbance. The model order found by means of the AIC
criterion was 4. The estimates describing transmissions DTF,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 6. (A) PDC functions for simulation I. (B) Resulting pattern of flows.
Organization of the picture is the same as in Fig. 3.

since they reveal the direct coupling between them [20]. For
scalp electrodes, the overall picture of propagations found
by DTF is usually sufficient. Both estimators can be easily
computed from the MVAR transfer matrix. Inspection of both
gives unequivocal information about the pattern of propagation
and makes the distinction between direct and indirect flows
possible.

In Fig. 6, the results obtained by the PDC method for the
same simulation scheme (Fig. 1) are illustrated. One can see that
they are quite similar to those obtained by dDTF. The spectral
properties of PDC and DTF are different—the PDC measure
depends on frequency very weakly.

However, there are situations where PDC results may be mis-
leading to a certain extent. In order to clarify the differences be-
tween DTF and PDC, the series of simulations were performed.
In simulation II (Fig. 7), the signal in channel 1 is the same as
the signal in channel 1 of simulation I. This signal is transmitted
with the weight 0.8 and the delay of 1 sample to channels 2,
3, and 4, but with the noise components drawn from different
distributions. The time series in channel 5 is constructed in the
same way as channel 1 in the simulations I and II, but the input
EEG comes from a different subject. This signal plus a noise
component is transmitted with the delay of one sample and vari-
ance four times smaller than the variance of signal 1: in simu-
lation II to channel 4 and in the simulation III to channels 2,
3, and 4 (with different noise components). In simulation IV,
the scheme is similar to simulation III, except that the strengths
of all the transmitted activities are equal. The results of these
simulations are illustrated in Fig. 7. It is easy to see that DTF
and PDC show the same correct directions of flows, however
there are differences in their intensities. For simulation II, the
pattern of flows is well reproduced by DTF; however, for PDC,

Fig. 7. DTF (left) and PDC (right) results for simulations II, III, IV
(described in the text). Below the pictures representing the DTF and PDC
functions, deduced flows are presented for each simulation. The schemes of
the simulations are shown in the middle column.

the weak propagation from channel 5 becomes predominant in
the absence of other flows from that channel. In simulation III,
PDC shows similar intensities of flows from electrodes 1 and 5,
although originally the flows from electrode 5 are much weaker.
In the case of simulation IV, when the intensities of flows are the
same for both sources, the results for DTF and PDC are very
similar. These results follow from the different normalizations
in DTF and PDC. DTF is normalized in respect of the inflows to
the destination channel and PDF in respect to the outflows from
a given channel. Therefore, for PDC, it is difficult to estimate the
strengths of the flows. As the authors of the PDC method [19]
admit, PDC portrays the relative strengths of direct pair-wise
structure interactions, while DTF represents a balance of signal
power that spreads from one structure to different destinations.
Simulations II, II, and IV will help to understand some discrep-
ancies obtained by application of different methods to the same
experimental data.

IV. RESULTS FOR EXPERIMENTAL DATA

A. Alpha Rhythm

A MVAR model was fitted simultaneously to 21 channels
of EEG (10–20 system) of a normal adult in an awake state
with their eyes closed. The epoch length was 20 s. The signal
was high-pass filtered above 3 Hz. The filtering procedure in-
volved filtering forward and backward in order to avoid any
phase disturbance. The model order found by means of the AIC
criterion was 4. The estimates describing transmissions DTF,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 6. (A) PDC functions for simulation I. (B) Resulting pattern of flows.
Organization of the picture is the same as in Fig. 3.

since they reveal the direct coupling between them [20]. For
scalp electrodes, the overall picture of propagations found
by DTF is usually sufficient. Both estimators can be easily
computed from the MVAR transfer matrix. Inspection of both
gives unequivocal information about the pattern of propagation
and makes the distinction between direct and indirect flows
possible.

In Fig. 6, the results obtained by the PDC method for the
same simulation scheme (Fig. 1) are illustrated. One can see that
they are quite similar to those obtained by dDTF. The spectral
properties of PDC and DTF are different—the PDC measure
depends on frequency very weakly.

However, there are situations where PDC results may be mis-
leading to a certain extent. In order to clarify the differences be-
tween DTF and PDC, the series of simulations were performed.
In simulation II (Fig. 7), the signal in channel 1 is the same as
the signal in channel 1 of simulation I. This signal is transmitted
with the weight 0.8 and the delay of 1 sample to channels 2,
3, and 4, but with the noise components drawn from different
distributions. The time series in channel 5 is constructed in the
same way as channel 1 in the simulations I and II, but the input
EEG comes from a different subject. This signal plus a noise
component is transmitted with the delay of one sample and vari-
ance four times smaller than the variance of signal 1: in simu-
lation II to channel 4 and in the simulation III to channels 2,
3, and 4 (with different noise components). In simulation IV,
the scheme is similar to simulation III, except that the strengths
of all the transmitted activities are equal. The results of these
simulations are illustrated in Fig. 7. It is easy to see that DTF
and PDC show the same correct directions of flows, however
there are differences in their intensities. For simulation II, the
pattern of flows is well reproduced by DTF; however, for PDC,

Fig. 7. DTF (left) and PDC (right) results for simulations II, III, IV
(described in the text). Below the pictures representing the DTF and PDC
functions, deduced flows are presented for each simulation. The schemes of
the simulations are shown in the middle column.

the weak propagation from channel 5 becomes predominant in
the absence of other flows from that channel. In simulation III,
PDC shows similar intensities of flows from electrodes 1 and 5,
although originally the flows from electrode 5 are much weaker.
In the case of simulation IV, when the intensities of flows are the
same for both sources, the results for DTF and PDC are very
similar. These results follow from the different normalizations
in DTF and PDC. DTF is normalized in respect of the inflows to
the destination channel and PDF in respect to the outflows from
a given channel. Therefore, for PDC, it is difficult to estimate the
strengths of the flows. As the authors of the PDC method [19]
admit, PDC portrays the relative strengths of direct pair-wise
structure interactions, while DTF represents a balance of signal
power that spreads from one structure to different destinations.
Simulations II, II, and IV will help to understand some discrep-
ancies obtained by application of different methods to the same
experimental data.

IV. RESULTS FOR EXPERIMENTAL DATA

A. Alpha Rhythm

A MVAR model was fitted simultaneously to 21 channels
of EEG (10–20 system) of a normal adult in an awake state
with their eyes closed. The epoch length was 20 s. The signal
was high-pass filtered above 3 Hz. The filtering procedure in-
volved filtering forward and backward in order to avoid any
phase disturbance. The model order found by means of the AIC
criterion was 4. The estimates describing transmissions DTF,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on June 15,2010 at 13:07:27 UTC from IEEE Xplore.  Restrictions apply. 

PDC dDTF

Saturday, September 24, 2011



Time-Frequency GC

Saturday, September 24, 2011



Time-Frequency GC

Brain network dynamics often change rapidly with time 
(non-stationarity)

event-related responses

transient network changes during information processing

Saturday, September 24, 2011



Time-Frequency GC

Brain network dynamics often change rapidly with time 
(non-stationarity)

event-related responses

transient network changes during information processing

How can we perform time-varying, frequency-domain 
analysis of network dynamics?

Saturday, September 24, 2011



Time-Frequency GC

Saturday, September 24, 2011



Time-Frequency GC

Many ways to do time-varying MVAR estimation

Saturday, September 24, 2011



Time-Frequency GC

Many ways to do time-varying MVAR estimation

Short-Time adaptive multivariate autoregression (AMVAR)

Saturday, September 24, 2011



Time-Frequency GC

Many ways to do time-varying MVAR estimation

Short-Time adaptive multivariate autoregression (AMVAR)

Non-parametric MVAR estimation (minimum-phase 
spectral matrix factorization)

Saturday, September 24, 2011



Time-Frequency GC

Many ways to do time-varying MVAR estimation

Short-Time adaptive multivariate autoregression (AMVAR)

Non-parametric MVAR estimation (minimum-phase 
spectral matrix factorization)

Kalman Filtering

Saturday, September 24, 2011



Time-Frequency GC

Many ways to do time-varying MVAR estimation

Short-Time adaptive multivariate autoregression (AMVAR)

Non-parametric MVAR estimation (minimum-phase 
spectral matrix factorization)

Kalman Filtering

...

Saturday, September 24, 2011



Time-Frequency GC

Many ways to do time-varying MVAR estimation

Short-Time adaptive multivariate autoregression (AMVAR)

Non-parametric MVAR estimation (minimum-phase 
spectral matrix factorization)

Kalman Filtering

...

Short-Time adaptive multivariate autoregression (AMVAR)

Saturday, September 24, 2011



so
ur

ce
s

trials

time

Analogous to short-
time Fourier transform

Short-Window Time-Frequency GC
(Ding et al, 2000)

X(t)

Saturday, September 24, 2011



so
ur

ce
s

trials

time

Analogous to short-
time Fourier transform

Short-Window Time-Frequency GC
(Ding et al, 2000)

X(t)

Saturday, September 24, 2011



X(t) = A(k )
k=1

p∑ (t)X(t − k) + E(t)

so
ur

ce
s

trials

time

Analogous to short-
time Fourier transform

A( f ,t) = − A(k ) (t)e− i2π fk
k=0

p∑ ;A(0) = I

VAR

ensemble normalization

Short-Window Time-Frequency GC
(Ding et al, 2000)

X(t)

Saturday, September 24, 2011



X(t) = A(k )
k=1

p∑ (t)X(t − k) + E(t)

so
ur

ce
s

trials

time

Analogous to short-
time Fourier transform

A( f ,t) = − A(k ) (t)e− i2π fk
k=0

p∑ ;A(0) = I

GCVAR

ensemble normalization

Short-Window Time-Frequency GC
(Ding et al, 2000)

X(t)

Saturday, September 24, 2011



time

fre
qu

en
cy

X(t) = A(k )
k=1

p∑ (t)X(t − k) + E(t)

From

To

so
ur

ce
s

trials

time

Analogous to short-
time Fourier transform

A( f ,t) = − A(k ) (t)e− i2π fk
k=0

p∑ ;A(0) = I

GCVAR

ensemble normalization

Short-Window Time-Frequency GC
(Ding et al, 2000)

X(t)

Saturday, September 24, 2011



time

fre
qu

en
cy

X(t) = A(k )
k=1

p∑ (t)X(t − k) + E(t)

From

To

so
ur

ce
s

trials

time

Analogous to short-
time Fourier transform

A( f ,t) = − A(k ) (t)e− i2π fk
k=0

p∑ ;A(0) = I

GCVAR

ensemble normalization

Short-Window Time-Frequency GC
(Ding et al, 2000)

X(t)

Saturday, September 24, 2011



Time-Frequency GC

Saturday, September 24, 2011



Time-Frequency GC

What is a good window length?

Saturday, September 24, 2011



Time-Frequency GC

What is a good window length?

Considerations:

Saturday, September 24, 2011



Time-Frequency GC

What is a good window length?

Considerations:

Temporal smoothing

Saturday, September 24, 2011



Time-Frequency GC

What is a good window length?

Considerations:

Temporal smoothing

Local stationarity 

Saturday, September 24, 2011



Time-Frequency GC

What is a good window length?

Considerations:

Temporal smoothing

Local stationarity 

Sufficient amount of data

Saturday, September 24, 2011



Time-Frequency GC

What is a good window length?

Considerations:

Temporal smoothing

Local stationarity 

Sufficient amount of data

Process dynamics

Saturday, September 24, 2011



Time-Frequency GC

!"#$#%& $&'() *$ &+,& &+*$ -*#. *$ %/& 0/""#0&1 2# 3%( &+,&
&+# $/40,55#( 66%/*$#77 0/8!/%#%& /9 &+# :;<= />&,*%#( >)
$'>&",0&*%? &+# #%$#8>5# 8#,% 9"/8 &+# $*%?5#4&"*,5 :;<=
,0&',55) 0/%&,*%$ "*0+ &,$@4"#5#-,%& *%9/"8,&*/% &+,&
0,%%/& ># *%9#""#( 9"/8 &+# #%$#8>5# 8#,%1

A*?'"# B ,5$/ !5/&$ ,$ #""/" >,"$ ,& #,0+ &*8# !/*%& &+#
#%$#8>5# $&,%(,"( (#-*,&*/%= .+*0+ *$ , $#0/%(4/"(#"
$&,&*$&*01 C+# &*8#4-,")*%? %,&'"# /9 &+*$ D',%&*&) *$ ,5$/
,!!,"#%&1

C+# %/%$&,&*/%,"*&) #8>/(*#( *% &+# 8#,% ,%(
$&,%(,"( (#-*,&*/% 0,% ># #,$*5) "#8/-#( >) $'>&",0&*%?
&+# #%$#8>5# 8#,%= !/*%&4>)4!/*%&= 9"/8 #,0+ &"*,5 ,%(
&+#% (*-*(*%? &+# "#$'5&= ,?,*% !/*%&4>)4!/*%&= >) &+#
$&,%(,"( (#-*,&*/%1 E% 9,0&= &+#$# &./ !"/0#('"#$ 0/%4
$&*&'&# /'" $#0/%( ,%( &+*"( !"#!"/0#$$*%? $&#!$1 C+#)
,"# ,!!5*#( $#!,",&#5) &/ &+# (,&, 9"/8 #,0+ 0+,%%#51
F9&#" &+#$# &./ !"#!"/0#$$*%? $&#!$ ,"# ,!!5*#(= &+#
8#,% /9 &+# "#$'5&*%? #%$#8>5# /9 &"*,5$ *$ G#"/= ,%( &+#
$&,%(,"( (#-*,&*/% *$ /%#= ,& #-#") &*8# !/*%&1 H/&# &+,&
&+# $&#! /9 $&,%(,"( (#-*,&*/% %/"8,5*G,&*/% *$ 0"'0*,5
9/" ,55/.*%? &+# ()%,8*0,5 0+,%?#$ *% 8/(#54(#"*-#(
$!#0&",5 D',%&*&*#$ &/ ># 0/8!,"#( ,& #,0+ $&,?# /9 &,$@
!"/0#$$*%?1 I%5#$$ /&+#".*$# %/&#(= &+# ,>/-# &+"##
!"#!"/0#$$*%? $&#!$ .#"# ,!!5*#( !"*/" &/ ,55 /&+#"
,%,5)$*$ $&#!$ (#$0"*>#( >#5/.1 2# .*55 "#&'"% &/ &+#
&/!*0 /9 #%$#8>5# 8#,% $'>&",0&*/% *% 8/"# (#&,*5 *% &+#
%#J& $'>$#0&*/%1

F (##!#" $/'"0# /9 %/%$&,&*/%,"*&) &+,& 0,%%/& >#
"#8/-#( #,$*5) *$ &+# 0/""#5,&*/% $&"'0&'"# *% &+# (,&,1
K/""#5,&*/% %/%$&,&*/%,"*&) "#9#"$ &/ &+# 9,0& &+,& &+#
,'&/40/""#5,&*/%$ /9 $*%?5# 0+,%%#5$= ,%( &+# 0"/$$40/"4
"#5,&*/%$ >#&.##% 0+,%%#5$= ,& , 3J#( 5,?= -,") ,$ ,
9'%0&*/% /9 &*8# ('"*%? &+# &,$@1 C/ (#8/%$&",&# &+*$
0/""#5,&*/% %/%$&,&*/%,"*&)= .# ,-#",?#( &+# G#"/45,?
0"/$$40/""#5,&*/% >#&.##% &./ 0+,%%#5$ 9"/8 &+# $&"*,&#
0/"&#J /-#" ,55 &"*,5$ $'00#$$*-#5) 9/" #,0+ &*8# !/*%&
('"*%? &+# &,$@1 C+# &*8#4-,")*%? $&"'0&'"# /9 &+# "#4
$'5&*%? 0'"-#= $+/.% *$ A*?1 L= 05#,"5) (#8/%$&",&#$ &+#
%/%$&,&*/%,"*&) /9 &+# 0"/$$40/""#5,&*/% $&,&*$&*01

!"# $%&'()*+,-&* .//'&.0% (& -1.2+,3
*+(% 0&''12.(+&, ,&,4(.(+&,.'+(5

M'" $&",&#?) 9/" (#,5*%? .*&+ 0/""#5,&*/% %/%$&,&*/%,"*&)
*$ &/ !#"9/"8 NOF; ,%,5)$*$ *% $+/"&= +*?+5) /-#"4
5,!!#( &*8# .*%(/.$ *% .+*0+ &+# '%(#"5)*%? $&/0+,$&*0
!"/0#$$#$ ,"# 0/%$*(#"#( &/ ># 5/0,55) $&,&*/%,")1 PI$*%?
/-#"5,!!#( .*%(/.$ 8,@#$ &+# #$&*8,&#( 8/(#5$ -,")
$8//&+5)1Q R) ,(,!&*-#5) #$&*8,&*%? &+# NOF; 8/(#5
!,",8#&#"$ *% #,0+ .*%(/.= &+*$ FNOF; !"/0#('"#
)*#5($ 3%#5) "#$/5-#( ()%,8*0,5 *%9/"8,&*/% ,>/'& &+#
0/"&*0,5 !"/0#$$#$ "#5,&#( &/ 0/?%*&*-# $&,&#1 F 0"'0*,5
D'#$&*/% *$ +/. &/ 0+//$# &+# .*%(/. 5#%?&+ *% ,%
/>S#0&*-# .,)1 E& *$ 05#," &+,& *& 8'$& ># 5/%?#" &+,% &+#
8/(#5 /"(#" P$## T#0&1 BQ1 M% &+# /&+#" +,%(= *& $+/'5(
%/& ># $/ 5/%? ,$ &/ 5/$# &+# &#8!/",5 ()%,8*0$ &+,& .#
.*$+ &/ "#$/5-#1

F "/'?+ #$&*8,&# /9 &+# '!!#" 5*8*& /9 &+# .*%(/.
5#%?&+ 8,) ># />&,*%#( .*&+ &+# 9/55/.*%? !"/0#('"#1
A*"$&= ,$ *% A*?1 L= 0/8!'&# &+# G#"/45,? 0"/$$40/""#5,4
&*/% >#&.##% &./ 0+,%%#5$ *% , U4!/*%& .*%(/. ,& ,55
&*8# !/*%&$ ('"*%? &+# &,$@1 T#0/%(= "#!#,& &+# 3"$& $&#!
9/" !"/?"#$$*-#5) 5/%?#" .*%(/.$= ,-#",?*%? >/&+ .*&+*%
&+# .*%(/. ,%( ,0"/$$ ,55 &+# &"*,5$1 F$ &+# .*%(/. ?#&$
5/%?#"= 8/"# $8//&+*%? /9 &+# 0/""#5,&*/% $&"'0&'"#
/00'"$= ,%( ()%,8*0,5 -,"*,&*/% *$ 5/$&1 C+*$ !/*%& *$
*55'$&",&#( *% A*?1 V= .+*0+ $+/.$ &+# $,8# PU4!/*%&
.*%(/.Q 0"/$$40/""#5,&*/% 0'"-# ,$ *% A*?1 L= .*&+ ,(4
(*&*/%,5 0'"-#$ '$*%? UW4!/*%& PXW 8$Q ,%( BW4!/*%&
PUWW 8$Q .*%(/.$1 K5#,"5) &+# BW4!/*%& .*%(/. 5/$#$ ,
?"#,& (#,5 /9 &+# -,"*,>*5*&) *% &+# 0/""#5,&*/% $&"'0&'"#1
C+# UW4!/*%& .*%(/.= /% &+# /&+#" +,%(= *$ ,>5# &/ &",0@
8'0+ /9 &+# >,$*0 !,&&#"% /9 -,"*,&*/%1 A/" 8/(#5 #$&*4
8,&*/%= .# 8'$& ,5$/ 0/%$*(#" &+# $8//&+%#$$ /9 &+#
#$&*8,&#( $!#0&",5 D',%&*&*#$1 M'" #J!#"*#%0# *%(*0,&#$
&+,& &+# UW4!/*%& PXW 8$Q .*%(/. *$ , ?//( 0/8!"/8*$#
>#&.##% !"#$#"-*%? 0/""#5,&*/% -,"*,>*5*&) ,%( 8,*%4
&,*%*%? $8//&+%#$$ /9 &+# #$&*8,&#( $!#0&",5 D',%&*&*#$1
F5&+/'?+ /%# 0/'5( &,*5/" &+# .*%(/. $*G# &/ 3& (*Y#"#%&

!"#$ %$ C+# G#"/45,? 0"/$$40/""#5,&*/% >#&.##% &./ 0+,%%#5$ 9"/8 &+#
$&"*,&# 0/"&#J 0/8!'&#( *% U4!/*%& .*%(/.$ ,& #-#") &*8# !/*%& ('"*%?
&+# &,$@

!"#$ &$ C+# G#"/45,? 0"/$$40/""#5,&*/% >#&.##% &+# $,8# &./ 0+,%%#5$
,$ *% A*?1 L 9/" U4= UW4= ,%( BW4!/*%& .*%(/.$

LZ

Consideration: Temporal Smoothness

Ding et al, 2000

Saturday, September 24, 2011



Time-Frequency GC

!"#$#%& $&'() *$ &+,& &+*$ -*#. *$ %/& 0/""#0&1 2# 3%( &+,&
&+# $/40,55#( 66%/*$#77 0/8!/%#%& /9 &+# :;<= />&,*%#( >)
$'>&",0&*%? &+# #%$#8>5# 8#,% 9"/8 &+# $*%?5#4&"*,5 :;<=
,0&',55) 0/%&,*%$ "*0+ &,$@4"#5#-,%& *%9/"8,&*/% &+,&
0,%%/& ># *%9#""#( 9"/8 &+# #%$#8>5# 8#,%1

A*?'"# B ,5$/ !5/&$ ,$ #""/" >,"$ ,& #,0+ &*8# !/*%& &+#
#%$#8>5# $&,%(,"( (#-*,&*/%= .+*0+ *$ , $#0/%(4/"(#"
$&,&*$&*01 C+# &*8#4-,")*%? %,&'"# /9 &+*$ D',%&*&) *$ ,5$/
,!!,"#%&1

C+# %/%$&,&*/%,"*&) #8>/(*#( *% &+# 8#,% ,%(
$&,%(,"( (#-*,&*/% 0,% ># #,$*5) "#8/-#( >) $'>&",0&*%?
&+# #%$#8>5# 8#,%= !/*%&4>)4!/*%&= 9"/8 #,0+ &"*,5 ,%(
&+#% (*-*(*%? &+# "#$'5&= ,?,*% !/*%&4>)4!/*%&= >) &+#
$&,%(,"( (#-*,&*/%1 E% 9,0&= &+#$# &./ !"/0#('"#$ 0/%4
$&*&'&# /'" $#0/%( ,%( &+*"( !"#!"/0#$$*%? $&#!$1 C+#)
,"# ,!!5*#( $#!,",&#5) &/ &+# (,&, 9"/8 #,0+ 0+,%%#51
F9&#" &+#$# &./ !"#!"/0#$$*%? $&#!$ ,"# ,!!5*#(= &+#
8#,% /9 &+# "#$'5&*%? #%$#8>5# /9 &"*,5$ *$ G#"/= ,%( &+#
$&,%(,"( (#-*,&*/% *$ /%#= ,& #-#") &*8# !/*%&1 H/&# &+,&
&+# $&#! /9 $&,%(,"( (#-*,&*/% %/"8,5*G,&*/% *$ 0"'0*,5
9/" ,55/.*%? &+# ()%,8*0,5 0+,%?#$ *% 8/(#54(#"*-#(
$!#0&",5 D',%&*&*#$ &/ ># 0/8!,"#( ,& #,0+ $&,?# /9 &,$@
!"/0#$$*%?1 I%5#$$ /&+#".*$# %/&#(= &+# ,>/-# &+"##
!"#!"/0#$$*%? $&#!$ .#"# ,!!5*#( !"*/" &/ ,55 /&+#"
,%,5)$*$ $&#!$ (#$0"*>#( >#5/.1 2# .*55 "#&'"% &/ &+#
&/!*0 /9 #%$#8>5# 8#,% $'>&",0&*/% *% 8/"# (#&,*5 *% &+#
%#J& $'>$#0&*/%1

F (##!#" $/'"0# /9 %/%$&,&*/%,"*&) &+,& 0,%%/& >#
"#8/-#( #,$*5) *$ &+# 0/""#5,&*/% $&"'0&'"# *% &+# (,&,1
K/""#5,&*/% %/%$&,&*/%,"*&) "#9#"$ &/ &+# 9,0& &+,& &+#
,'&/40/""#5,&*/%$ /9 $*%?5# 0+,%%#5$= ,%( &+# 0"/$$40/"4
"#5,&*/%$ >#&.##% 0+,%%#5$= ,& , 3J#( 5,?= -,") ,$ ,
9'%0&*/% /9 &*8# ('"*%? &+# &,$@1 C/ (#8/%$&",&# &+*$
0/""#5,&*/% %/%$&,&*/%,"*&)= .# ,-#",?#( &+# G#"/45,?
0"/$$40/""#5,&*/% >#&.##% &./ 0+,%%#5$ 9"/8 &+# $&"*,&#
0/"&#J /-#" ,55 &"*,5$ $'00#$$*-#5) 9/" #,0+ &*8# !/*%&
('"*%? &+# &,$@1 C+# &*8#4-,")*%? $&"'0&'"# /9 &+# "#4
$'5&*%? 0'"-#= $+/.% *$ A*?1 L= 05#,"5) (#8/%$&",&#$ &+#
%/%$&,&*/%,"*&) /9 &+# 0"/$$40/""#5,&*/% $&,&*$&*01

!"# $%&'()*+,-&* .//'&.0% (& -1.2+,3
*+(% 0&''12.(+&, ,&,4(.(+&,.'+(5

M'" $&",&#?) 9/" (#,5*%? .*&+ 0/""#5,&*/% %/%$&,&*/%,"*&)
*$ &/ !#"9/"8 NOF; ,%,5)$*$ *% $+/"&= +*?+5) /-#"4
5,!!#( &*8# .*%(/.$ *% .+*0+ &+# '%(#"5)*%? $&/0+,$&*0
!"/0#$$#$ ,"# 0/%$*(#"#( &/ ># 5/0,55) $&,&*/%,")1 PI$*%?
/-#"5,!!#( .*%(/.$ 8,@#$ &+# #$&*8,&#( 8/(#5$ -,")
$8//&+5)1Q R) ,(,!&*-#5) #$&*8,&*%? &+# NOF; 8/(#5
!,",8#&#"$ *% #,0+ .*%(/.= &+*$ FNOF; !"/0#('"#
)*#5($ 3%#5) "#$/5-#( ()%,8*0,5 *%9/"8,&*/% ,>/'& &+#
0/"&*0,5 !"/0#$$#$ "#5,&#( &/ 0/?%*&*-# $&,&#1 F 0"'0*,5
D'#$&*/% *$ +/. &/ 0+//$# &+# .*%(/. 5#%?&+ *% ,%
/>S#0&*-# .,)1 E& *$ 05#," &+,& *& 8'$& ># 5/%?#" &+,% &+#
8/(#5 /"(#" P$## T#0&1 BQ1 M% &+# /&+#" +,%(= *& $+/'5(
%/& ># $/ 5/%? ,$ &/ 5/$# &+# &#8!/",5 ()%,8*0$ &+,& .#
.*$+ &/ "#$/5-#1

F "/'?+ #$&*8,&# /9 &+# '!!#" 5*8*& /9 &+# .*%(/.
5#%?&+ 8,) ># />&,*%#( .*&+ &+# 9/55/.*%? !"/0#('"#1
A*"$&= ,$ *% A*?1 L= 0/8!'&# &+# G#"/45,? 0"/$$40/""#5,4
&*/% >#&.##% &./ 0+,%%#5$ *% , U4!/*%& .*%(/. ,& ,55
&*8# !/*%&$ ('"*%? &+# &,$@1 T#0/%(= "#!#,& &+# 3"$& $&#!
9/" !"/?"#$$*-#5) 5/%?#" .*%(/.$= ,-#",?*%? >/&+ .*&+*%
&+# .*%(/. ,%( ,0"/$$ ,55 &+# &"*,5$1 F$ &+# .*%(/. ?#&$
5/%?#"= 8/"# $8//&+*%? /9 &+# 0/""#5,&*/% $&"'0&'"#
/00'"$= ,%( ()%,8*0,5 -,"*,&*/% *$ 5/$&1 C+*$ !/*%& *$
*55'$&",&#( *% A*?1 V= .+*0+ $+/.$ &+# $,8# PU4!/*%&
.*%(/.Q 0"/$$40/""#5,&*/% 0'"-# ,$ *% A*?1 L= .*&+ ,(4
(*&*/%,5 0'"-#$ '$*%? UW4!/*%& PXW 8$Q ,%( BW4!/*%&
PUWW 8$Q .*%(/.$1 K5#,"5) &+# BW4!/*%& .*%(/. 5/$#$ ,
?"#,& (#,5 /9 &+# -,"*,>*5*&) *% &+# 0/""#5,&*/% $&"'0&'"#1
C+# UW4!/*%& .*%(/.= /% &+# /&+#" +,%(= *$ ,>5# &/ &",0@
8'0+ /9 &+# >,$*0 !,&&#"% /9 -,"*,&*/%1 A/" 8/(#5 #$&*4
8,&*/%= .# 8'$& ,5$/ 0/%$*(#" &+# $8//&+%#$$ /9 &+#
#$&*8,&#( $!#0&",5 D',%&*&*#$1 M'" #J!#"*#%0# *%(*0,&#$
&+,& &+# UW4!/*%& PXW 8$Q .*%(/. *$ , ?//( 0/8!"/8*$#
>#&.##% !"#$#"-*%? 0/""#5,&*/% -,"*,>*5*&) ,%( 8,*%4
&,*%*%? $8//&+%#$$ /9 &+# #$&*8,&#( $!#0&",5 D',%&*&*#$1
F5&+/'?+ /%# 0/'5( &,*5/" &+# .*%(/. $*G# &/ 3& (*Y#"#%&

!"#$ %$ C+# G#"/45,? 0"/$$40/""#5,&*/% >#&.##% &./ 0+,%%#5$ 9"/8 &+#
$&"*,&# 0/"&#J 0/8!'&#( *% U4!/*%& .*%(/.$ ,& #-#") &*8# !/*%& ('"*%?
&+# &,$@

!"#$ &$ C+# G#"/45,? 0"/$$40/""#5,&*/% >#&.##% &+# $,8# &./ 0+,%%#5$
,$ *% A*?1 L 9/" U4= UW4= ,%( BW4!/*%& .*%(/.$

LZ

Consideration: Temporal Smoothness

Too- l a rge w indows may 
s m o o t h o u t i n t e r e s t i n g 
transient dynamic features.

Ding et al, 2000

Saturday, September 24, 2011



Time-Frequency GC

Ding et al, 2000

!"#$#%& $&'() *$ &+,& &+*$ -*#. *$ %/& 0/""#0&1 2# 3%( &+,&
&+# $/40,55#( 66%/*$#77 0/8!/%#%& /9 &+# :;<= />&,*%#( >)
$'>&",0&*%? &+# #%$#8>5# 8#,% 9"/8 &+# $*%?5#4&"*,5 :;<=
,0&',55) 0/%&,*%$ "*0+ &,$@4"#5#-,%& *%9/"8,&*/% &+,&
0,%%/& ># *%9#""#( 9"/8 &+# #%$#8>5# 8#,%1

A*?'"# B ,5$/ !5/&$ ,$ #""/" >,"$ ,& #,0+ &*8# !/*%& &+#
#%$#8>5# $&,%(,"( (#-*,&*/%= .+*0+ *$ , $#0/%(4/"(#"
$&,&*$&*01 C+# &*8#4-,")*%? %,&'"# /9 &+*$ D',%&*&) *$ ,5$/
,!!,"#%&1

C+# %/%$&,&*/%,"*&) #8>/(*#( *% &+# 8#,% ,%(
$&,%(,"( (#-*,&*/% 0,% ># #,$*5) "#8/-#( >) $'>&",0&*%?
&+# #%$#8>5# 8#,%= !/*%&4>)4!/*%&= 9"/8 #,0+ &"*,5 ,%(
&+#% (*-*(*%? &+# "#$'5&= ,?,*% !/*%&4>)4!/*%&= >) &+#
$&,%(,"( (#-*,&*/%1 E% 9,0&= &+#$# &./ !"/0#('"#$ 0/%4
$&*&'&# /'" $#0/%( ,%( &+*"( !"#!"/0#$$*%? $&#!$1 C+#)
,"# ,!!5*#( $#!,",&#5) &/ &+# (,&, 9"/8 #,0+ 0+,%%#51
F9&#" &+#$# &./ !"#!"/0#$$*%? $&#!$ ,"# ,!!5*#(= &+#
8#,% /9 &+# "#$'5&*%? #%$#8>5# /9 &"*,5$ *$ G#"/= ,%( &+#
$&,%(,"( (#-*,&*/% *$ /%#= ,& #-#") &*8# !/*%&1 H/&# &+,&
&+# $&#! /9 $&,%(,"( (#-*,&*/% %/"8,5*G,&*/% *$ 0"'0*,5
9/" ,55/.*%? &+# ()%,8*0,5 0+,%?#$ *% 8/(#54(#"*-#(
$!#0&",5 D',%&*&*#$ &/ ># 0/8!,"#( ,& #,0+ $&,?# /9 &,$@
!"/0#$$*%?1 I%5#$$ /&+#".*$# %/&#(= &+# ,>/-# &+"##
!"#!"/0#$$*%? $&#!$ .#"# ,!!5*#( !"*/" &/ ,55 /&+#"
,%,5)$*$ $&#!$ (#$0"*>#( >#5/.1 2# .*55 "#&'"% &/ &+#
&/!*0 /9 #%$#8>5# 8#,% $'>&",0&*/% *% 8/"# (#&,*5 *% &+#
%#J& $'>$#0&*/%1

F (##!#" $/'"0# /9 %/%$&,&*/%,"*&) &+,& 0,%%/& >#
"#8/-#( #,$*5) *$ &+# 0/""#5,&*/% $&"'0&'"# *% &+# (,&,1
K/""#5,&*/% %/%$&,&*/%,"*&) "#9#"$ &/ &+# 9,0& &+,& &+#
,'&/40/""#5,&*/%$ /9 $*%?5# 0+,%%#5$= ,%( &+# 0"/$$40/"4
"#5,&*/%$ >#&.##% 0+,%%#5$= ,& , 3J#( 5,?= -,") ,$ ,
9'%0&*/% /9 &*8# ('"*%? &+# &,$@1 C/ (#8/%$&",&# &+*$
0/""#5,&*/% %/%$&,&*/%,"*&)= .# ,-#",?#( &+# G#"/45,?
0"/$$40/""#5,&*/% >#&.##% &./ 0+,%%#5$ 9"/8 &+# $&"*,&#
0/"&#J /-#" ,55 &"*,5$ $'00#$$*-#5) 9/" #,0+ &*8# !/*%&
('"*%? &+# &,$@1 C+# &*8#4-,")*%? $&"'0&'"# /9 &+# "#4
$'5&*%? 0'"-#= $+/.% *$ A*?1 L= 05#,"5) (#8/%$&",&#$ &+#
%/%$&,&*/%,"*&) /9 &+# 0"/$$40/""#5,&*/% $&,&*$&*01

!"# $%&'()*+,-&* .//'&.0% (& -1.2+,3
*+(% 0&''12.(+&, ,&,4(.(+&,.'+(5

M'" $&",&#?) 9/" (#,5*%? .*&+ 0/""#5,&*/% %/%$&,&*/%,"*&)
*$ &/ !#"9/"8 NOF; ,%,5)$*$ *% $+/"&= +*?+5) /-#"4
5,!!#( &*8# .*%(/.$ *% .+*0+ &+# '%(#"5)*%? $&/0+,$&*0
!"/0#$$#$ ,"# 0/%$*(#"#( &/ ># 5/0,55) $&,&*/%,")1 PI$*%?
/-#"5,!!#( .*%(/.$ 8,@#$ &+# #$&*8,&#( 8/(#5$ -,")
$8//&+5)1Q R) ,(,!&*-#5) #$&*8,&*%? &+# NOF; 8/(#5
!,",8#&#"$ *% #,0+ .*%(/.= &+*$ FNOF; !"/0#('"#
)*#5($ 3%#5) "#$/5-#( ()%,8*0,5 *%9/"8,&*/% ,>/'& &+#
0/"&*0,5 !"/0#$$#$ "#5,&#( &/ 0/?%*&*-# $&,&#1 F 0"'0*,5
D'#$&*/% *$ +/. &/ 0+//$# &+# .*%(/. 5#%?&+ *% ,%
/>S#0&*-# .,)1 E& *$ 05#," &+,& *& 8'$& ># 5/%?#" &+,% &+#
8/(#5 /"(#" P$## T#0&1 BQ1 M% &+# /&+#" +,%(= *& $+/'5(
%/& ># $/ 5/%? ,$ &/ 5/$# &+# &#8!/",5 ()%,8*0$ &+,& .#
.*$+ &/ "#$/5-#1

F "/'?+ #$&*8,&# /9 &+# '!!#" 5*8*& /9 &+# .*%(/.
5#%?&+ 8,) ># />&,*%#( .*&+ &+# 9/55/.*%? !"/0#('"#1
A*"$&= ,$ *% A*?1 L= 0/8!'&# &+# G#"/45,? 0"/$$40/""#5,4
&*/% >#&.##% &./ 0+,%%#5$ *% , U4!/*%& .*%(/. ,& ,55
&*8# !/*%&$ ('"*%? &+# &,$@1 T#0/%(= "#!#,& &+# 3"$& $&#!
9/" !"/?"#$$*-#5) 5/%?#" .*%(/.$= ,-#",?*%? >/&+ .*&+*%
&+# .*%(/. ,%( ,0"/$$ ,55 &+# &"*,5$1 F$ &+# .*%(/. ?#&$
5/%?#"= 8/"# $8//&+*%? /9 &+# 0/""#5,&*/% $&"'0&'"#
/00'"$= ,%( ()%,8*0,5 -,"*,&*/% *$ 5/$&1 C+*$ !/*%& *$
*55'$&",&#( *% A*?1 V= .+*0+ $+/.$ &+# $,8# PU4!/*%&
.*%(/.Q 0"/$$40/""#5,&*/% 0'"-# ,$ *% A*?1 L= .*&+ ,(4
(*&*/%,5 0'"-#$ '$*%? UW4!/*%& PXW 8$Q ,%( BW4!/*%&
PUWW 8$Q .*%(/.$1 K5#,"5) &+# BW4!/*%& .*%(/. 5/$#$ ,
?"#,& (#,5 /9 &+# -,"*,>*5*&) *% &+# 0/""#5,&*/% $&"'0&'"#1
C+# UW4!/*%& .*%(/.= /% &+# /&+#" +,%(= *$ ,>5# &/ &",0@
8'0+ /9 &+# >,$*0 !,&&#"% /9 -,"*,&*/%1 A/" 8/(#5 #$&*4
8,&*/%= .# 8'$& ,5$/ 0/%$*(#" &+# $8//&+%#$$ /9 &+#
#$&*8,&#( $!#0&",5 D',%&*&*#$1 M'" #J!#"*#%0# *%(*0,&#$
&+,& &+# UW4!/*%& PXW 8$Q .*%(/. *$ , ?//( 0/8!"/8*$#
>#&.##% !"#$#"-*%? 0/""#5,&*/% -,"*,>*5*&) ,%( 8,*%4
&,*%*%? $8//&+%#$$ /9 &+# #$&*8,&#( $!#0&",5 D',%&*&*#$1
F5&+/'?+ /%# 0/'5( &,*5/" &+# .*%(/. $*G# &/ 3& (*Y#"#%&

!"#$ %$ C+# G#"/45,? 0"/$$40/""#5,&*/% >#&.##% &./ 0+,%%#5$ 9"/8 &+#
$&"*,&# 0/"&#J 0/8!'&#( *% U4!/*%& .*%(/.$ ,& #-#") &*8# !/*%& ('"*%?
&+# &,$@

!"#$ &$ C+# G#"/45,? 0"/$$40/""#5,&*/% >#&.##% &+# $,8# &./ 0+,%%#5$
,$ *% A*?1 L 9/" U4= UW4= ,%( BW4!/*%& .*%(/.$

LZ

Consideration: Local Stationarity

Saturday, September 24, 2011



Time-Frequency GC

Ding et al, 2000

!"#$#%& $&'() *$ &+,& &+*$ -*#. *$ %/& 0/""#0&1 2# 3%( &+,&
&+# $/40,55#( 66%/*$#77 0/8!/%#%& /9 &+# :;<= />&,*%#( >)
$'>&",0&*%? &+# #%$#8>5# 8#,% 9"/8 &+# $*%?5#4&"*,5 :;<=
,0&',55) 0/%&,*%$ "*0+ &,$@4"#5#-,%& *%9/"8,&*/% &+,&
0,%%/& ># *%9#""#( 9"/8 &+# #%$#8>5# 8#,%1

A*?'"# B ,5$/ !5/&$ ,$ #""/" >,"$ ,& #,0+ &*8# !/*%& &+#
#%$#8>5# $&,%(,"( (#-*,&*/%= .+*0+ *$ , $#0/%(4/"(#"
$&,&*$&*01 C+# &*8#4-,")*%? %,&'"# /9 &+*$ D',%&*&) *$ ,5$/
,!!,"#%&1

C+# %/%$&,&*/%,"*&) #8>/(*#( *% &+# 8#,% ,%(
$&,%(,"( (#-*,&*/% 0,% ># #,$*5) "#8/-#( >) $'>&",0&*%?
&+# #%$#8>5# 8#,%= !/*%&4>)4!/*%&= 9"/8 #,0+ &"*,5 ,%(
&+#% (*-*(*%? &+# "#$'5&= ,?,*% !/*%&4>)4!/*%&= >) &+#
$&,%(,"( (#-*,&*/%1 E% 9,0&= &+#$# &./ !"/0#('"#$ 0/%4
$&*&'&# /'" $#0/%( ,%( &+*"( !"#!"/0#$$*%? $&#!$1 C+#)
,"# ,!!5*#( $#!,",&#5) &/ &+# (,&, 9"/8 #,0+ 0+,%%#51
F9&#" &+#$# &./ !"#!"/0#$$*%? $&#!$ ,"# ,!!5*#(= &+#
8#,% /9 &+# "#$'5&*%? #%$#8>5# /9 &"*,5$ *$ G#"/= ,%( &+#
$&,%(,"( (#-*,&*/% *$ /%#= ,& #-#") &*8# !/*%&1 H/&# &+,&
&+# $&#! /9 $&,%(,"( (#-*,&*/% %/"8,5*G,&*/% *$ 0"'0*,5
9/" ,55/.*%? &+# ()%,8*0,5 0+,%?#$ *% 8/(#54(#"*-#(
$!#0&",5 D',%&*&*#$ &/ ># 0/8!,"#( ,& #,0+ $&,?# /9 &,$@
!"/0#$$*%?1 I%5#$$ /&+#".*$# %/&#(= &+# ,>/-# &+"##
!"#!"/0#$$*%? $&#!$ .#"# ,!!5*#( !"*/" &/ ,55 /&+#"
,%,5)$*$ $&#!$ (#$0"*>#( >#5/.1 2# .*55 "#&'"% &/ &+#
&/!*0 /9 #%$#8>5# 8#,% $'>&",0&*/% *% 8/"# (#&,*5 *% &+#
%#J& $'>$#0&*/%1

F (##!#" $/'"0# /9 %/%$&,&*/%,"*&) &+,& 0,%%/& >#
"#8/-#( #,$*5) *$ &+# 0/""#5,&*/% $&"'0&'"# *% &+# (,&,1
K/""#5,&*/% %/%$&,&*/%,"*&) "#9#"$ &/ &+# 9,0& &+,& &+#
,'&/40/""#5,&*/%$ /9 $*%?5# 0+,%%#5$= ,%( &+# 0"/$$40/"4
"#5,&*/%$ >#&.##% 0+,%%#5$= ,& , 3J#( 5,?= -,") ,$ ,
9'%0&*/% /9 &*8# ('"*%? &+# &,$@1 C/ (#8/%$&",&# &+*$
0/""#5,&*/% %/%$&,&*/%,"*&)= .# ,-#",?#( &+# G#"/45,?
0"/$$40/""#5,&*/% >#&.##% &./ 0+,%%#5$ 9"/8 &+# $&"*,&#
0/"&#J /-#" ,55 &"*,5$ $'00#$$*-#5) 9/" #,0+ &*8# !/*%&
('"*%? &+# &,$@1 C+# &*8#4-,")*%? $&"'0&'"# /9 &+# "#4
$'5&*%? 0'"-#= $+/.% *$ A*?1 L= 05#,"5) (#8/%$&",&#$ &+#
%/%$&,&*/%,"*&) /9 &+# 0"/$$40/""#5,&*/% $&,&*$&*01

!"# $%&'()*+,-&* .//'&.0% (& -1.2+,3
*+(% 0&''12.(+&, ,&,4(.(+&,.'+(5

M'" $&",&#?) 9/" (#,5*%? .*&+ 0/""#5,&*/% %/%$&,&*/%,"*&)
*$ &/ !#"9/"8 NOF; ,%,5)$*$ *% $+/"&= +*?+5) /-#"4
5,!!#( &*8# .*%(/.$ *% .+*0+ &+# '%(#"5)*%? $&/0+,$&*0
!"/0#$$#$ ,"# 0/%$*(#"#( &/ ># 5/0,55) $&,&*/%,")1 PI$*%?
/-#"5,!!#( .*%(/.$ 8,@#$ &+# #$&*8,&#( 8/(#5$ -,")
$8//&+5)1Q R) ,(,!&*-#5) #$&*8,&*%? &+# NOF; 8/(#5
!,",8#&#"$ *% #,0+ .*%(/.= &+*$ FNOF; !"/0#('"#
)*#5($ 3%#5) "#$/5-#( ()%,8*0,5 *%9/"8,&*/% ,>/'& &+#
0/"&*0,5 !"/0#$$#$ "#5,&#( &/ 0/?%*&*-# $&,&#1 F 0"'0*,5
D'#$&*/% *$ +/. &/ 0+//$# &+# .*%(/. 5#%?&+ *% ,%
/>S#0&*-# .,)1 E& *$ 05#," &+,& *& 8'$& ># 5/%?#" &+,% &+#
8/(#5 /"(#" P$## T#0&1 BQ1 M% &+# /&+#" +,%(= *& $+/'5(
%/& ># $/ 5/%? ,$ &/ 5/$# &+# &#8!/",5 ()%,8*0$ &+,& .#
.*$+ &/ "#$/5-#1

F "/'?+ #$&*8,&# /9 &+# '!!#" 5*8*& /9 &+# .*%(/.
5#%?&+ 8,) ># />&,*%#( .*&+ &+# 9/55/.*%? !"/0#('"#1
A*"$&= ,$ *% A*?1 L= 0/8!'&# &+# G#"/45,? 0"/$$40/""#5,4
&*/% >#&.##% &./ 0+,%%#5$ *% , U4!/*%& .*%(/. ,& ,55
&*8# !/*%&$ ('"*%? &+# &,$@1 T#0/%(= "#!#,& &+# 3"$& $&#!
9/" !"/?"#$$*-#5) 5/%?#" .*%(/.$= ,-#",?*%? >/&+ .*&+*%
&+# .*%(/. ,%( ,0"/$$ ,55 &+# &"*,5$1 F$ &+# .*%(/. ?#&$
5/%?#"= 8/"# $8//&+*%? /9 &+# 0/""#5,&*/% $&"'0&'"#
/00'"$= ,%( ()%,8*0,5 -,"*,&*/% *$ 5/$&1 C+*$ !/*%& *$
*55'$&",&#( *% A*?1 V= .+*0+ $+/.$ &+# $,8# PU4!/*%&
.*%(/.Q 0"/$$40/""#5,&*/% 0'"-# ,$ *% A*?1 L= .*&+ ,(4
(*&*/%,5 0'"-#$ '$*%? UW4!/*%& PXW 8$Q ,%( BW4!/*%&
PUWW 8$Q .*%(/.$1 K5#,"5) &+# BW4!/*%& .*%(/. 5/$#$ ,
?"#,& (#,5 /9 &+# -,"*,>*5*&) *% &+# 0/""#5,&*/% $&"'0&'"#1
C+# UW4!/*%& .*%(/.= /% &+# /&+#" +,%(= *$ ,>5# &/ &",0@
8'0+ /9 &+# >,$*0 !,&&#"% /9 -,"*,&*/%1 A/" 8/(#5 #$&*4
8,&*/%= .# 8'$& ,5$/ 0/%$*(#" &+# $8//&+%#$$ /9 &+#
#$&*8,&#( $!#0&",5 D',%&*&*#$1 M'" #J!#"*#%0# *%(*0,&#$
&+,& &+# UW4!/*%& PXW 8$Q .*%(/. *$ , ?//( 0/8!"/8*$#
>#&.##% !"#$#"-*%? 0/""#5,&*/% -,"*,>*5*&) ,%( 8,*%4
&,*%*%? $8//&+%#$$ /9 &+# #$&*8,&#( $!#0&",5 D',%&*&*#$1
F5&+/'?+ /%# 0/'5( &,*5/" &+# .*%(/. $*G# &/ 3& (*Y#"#%&

!"#$ %$ C+# G#"/45,? 0"/$$40/""#5,&*/% >#&.##% &./ 0+,%%#5$ 9"/8 &+#
$&"*,&# 0/"&#J 0/8!'&#( *% U4!/*%& .*%(/.$ ,& #-#") &*8# !/*%& ('"*%?
&+# &,$@

!"#$ &$ C+# G#"/45,? 0"/$$40/""#5,&*/% >#&.##% &+# $,8# &./ 0+,%%#5$
,$ *% A*?1 L 9/" U4= UW4= ,%( BW4!/*%& .*%(/.$

LZ

Too-large windows may not be 
locally-stationary

Consideration: Local Stationarity

Saturday, September 24, 2011



Time-Frequency GC

Ding et al, 2000

!"#$#%& $&'() *$ &+,& &+*$ -*#. *$ %/& 0/""#0&1 2# 3%( &+,&
&+# $/40,55#( 66%/*$#77 0/8!/%#%& /9 &+# :;<= />&,*%#( >)
$'>&",0&*%? &+# #%$#8>5# 8#,% 9"/8 &+# $*%?5#4&"*,5 :;<=
,0&',55) 0/%&,*%$ "*0+ &,$@4"#5#-,%& *%9/"8,&*/% &+,&
0,%%/& ># *%9#""#( 9"/8 &+# #%$#8>5# 8#,%1

A*?'"# B ,5$/ !5/&$ ,$ #""/" >,"$ ,& #,0+ &*8# !/*%& &+#
#%$#8>5# $&,%(,"( (#-*,&*/%= .+*0+ *$ , $#0/%(4/"(#"
$&,&*$&*01 C+# &*8#4-,")*%? %,&'"# /9 &+*$ D',%&*&) *$ ,5$/
,!!,"#%&1

C+# %/%$&,&*/%,"*&) #8>/(*#( *% &+# 8#,% ,%(
$&,%(,"( (#-*,&*/% 0,% ># #,$*5) "#8/-#( >) $'>&",0&*%?
&+# #%$#8>5# 8#,%= !/*%&4>)4!/*%&= 9"/8 #,0+ &"*,5 ,%(
&+#% (*-*(*%? &+# "#$'5&= ,?,*% !/*%&4>)4!/*%&= >) &+#
$&,%(,"( (#-*,&*/%1 E% 9,0&= &+#$# &./ !"/0#('"#$ 0/%4
$&*&'&# /'" $#0/%( ,%( &+*"( !"#!"/0#$$*%? $&#!$1 C+#)
,"# ,!!5*#( $#!,",&#5) &/ &+# (,&, 9"/8 #,0+ 0+,%%#51
F9&#" &+#$# &./ !"#!"/0#$$*%? $&#!$ ,"# ,!!5*#(= &+#
8#,% /9 &+# "#$'5&*%? #%$#8>5# /9 &"*,5$ *$ G#"/= ,%( &+#
$&,%(,"( (#-*,&*/% *$ /%#= ,& #-#") &*8# !/*%&1 H/&# &+,&
&+# $&#! /9 $&,%(,"( (#-*,&*/% %/"8,5*G,&*/% *$ 0"'0*,5
9/" ,55/.*%? &+# ()%,8*0,5 0+,%?#$ *% 8/(#54(#"*-#(
$!#0&",5 D',%&*&*#$ &/ ># 0/8!,"#( ,& #,0+ $&,?# /9 &,$@
!"/0#$$*%?1 I%5#$$ /&+#".*$# %/&#(= &+# ,>/-# &+"##
!"#!"/0#$$*%? $&#!$ .#"# ,!!5*#( !"*/" &/ ,55 /&+#"
,%,5)$*$ $&#!$ (#$0"*>#( >#5/.1 2# .*55 "#&'"% &/ &+#
&/!*0 /9 #%$#8>5# 8#,% $'>&",0&*/% *% 8/"# (#&,*5 *% &+#
%#J& $'>$#0&*/%1

F (##!#" $/'"0# /9 %/%$&,&*/%,"*&) &+,& 0,%%/& >#
"#8/-#( #,$*5) *$ &+# 0/""#5,&*/% $&"'0&'"# *% &+# (,&,1
K/""#5,&*/% %/%$&,&*/%,"*&) "#9#"$ &/ &+# 9,0& &+,& &+#
,'&/40/""#5,&*/%$ /9 $*%?5# 0+,%%#5$= ,%( &+# 0"/$$40/"4
"#5,&*/%$ >#&.##% 0+,%%#5$= ,& , 3J#( 5,?= -,") ,$ ,
9'%0&*/% /9 &*8# ('"*%? &+# &,$@1 C/ (#8/%$&",&# &+*$
0/""#5,&*/% %/%$&,&*/%,"*&)= .# ,-#",?#( &+# G#"/45,?
0"/$$40/""#5,&*/% >#&.##% &./ 0+,%%#5$ 9"/8 &+# $&"*,&#
0/"&#J /-#" ,55 &"*,5$ $'00#$$*-#5) 9/" #,0+ &*8# !/*%&
('"*%? &+# &,$@1 C+# &*8#4-,")*%? $&"'0&'"# /9 &+# "#4
$'5&*%? 0'"-#= $+/.% *$ A*?1 L= 05#,"5) (#8/%$&",&#$ &+#
%/%$&,&*/%,"*&) /9 &+# 0"/$$40/""#5,&*/% $&,&*$&*01

!"# $%&'()*+,-&* .//'&.0% (& -1.2+,3
*+(% 0&''12.(+&, ,&,4(.(+&,.'+(5

M'" $&",&#?) 9/" (#,5*%? .*&+ 0/""#5,&*/% %/%$&,&*/%,"*&)
*$ &/ !#"9/"8 NOF; ,%,5)$*$ *% $+/"&= +*?+5) /-#"4
5,!!#( &*8# .*%(/.$ *% .+*0+ &+# '%(#"5)*%? $&/0+,$&*0
!"/0#$$#$ ,"# 0/%$*(#"#( &/ ># 5/0,55) $&,&*/%,")1 PI$*%?
/-#"5,!!#( .*%(/.$ 8,@#$ &+# #$&*8,&#( 8/(#5$ -,")
$8//&+5)1Q R) ,(,!&*-#5) #$&*8,&*%? &+# NOF; 8/(#5
!,",8#&#"$ *% #,0+ .*%(/.= &+*$ FNOF; !"/0#('"#
)*#5($ 3%#5) "#$/5-#( ()%,8*0,5 *%9/"8,&*/% ,>/'& &+#
0/"&*0,5 !"/0#$$#$ "#5,&#( &/ 0/?%*&*-# $&,&#1 F 0"'0*,5
D'#$&*/% *$ +/. &/ 0+//$# &+# .*%(/. 5#%?&+ *% ,%
/>S#0&*-# .,)1 E& *$ 05#," &+,& *& 8'$& ># 5/%?#" &+,% &+#
8/(#5 /"(#" P$## T#0&1 BQ1 M% &+# /&+#" +,%(= *& $+/'5(
%/& ># $/ 5/%? ,$ &/ 5/$# &+# &#8!/",5 ()%,8*0$ &+,& .#
.*$+ &/ "#$/5-#1

F "/'?+ #$&*8,&# /9 &+# '!!#" 5*8*& /9 &+# .*%(/.
5#%?&+ 8,) ># />&,*%#( .*&+ &+# 9/55/.*%? !"/0#('"#1
A*"$&= ,$ *% A*?1 L= 0/8!'&# &+# G#"/45,? 0"/$$40/""#5,4
&*/% >#&.##% &./ 0+,%%#5$ *% , U4!/*%& .*%(/. ,& ,55
&*8# !/*%&$ ('"*%? &+# &,$@1 T#0/%(= "#!#,& &+# 3"$& $&#!
9/" !"/?"#$$*-#5) 5/%?#" .*%(/.$= ,-#",?*%? >/&+ .*&+*%
&+# .*%(/. ,%( ,0"/$$ ,55 &+# &"*,5$1 F$ &+# .*%(/. ?#&$
5/%?#"= 8/"# $8//&+*%? /9 &+# 0/""#5,&*/% $&"'0&'"#
/00'"$= ,%( ()%,8*0,5 -,"*,&*/% *$ 5/$&1 C+*$ !/*%& *$
*55'$&",&#( *% A*?1 V= .+*0+ $+/.$ &+# $,8# PU4!/*%&
.*%(/.Q 0"/$$40/""#5,&*/% 0'"-# ,$ *% A*?1 L= .*&+ ,(4
(*&*/%,5 0'"-#$ '$*%? UW4!/*%& PXW 8$Q ,%( BW4!/*%&
PUWW 8$Q .*%(/.$1 K5#,"5) &+# BW4!/*%& .*%(/. 5/$#$ ,
?"#,& (#,5 /9 &+# -,"*,>*5*&) *% &+# 0/""#5,&*/% $&"'0&'"#1
C+# UW4!/*%& .*%(/.= /% &+# /&+#" +,%(= *$ ,>5# &/ &",0@
8'0+ /9 &+# >,$*0 !,&&#"% /9 -,"*,&*/%1 A/" 8/(#5 #$&*4
8,&*/%= .# 8'$& ,5$/ 0/%$*(#" &+# $8//&+%#$$ /9 &+#
#$&*8,&#( $!#0&",5 D',%&*&*#$1 M'" #J!#"*#%0# *%(*0,&#$
&+,& &+# UW4!/*%& PXW 8$Q .*%(/. *$ , ?//( 0/8!"/8*$#
>#&.##% !"#$#"-*%? 0/""#5,&*/% -,"*,>*5*&) ,%( 8,*%4
&,*%*%? $8//&+%#$$ /9 &+# #$&*8,&#( $!#0&",5 D',%&*&*#$1
F5&+/'?+ /%# 0/'5( &,*5/" &+# .*%(/. $*G# &/ 3& (*Y#"#%&

!"#$ %$ C+# G#"/45,? 0"/$$40/""#5,&*/% >#&.##% &./ 0+,%%#5$ 9"/8 &+#
$&"*,&# 0/"&#J 0/8!'&#( *% U4!/*%& .*%(/.$ ,& #-#") &*8# !/*%& ('"*%?
&+# &,$@

!"#$ &$ C+# G#"/45,? 0"/$$40/""#5,&*/% >#&.##% &+# $,8# &./ 0+,%%#5$
,$ *% A*?1 L 9/" U4= UW4= ,%( BW4!/*%& .*%(/.$

LZ

Consideration: Local Stationarity

Saturday, September 24, 2011



Time-Frequency GC

Ding et al, 2000

Saturday, September 24, 2011



Time-Frequency GC

Ding et al, 2000

Consideration: Sufficient data

Saturday, September 24, 2011



Time-Frequency GC

Ding et al, 2000

Consideration: Sufficient data

M = number of variables

Saturday, September 24, 2011



Time-Frequency GC

Ding et al, 2000

Consideration: Sufficient data

M = number of variables
p = model order

Saturday, September 24, 2011



Time-Frequency GC

Ding et al, 2000

Consideration: Sufficient data

M = number of variables
p = model order
Ntr = number of trials

Saturday, September 24, 2011



Time-Frequency GC

Ding et al, 2000

Consideration: Sufficient data

M = number of variables
p = model order
Ntr = number of trials
W = length of each window (sample points)

Saturday, September 24, 2011



Time-Frequency GC

Ding et al, 2000

Consideration: Sufficient data

M = number of variables
p = model order
Ntr = number of trials
W = length of each window (sample points)

Saturday, September 24, 2011



Time-Frequency GC

Ding et al, 2000

Consideration: Sufficient data

M = number of variables
p = model order
Ntr = number of trials
W = length of each window (sample points)

We have M2p  model coefficients to estimate. This requires a 
minimum of M2p independent samples. 
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M = number of variables
p = model order
Ntr = number of trials
W = length of each window (sample points)

We have M2p  model coefficients to estimate. This requires a 
minimum of M2p independent samples. 
So we have the constraint M2p <= Ntr W. 
In practice, however, a better heuristic is M2p <= (1/10)Ntr W.  

Saturday, September 24, 2011



Time-Frequency GC

Ding et al, 2000

Consideration: Sufficient data

M = number of variables
p = model order
Ntr = number of trials
W = length of each window (sample points)

We have M2p  model coefficients to estimate. This requires a 
minimum of M2p independent samples. 
So we have the constraint M2p <= Ntr W. 
In practice, however, a better heuristic is M2p <= (1/10)Ntr W.  

Or:   W >= 10(M2p/Ntr) 10x more data points than 
parameters to estimate
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Consideration: Sufficient data

M = number of variables
p = model order
Ntr = number of trials
W = length of each window (sample points)

We have M2p  model coefficients to estimate. This requires a 
minimum of M2p independent samples. 
So we have the constraint M2p <= Ntr W. 
In practice, however, a better heuristic is M2p <= (1/10)Ntr W.  

Or:   W >= 10(M2p/Ntr)

SIFT will let you know if your window length is not optimal

10x more data points than 
parameters to estimate
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interaction time lag between any two processes.
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Consideration: Process dynamics

• Your window must be larger than the maximum expected 
interaction time lag between any two processes.

• Your window should be large enough to span ~1 cycle of the 
lowest frequency of interest (remember the Heisenberg uncertainty 
principle)
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Many ways to do time-varying MVAR estimation

Short-Time adaptive multivariate autoregression (AMVAR)

Non-parametric MVAR estimation (minimum-phase 
spectral matrix factorization)

Kalman Filtering

...

Kalman Filtering
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transition equation in DCM for fMRI, as it is used widely to date, does
not have a stochastic term. As a consequence, any and all signal
dynamics that it can capture is limited to the signal subspace spanned
by the assumed inputs. In other words, it assumes that all neural
population dynamics can be captured without error from the chosen
inputs and the transformation of that input in its ‘flow’ through the
DCM network. The exogenous inputs mostly have a very simple form,
such as a stimulus function that represents the presence or absence of
a visual stimulus or level of experimental manipulation, such as
attention left vs. right. The incapability of DCM to model signal
variations beyond those implied by the exogenous inputs makes its
connectivity estimation highly dependent on the exact number and
form of the assumed inputs and the form of the structural model.
Although the particular instantiation of DCMwidely used to date (and
used by David et al.) is indeed deterministic, stochastic extensions to
DCM have been in development very recently (Friston et al., 2008;
Daunizeau et al., 2009). These developments clearly have the
potential to eliminate one of the differentiating aspects of LSMs and
deterministic DCMs and bring the models even closer together.
Interestingly, the inclusion of noise in the state equations makes
inference on stochastic DCMs usefully interpretable in the stochastic
framework of G-causality, reinforcing our point of the importance of
this framework. In addition, a stochastic version of DCM could
potentially provide an increased robustness to certain kinds of
structural model misspecification that we have discussed above,
such as unmodeled (or poorly modeled) sources of input to the
system. However, this robustness is likely to be very limited,
especially when the misspecification of structural models is more
comprehensive than the omission of additional exogenous inputs. The
inclusion and estimation of state noise is not a viable proxy to the
actual inclusion of the right nodes in a structural model (or the
consideration thereof in an exploratory or model-comparison
framework).

The second important difference in modeling signal dynamics is
that in DCM the state variables are given a definite physical
interpretation within a generative model of the data. For every
selected region a single state variable represents the neuronal or
synaptic activity of a local population of neurons and (in DCM for
BOLD fMRI) four or five more (Stephan et al., 2007) represent
hemodynamic quantities such as capillary blood volume, blood flow

and deoxy-hemoglobin content. All state variables (and the equations
governing their dynamics) that serve themapping of neuronal activity
to the fMRI measurements y[t] (including the observation equation)
can be called the observation model. Most of the physiologically
motivated generative model in DCM for fMRI is therefore concerned
with an observation model encapsulating hemodynamics. In contrast,
in LSM/GCM the state variables may or may not have a definite
physical interpretation, depending on the particular representation
chosen. However, in the most straightforward representations LSM
state variables are very simple functions of the measurements y[t]. In
its standard formulation, LSM/GCM does not use a biophysical model
of hemodynamics. In short, the LSM observation model amounts to a
linear combination of the state variables at the same moment in time
(hence: static), whereas the observation model in DCM is non-linear
and dynamic. Thus, investigating the observation model in DCM for
fMRI and what it affords in terms of connectivity modeling will be
important in the comparison of the dynamical models in DCM and
GCM.

The observation model in DCM for fMRI is a biophysical model of
hemodynamic coupling largely based on the Balloonmodel (Buxton et
al., 1998) and Windkessel model (Mandeville et al., 1999). The
parameters in this model, such as transit time and autoregulation, are
estimated conjointly with the parameters quantifying neuronal
connectivity. Thus, the forward biophysical model of hemodynamics
is ‘inverted’ in the estimation procedure to achieve a deconvolution of
fMRI time series and obtain estimates of the underlying neuronal
states. The inversion of the observation model to achieve hemody-
namic deconvolution of fMRI time series is an important aspect of
DCM that we will discuss further below. It is important to note that
the specific biophysical model for the interactions between neuronal
states (neurodynamics) on one hand and the model for the
hemodynamics (the observation model for fMRI) on the other hand
largely dictate which of these models will absorb given aspects of the
observed data. For instance, if there are delayed coherent variations
between variables in the observed data and the hemodynamic model
has much more affordance for delays than the neurodynamic model
(as is the case in DCM), then the delay will be put into the
hemodynamics in the fitting of the model. Not because it is a fact of
the world that all delays are hemodynamic, but because the
experimenter has implicitly assumed that to be true.

Fig. 2. State-space representations of dynamic connectivity models. The state-space representations for a linear stochastic model (LSM, often employed in Granger causality analysis
and in GCM) and a dynamic causal model are shown and compared with respect to their mathematical properties. In a state-space representation the relations between measured
variables yj and, possibly, exogenous input variables uk are modeled through unobservable state variables zi. The individual variables vary over time and are summarized into
vectors: u=(u1, …, uM), z=(z1, …, zL), y=(y1, …, yN). State-space equations generally consist of two sets of equations. The transition equations or state equations describe the
evolution of the dynamic system over time, capturing relations among state variables zi themselves and the influence of exogenous inputs uk. The observation equations or
measurement equations relate the measurement variables yj to the state variables zi and inputs uk. Connectivity modeling of neuroimaging data involves the estimation of the
elements in the coefficient matrices A, Bj and C from measurements y[t] and, possibly, inputs u[t]. Whereas a linear stochastic model employs linear stochastic transition equations,
those in dynamic causal modeling are bi-linear and deterministic.

4 A. Roebroeck et al. / NeuroImage xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article as: Roebroeck, A., et al., The identification of interacting networks in the brain using fMRI: Model selection, causality
and deconvolution, NeuroImage (2009), doi:10.1016/j.neuroimage.2009.09.036

• Based on rich dynamical systems theory.
• Well-established state-space algorithms for tracking in non-stationary, high-
dimensional, partially-observed, noisy systems
• Easily extendable to nonlinear systems
• Allows for the additional modeling of (known or inferred) exogenous inputs
• Allows for estimation of additional unknown sources (as additional states)

Roebroeck, et al NeuroImage, 2009
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hemodynamics (the observation model for fMRI) on the other hand
largely dictate which of these models will absorb given aspects of the
observed data. For instance, if there are delayed coherent variations
between variables in the observed data and the hemodynamic model
has much more affordance for delays than the neurodynamic model
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the world that all delays are hemodynamic, but because the
experimenter has implicitly assumed that to be true.

Fig. 2. State-space representations of dynamic connectivity models. The state-space representations for a linear stochastic model (LSM, often employed in Granger causality analysis
and in GCM) and a dynamic causal model are shown and compared with respect to their mathematical properties. In a state-space representation the relations between measured
variables yj and, possibly, exogenous input variables uk are modeled through unobservable state variables zi. The individual variables vary over time and are summarized into
vectors: u=(u1, …, uM), z=(z1, …, zL), y=(y1, …, yN). State-space equations generally consist of two sets of equations. The transition equations or state equations describe the
evolution of the dynamic system over time, capturing relations among state variables zi themselves and the influence of exogenous inputs uk. The observation equations or
measurement equations relate the measurement variables yj to the state variables zi and inputs uk. Connectivity modeling of neuroimaging data involves the estimation of the
elements in the coefficient matrices A, Bj and C from measurements y[t] and, possibly, inputs u[t]. Whereas a linear stochastic model employs linear stochastic transition equations,
those in dynamic causal modeling are bi-linear and deterministic.
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transition equation in DCM for fMRI, as it is used widely to date, does
not have a stochastic term. As a consequence, any and all signal
dynamics that it can capture is limited to the signal subspace spanned
by the assumed inputs. In other words, it assumes that all neural
population dynamics can be captured without error from the chosen
inputs and the transformation of that input in its ‘flow’ through the
DCM network. The exogenous inputs mostly have a very simple form,
such as a stimulus function that represents the presence or absence of
a visual stimulus or level of experimental manipulation, such as
attention left vs. right. The incapability of DCM to model signal
variations beyond those implied by the exogenous inputs makes its
connectivity estimation highly dependent on the exact number and
form of the assumed inputs and the form of the structural model.
Although the particular instantiation of DCMwidely used to date (and
used by David et al.) is indeed deterministic, stochastic extensions to
DCM have been in development very recently (Friston et al., 2008;
Daunizeau et al., 2009). These developments clearly have the
potential to eliminate one of the differentiating aspects of LSMs and
deterministic DCMs and bring the models even closer together.
Interestingly, the inclusion of noise in the state equations makes
inference on stochastic DCMs usefully interpretable in the stochastic
framework of G-causality, reinforcing our point of the importance of
this framework. In addition, a stochastic version of DCM could
potentially provide an increased robustness to certain kinds of
structural model misspecification that we have discussed above,
such as unmodeled (or poorly modeled) sources of input to the
system. However, this robustness is likely to be very limited,
especially when the misspecification of structural models is more
comprehensive than the omission of additional exogenous inputs. The
inclusion and estimation of state noise is not a viable proxy to the
actual inclusion of the right nodes in a structural model (or the
consideration thereof in an exploratory or model-comparison
framework).

The second important difference in modeling signal dynamics is
that in DCM the state variables are given a definite physical
interpretation within a generative model of the data. For every
selected region a single state variable represents the neuronal or
synaptic activity of a local population of neurons and (in DCM for
BOLD fMRI) four or five more (Stephan et al., 2007) represent
hemodynamic quantities such as capillary blood volume, blood flow
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(hence: static), whereas the observation model in DCM is non-linear
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GCM.
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is ‘inverted’ in the estimation procedure to achieve a deconvolution of
fMRI time series and obtain estimates of the underlying neuronal
states. The inversion of the observation model to achieve hemody-
namic deconvolution of fMRI time series is an important aspect of
DCM that we will discuss further below. It is important to note that
the specific biophysical model for the interactions between neuronal
states (neurodynamics) on one hand and the model for the
hemodynamics (the observation model for fMRI) on the other hand
largely dictate which of these models will absorb given aspects of the
observed data. For instance, if there are delayed coherent variations
between variables in the observed data and the hemodynamic model
has much more affordance for delays than the neurodynamic model
(as is the case in DCM), then the delay will be put into the
hemodynamics in the fitting of the model. Not because it is a fact of
the world that all delays are hemodynamic, but because the
experimenter has implicitly assumed that to be true.

Fig. 2. State-space representations of dynamic connectivity models. The state-space representations for a linear stochastic model (LSM, often employed in Granger causality analysis
and in GCM) and a dynamic causal model are shown and compared with respect to their mathematical properties. In a state-space representation the relations between measured
variables yj and, possibly, exogenous input variables uk are modeled through unobservable state variables zi. The individual variables vary over time and are summarized into
vectors: u=(u1, …, uM), z=(z1, …, zL), y=(y1, …, yN). State-space equations generally consist of two sets of equations. The transition equations or state equations describe the
evolution of the dynamic system over time, capturing relations among state variables zi themselves and the influence of exogenous inputs uk. The observation equations or
measurement equations relate the measurement variables yj to the state variables zi and inputs uk. Connectivity modeling of neuroimaging data involves the estimation of the
elements in the coefficient matrices A, Bj and C from measurements y[t] and, possibly, inputs u[t]. Whereas a linear stochastic model employs linear stochastic transition equations,
those in dynamic causal modeling are bi-linear and deterministic.
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The State-Space Model

z(t) = z(t −1) + v(t)
y(t) = H (t)z(t) + (t)

State-Space Model

state transition equation (random walk)

observation equation (VAR model)

H (t) = IM ⊗ vec X(t −1) … X(t − p)⎡
⎣

⎤
⎦
T⎛

⎝
⎞
⎠

T

[1×Mp]

z(t) = vec [A(1) (t),…,A( p) (t)]T( )[M 2 p×1]
unknown VAR parameters

y(t) = X(t)

How do we solve for the time-varying unknown states? 

Kalman Filtering (and extensions)
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Scalp or Source?
398 15 Multivariate Signal Analysis by Parametric Models

Fig. 15.13: Direction of flows for 21-channel EEG (awake state eyes closed) obtained
by means of different methods. The shade of gray of the arrow represents the
strength of the connection (black = the strongest), for each method 40 strongest
flows are shown. Reprinted from with permission [49] (© IEEE 2005).

lot of activity flowing to the destination channels from the posterior electrodes,
so the denominator in Eq. (15.6) is quite large, which diminishes the values of
DTFs showing outflows from Fz. For Granger causality and DTF there is no
propagation from the temporal electrodes. This is practically also the case for
dDTF. The dDTF shows only direct flows, we can see that in this case the pattern
of flows is consistent with anatomy, e.g., a lack of direct connection between Oz
and Pz, Fz, and Fpz—locations where hemispheres are partitioned. The main
sources of the activity—namely, electrodes P3, P4, O2, Oz, O1—are the same as
for the other multivariate estimates.
Inspecting the results of application of the PDC function to the same data

epoch we observe a different picture. One can notice that, unlike the results of
dDTF, some channels became sinks. This is due to the normalization of PDC. In
fact, we do not see the transmission, as is the case for dDTF, but the ratio between
the flow to a given channel with respect to all the outflows from the considered
channel. In this way, a channel propagating activity in all directions will show
weaker flows than a channel propagating only in one direction. Therefore, the
method is not suitable for identification of sources of EEG activity, but it may be
useful when the destination channel is of primary interest.
The pattern of propagations obtained for the bivariate estimates of the Granger

or

45
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A Recipe for Reducing Errors:
• Anatomically Realistic Forward Model
• Appropriately Constrained Inverse Model
Akalin Acar and Makeig, 2010
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Estimating Dependency of 
Independent Components ?

Isn’t it a contradiction to examine dependence between 
Independent Components?

Instantaneous (e.g., Infomax) ICA only explicitly enforces 
instantaneous independence. Time-delayed dependencies 
may be preserved

ICA seeks to maximize global independence (over entire 
recording session), transient dependencies are often 
preserved 

Saturday, September 24, 2011



Estimating Dependency of 
Independent Components ?8

rather short time, while the EM implementation of SCSA
is in medium range and CICAAR requires the longest time.
However, for SCSA there is still room for improvement,
since the regularization parameter of this method is currently
selected by the cross-validation procedure, which could be
changed.
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Fig. 3. Estimation errors of the mixing matrix according to the goodness-of-fit
(GOF) criterion. Results are shown for the proposed (Sparsely-) Connected
Sources Analysis variants (SCSA EM, SCSA, CSA) and three alternative
approaches (CICAAR, MVARICA, ICA). Different subfigures depict the
methods’ performance in the noiseless cass (N0), as well as in the presence
of different types of noise (N1-N6, see TABLE I).
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Fig. 4. Localization errors of dipole fits conducted on the estimated mixing
field patterns. Results are shown for the proposed (Sparsely-) Connected
Sources Analysis (SCSA EM, SCSA, CSA) variants and three alternative
approaches (CICAAR, MVARICA, ICA). Different subfigures depict the
methods’ performance in the noiseless cass (N0), as well as in the presence
of different types of noise (N1-N6, see TABLE I).

IV. DISCUSSION

Let us recall the assumptions we make to identify individual
brain sources and to estimate their interactions. While ICA
results in a unique decomposition assuming statistical inde-
pendence, such an assumption is inconsistent when studying
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Fig. 5. Estimation errors regarding the source connectivity structure as
measured by fitting an MVAR model subsequently to the demixed sources and
testing the obtained coefficients for significant interaction. The performance
measure reported is the area under the curve (AUC) score obtained by varying
the significance level.

Mixing Matrix Approximation Error:
Dependence on Connectivity and SNR
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Fig. 6. Mixing matrix approximation performance of (Sparsely-) Connected
Sources Analysis variants (SCSA EM, SCSA, CSA) and three alternative
approaches (CICAAR, MVARICA, ICA) under variation of the degree of
connectedness (left side) and SNR (right side). The performance at different
noise levels is investigated for white sensor noise without temporal structure
(N1), while the influence of connectivity is studied in the noiseless case (N0).

brain interactions. However, all neural interactions require a
minimum delay well within the temporal resolution of electro-
physical measurements of brain activity. Hence, it makes sense
to assume independent innovation processes and to model all
interactions explicitly using AR matrices. In relation to ICA
we pay some price for that: In our case, independence is
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sec

                  Runtime                  

Fig. 7. Average runtime of the proposed (Sparsely-) Connected Sources
Analysis variants (SCSA EM, SCSA, CSA) and three alternative approaches
(CICAAR, MVARICA, ICA), taken over all experiments conducted for this
study.

Haufe et al, 2008
Saturday, September 24, 2011



Source Information Flow Toolbox

S I F T

Fr
eq

ue
nc

y 
(H

z)

Time (sec)

CAUSALITY FROM

C
A

U
SA

LI
T

Y
  T

O

http://sccn.ucsd.edu/wiki/SIFT
Mullen, et al, Journal of Neuroscience Methods (in prep, 2011)

Mullen, Delorme, Kothe, Makeig, Society for Neuroscience, 2010
Delorme, Mullen, Kothe et al, Computational Intelligence and Neuroscience, vol 12, 2011

Pre-processing

Statistics

VisualizationGroup Analysis

Model Fitting 
and Validation

Connectivity

M
o
d
e
lin
g

! "#!

$%&!'()&*!(+)&+!,&*&-./(0!123!/,!,%(40!/0!5/67+&!#89!:&+&!4&!-;0!-%((,&!.(!-;*-7*;.&!(0&!
(+!'(+&!(<!.%&!/0<(+';./(0!-+/.&+/;!*/,.&)!/0!,&-./(0!89=9!!(>&+!;!+;06&!(<!'()&*!(+)&+,!?!"#$%
.(!!"&'@9! 3<!'(+&! .%;0! (0&!4/0)(4! /,! ;>;/*;A*&B! .%&! /0<(+';./(0! -+/.&+/;! ;+&! -;*-7*;.&)! <(+!
&;-%!4/0)(4B!;0)!%/,.(6+;',!4/**!A&!6&0&+;.&)!,%(4/06!.%&!)/,.+/A7./(0!(<!(C./';*!'()&*!
(+)&+,!<(+!;**!4/0)(4,9!3<!4&!%;>&!;!*;+6&!07'A&+!(<!4/0)(4,!;0)!;+&!C+&,,&)!<(+!./'&B!4&!
-;0! ,C&-/<D! ;! +;0)('! C&+-&0.;6&! (<! 4/0)(4,! <(+! 4%/-%! .(! -;*-7*;.&! .%&! -+/.&+/;! ?!"
#$%&'#(")'"(*+,-./9!E&;+!/0!'/0)B!%(4&>&+B!.%;.!/0-+&;,/06!.%&!07'A&+!(<!4/0)(4,!7,&)!
4/**! +&,7*.! /0! ;! A&..&+! &,./';.&! (<! .%&! &'C/+/-;*! )/,.+/A7./(0! (<! .%&! /0<(+';./(0! -+/.&+/;!
;-+(,,!4/0)(4,9!F))/./(0;**DB! <(+! ;! <;,.B! ;CC+(G/';.&!&,./';.&!(<! .%&! /0<(+';./(0! -+/.&+/;B!
4&!-;0!-%((,&!.(!!"#$!%&'%.%&!'()&*!?H&7';/&+!;0)!I-%0&/)&+B!JKK#@9!L;.%&+!.%;0!</../06!
!"&'!M!!"#$%NFL!'()&*,!(<!/0-+&;,/06!(+)&+B%.%/,!</.,!;!,/06*&!NFLO!"&'P!'()&*B!;0)!)(40);.&,!
.%&!0(/,&!-(>;+/;0-&!';.+/G!.(!(A.;/0!;CC+(G/';.&!&,./';.&,!(<!.%&!/0<(+';./(0!-+/.&+/;!<(+!
&;-%!'()&*!(+)&+!!!!!!!!"#!! ! !!"#!9!

5(+!.%/,!&G;'C*&B!,&.!.%&!C;+;'&.&+,!;,!,%(40!/0!5/67+&!#8!;0)!/0!.%&!.;A*&!A&*(4Q!!

RC./(0! N;*7&!
01&.1"21$).1$*" (.-.2)"*--"

?%(*)! )(40! S.+*! ?T/0UV/07G@! (+! S('';0)!
?W;-@!;0)!-*/-X!.(!,&*&-.!'7*./C*&!-+/.&+/;@!

3'#%&*)."+'&.-"" 24.25.&""
6'&.-"'1&.1"1*%7." 8"9":;"
!"#$%&'#(")'"(*+,-." 8;;"
!

S*/-X!0<".(!-(0./07&9!

!
=$7>1."8:?"@4."6'&.-"01&.1"A.-.2)$'%"BCD"7.%.1*).&"AD!pop_est_selModelOrder()"

!

Saturday, September 24, 2011

http://sccn.ucsd.edu/wiki/SIFT
http://sccn.ucsd.edu/wiki/SIFT
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NFT toolbox EEGLAB SIFT

28 user plugins

EyeTracker

Wii remote

Mocap

EEG

Tactile stream

Video stream

Audio stream

Producer

DataRiver

MatRiver

BCILAB

HeadIT

ERICA framework

Analysis

Analysis plugins

Data archive

Data sync and handling

Interactive tools

Stimulus control

Figure 1: Complete electrophysiological experiment control, data collection, analysis, archiving, and meta-analysis suite: the EEGLAB
environment for data analysis; the ERICA framework for data recording, online analysis, and stimulus control; the BCILAB toolbox for
online and offline classification and BCI; the SIFT toolbox for information flow modeling; HeadIT, an archival data and tools resource
under development for laboratory or archival data storage, retrieval and meta-analysis; dashed lines indicates planned interfaces under
construction.

Table 1: Components of the extended SCCN software suite.

Software Since Vers. Licence Open Src. Platform Web link

EEGLAB 2002 10.0 GNU GPL Yes Matlab http://sccn.ucsd.edu/wiki/EEGLAB
NFT toolbox 2009 2.0 GNU GPL Yes† Matlab† http://sccn.ucsd.edu/wiki/NFT
SIFT 2010 0.1a GNU GPL Yes Matlab http://sccn.ucsd.edu/wiki/SIFT
BCILAB 2010 0.9 GNU GPL Yes Matlab http://sccn.ucsd.edu/wiki/BCILAB
ERICA 2009 1.0 Mixed∗ Mixed∗ Windows†† http://sccn.ucsd.edu/wiki/ERICA
∗

DataRiver, a central compiled C++ ERICA component, is free for noncommercial use. It is not open source.
†Contains a large number of precompiled C and C++ routines, all of them being open source.
††Many components also run under Linux and Mac OSX.

removing artifacts. Once these data sets have been pre-
processed, users then have to import the subject data sets
into a STUDY. Creating a STUDY design for analysis then
allows statistical group comparison of data measures for
different conditions (e.g., time locked to specific event types)
for each subject. For example, in an oddball paradigm
comprised of trials time locked to target, distractor, and
standard stimuli, users might want to contrast these three
types of trials using a 3× 1 design. Alternatively, they might
want to contrast distractor and target stimulus-locked trials,
considered together, with responses to standard stimuli. The
STUDY design feature of EEGLAB allows users to easily
investigate such contrasts. In a STUDY with N subject
groups, the STUDY design scheme also allows users to look
at group effects for each condition using a 2×N design.

All of the above design concepts may be implemented
within a single STUDY using multiple STUDY.design specifi-
cations. Finally, use of multiple designs may also be useful for
testing different signal processing options. For instance, one
might create two identical STUDY designs, one computing
time/frequency measures using fast fourier transforms (FFT)
and the other using wavelets. Once computed, the user can

toggle between designs to compare results using the two
types of time/frequency decomposition.

EEGLAB uses statistical tools including surrogate and
parametric statistics to perform hypothesis testing on
STUDY designs. Surrogate tests involve bootstrap or permu-
tation methods. Depending on the design type, statistical
hypothesis testing using t-test, one-way ANOVA or two-
way ANOVA—or their surrogate-data equivalents—are per-
formed for paired data or unpaired data designs. Finally,
the False Discovery Rate (FDR) algorithm is applied to
correct for multiple comparisons [9]. Using these simple
yet powerful statistical tools, EEGLAB allows comparison
of multiple experimental designs applied to a given data
STUDY.

When working with data from multiple subjects using
the STUDY design framework, users may analyse either
IC, scalp channel, or other types of component activities
associated with individual subjects. Decomposition of the
data into ICs allows inclusion of source localization infor-
mation, since many ICs strongly resemble the projection
of a single equivalent current dipole, presumably reflecting
their origin in a single locally synchronized cortical patch.
The neuroelectromagnetic forward head modeling toolbox

Delorme, Mullen, Kothe, Akalin Acar, Bigdely-Shamlo,Vankov, Makeig, Computational Intelligence and Neuroscience, vol 12, 2011

BCILAB

EEGLAB Software framework
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Source Information Flow 
Toolbox (SIFT)

A new (alpha) toolbox for source-space electrophysiological information 
flow and causality analysis (single-subject or group analysis) integrated 
into the EEGLAB software environment

Modular architecture intended to support multiple modeling approaches

Emphasis on vector autoregression and time-frequency domain 
approaches

Standard and novel interactive visualization methods for exploratory 
analysis of connectivity across time, frequency, and spatial location

Requirements: EEGLAB, MATLABTM 2008b, Signal Processing Toolbox, 
Statistics Toolbox (for some functions -- may be removed in the future)
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Source-separation and localization 
(performed externally using EEGLAB or other toolboxes)

Filtering/Detrending

Downsampling

Differencing

Normalization (temporal or ensemble)

Trial balancing

Tests for stationarity of the data (linear methods)

...
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Linear Kalman Filtering

Extended/Cubature Kalman Filtering

Nonparametric MVAR (minimum-
phase spectral factorization)
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VAR Other
-Power spectrum (ERSP)
-Coherence (Coh), Partial Coherence (pCoh), Multiple 
Coherence (mCoh)
-Partial Directed Coherence (PDC)
-Generalized PDC  (GPDC)
-Partial Directed Coherence Factor (PDCF)
-Renormalized PDC  (rPDC) *
-Directed Transfer Function (DTF)
-Direct Directed Transfer Function (dDTF)
-Granger-Geweke Causality (GGC)
-Conditional GGC
-Blockwise GGC *

-Transfer Entropy *

-Multivariate phase-locking value 
(mPLV) *

fully implemented partially-developed coming soon
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Model Fitting Validation Connectivity
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Statistics VisualizationModelingPreprocessing
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Hnull : Cij ≤ Cnull         Hbase: Cij ≤ Cbaseline             HAB: CAij = CBij

Statistics VisualizationModelingPreprocessing

Parametric

Asymptotic analytic estimates of 
confidence intervals

Applies to: PDC, nPDC, DTF, 
nDTF, rPDC
Tests: Hnull, Hbase, HAB

Confidence intervals using thin-
plate smoothing splines

Applies to: dDTF
Tests: Hbase, HAB

fully implemented partially-developed coming soon
63

B
eta R

elease

Saturday, September 24, 2011



Hnull : Cij ≤ Cnull         Hbase: Cij ≤ Cbaseline             HAB: CAij = CBij

Statistics VisualizationModelingPreprocessing

Parametric

Asymptotic analytic estimates of 
confidence intervals

Applies to: PDC, nPDC, DTF, 
nDTF, rPDC
Tests: Hnull, Hbase, HAB

Confidence intervals using thin-
plate smoothing splines

Applies to: dDTF
Tests: Hbase, HAB

Non-parametric

Phase-randomization 
 Applies to: all
 Tests: Hnull

 Permutation Tests
Applies to: all
Tests: HAB, Hbase

Bootstrap and Jacknife
Applies to: all
Tests: HAB, Hbase

fully implemented partially-developed coming soon
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Statistics VisualizationModelingPreprocessing

Parametric Non-parametric
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Hnull : Cij ≤ Cnull         Hbase: Cij ≤ Cbaseline             HAB: CAij = CBij

Statistics VisualizationModelingPreprocessing

Parametric Non-parametric

fully implemented partially-developed coming soon
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VisualizationStatisticsModelingPreprocessing

fully implemented partially-developed coming soon
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VisualizationStatisticsModelingPreprocessing

Interactive Time-Frequency Grid

fully implemented partially-developed coming soon
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VisualizationStatisticsModelingPreprocessing

Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie
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Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Density Movie

fully implemented partially-developed coming soon
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VisualizationStatisticsModelingPreprocessing

Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Density Movie

Directed Graphs on anatomicals (ECoG)

fully implemented partially-developed coming soon
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VisualizationStatisticsModelingPreprocessing

Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Density Movie

Directed Graphs on anatomicals (ECoG)

and more...

fully implemented partially-developed coming soon
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VisualizationStatisticsModelingPreprocessing

Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Density Movie

Directed Graphs on anatomicals (ECoG)

and more...
All of these currently support single-subject or (in beta version) group analysis
ROI connectivity analysis can currently be performed using dipole clustering

fully implemented partially-developed coming soon
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Causal Time-Frequency Grid
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Causal Time-Frequency Grid
Error - Correct
p < 0.05, N=24
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Error - Correct
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Causal Time-Frequency Grid
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Causal Time-Frequency Grid
Error - Correct
p < 0.05, N=24
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Interactive BrainMovie3D
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Causal Projection
Error > Correct (p < 0.05, N=24)

dDTF

3-7 Hz
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Causal Projection
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Group Analysis

partially-developed
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Group Analysis

This approach adopts a 3-stage process: 
1. Identify K ROI’s (clusters) by affinity 
clustering of sources across subject 
population using EEGLAB’s Measure-Product 
clustering. 
2. Average all incoming and outgoing 
statistically significant connections between 
each pair of ROIs to create a [ K X K [x freq x 
time ] ] group connectivity matrix. 
3. Visualize the results using any of SIFTs 
visualization routines. This method suffers from 
low statistical power when subjects do not 
have high agreement in terms of source 
locations (missing variable problem).

Disjoint Clustering

partially-developed
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Group Analysis

A more robust approach (in development with 
Wes Thompson and to be released in SIFT 
1.0b) uses smoothing splines and Monte-Carlo 
methods for joint estimation of posterior 
probability (with confidence intervals) of cluster 
centroid location and between-cluster 
connectivity. This method takes into account 
the “missing variable” problem inherent to the 
disjoint clustering approach and provides 
robust group connectivity statistics.

See Thompson and Mullen et al (2011), ICON 
XI

Bayesian Mixture Model

This approach adopts a 3-stage process: 
1. Identify K ROI’s (clusters) by affinity 
clustering of sources across subject 
population using EEGLAB’s Measure-Product 
clustering. 
2. Average all incoming and outgoing 
statistically significant connections between 
each pair of ROIs to create a [ K X K [x freq x 
time ] ] group connectivity matrix. 
3. Visualize the results using any of SIFTs 
visualization routines. This method suffers from 
low statistical power when subjects do not 
have high agreement in terms of source 
locations (missing variable problem).

Disjoint Clustering

partially-developed
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Bayesian Group Inference
Error > Baseline (p < 0.01, N=24)

dDTF

3-7 Hz
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