Analyzing Oscillatory EEG Source Dynamics and Interactions using SIFT

Tim Mullen

14th EEGLAB Workshop Mallorca, Spain (ICON XI) Sept 22-25, 2011

(Bullmore and Sporns, *Nature*, 2009)

milliseconds-seconds

(Bullmore and Sporns, *Nature*, 2009)

Structural

state-invariant, anatomical

Hours-Years

milliseconds-seconds

(Bullmore and Sporns, Nature, 2009)

Structural

Functional

state-invariant, anatomical dynamic, state-dependent, correlative, symmetric

Hours-Years

milliseconds-seconds

(Bullmore and Sporns, Nature, 2009)

Structural

Functional

Effective

state-invariant, anatomical dynamic, state-dependent, correlative, symmetric dynamic, state-dependent, asymmetric, causal, information flow

Hours-Years

milliseconds-seconds

(Bullmore and Sporns, Nature, 2009)

Estimating Functional Connectivity

Correlative Measures

- Cross-Correlation
- Coherence
- Phase-Locking Value
- Phase-amplitude coupling

Phasor!

Phasers

$$A \cdot \cos(\omega t + \phi) = \operatorname{Re}\{Ae^{i(\omega t + \phi)}\}\$$
$$= \operatorname{Re}\{S(\omega, t)\}\$$

Phasor!

Phasors

$$A \cdot \cos(\omega t + \phi) = \operatorname{Re}\{Ae^{i(\omega t + \phi)}\}\$$
$$= \operatorname{Re}\{S(\omega, t)\}\$$

Phasor!

Rotation velocity (Rad/S; Hz) = (angular) frequency (*w*; *f*)

$$A \cdot \cos(\omega t + \phi) = \operatorname{Re}\{Ae^{i(\omega t + \phi)}\}\$$
$$= \operatorname{Re}\{S(\omega, t)\}\$$

Phasor!

Polar animations courtesy Wikipedia

Saturday, September 24, 2011

Polar animations courtesy Wikipedia

Saturday, September 24, 2011

Saturday, September 24, 2011

Phase-Locking Value (PLV)

Phase-Locking Value (PLV) Lachaux, J.P., et al (1999) HBM difference phasor $A_1 e^{i\phi_1}$ \mathbf{t}_0 **≬**∮1(1,t₀) $e^{i(\phi_2-\phi_1)}$ X1 $\phi_2(1,t_0) - \phi_1(1,t_0)$ $\phi_2(1,t_0)$ X2 $A_2 e^{i\phi_2}$: $\phi_2(1,t_0) - \phi_1(1,t_0)$

Trial 1

Phase-Locking Value (PLV) Lachaux, J.P., et al (1999) HBM difference phasor $A_1 e^{i\phi_1}$ \mathbf{t}_0 **∑**¢₁(1,t₀) $e^{i(\phi_2-\phi_1)}$ X1 **Trial 1** $\phi_2(1,t_0) - \phi_1(1,t_0)$ $\phi_2(1,t_0)$ X2 $A_2 e^{i\phi_2}$ $\phi_2(1,t_0) - \phi_1(1,t_0)$ X1 **Trial 2** X2 $\phi_2(2,t_0) - \phi_1(2,t_0)$

Phase-Locking Value (PLV) difference Lachaux, J.P., et al (1999) HBM phasor $A_1 e^{i\phi_1}$ t₀ $(1,t_0)$ X1 $e^{i(\phi_2-\phi_1)}$ **Trial 1** $\phi_2(1,t_0) - \phi_1(1,t_0)$ $\phi_2(1,t_0)$ X2 $A_2 e^{i\phi_2}$ $\phi_2(1,t_0) - \phi_1(1,t_0)$ X1 **Trial 2** Sother trials X2 $\phi_2(2,t_0) - \phi_1(2,t_0)$ • X1 **Trial N** X2 1 $\phi_2(N,t_0) - \phi_1(N,t_0)$

Phase-Locking Value (PLV)

Lachaux, J.P., et al (1999) HBM

Computing PLV ("phase coherence") in EEGLAB: pop_newcrossf(..., 'type', 'phase')

• May present a functional role in execution of cognitive functions (Axmacher et al. 2010; Cohen et al. 2009a,b; Lakatos et al. 2008; Tort et al. 2008, 2009).

 Suggested involvement in sensory signal detection (Handel and Haarmeier 2009), attentional selection (Schroeder and Lakatos 2009), and memory processes (Axmacher et al. 2010; Tort et al. 2009)

Phase-Amplitude Coupling: PLV Method Vanhatalo, S et al (2004) PNAS

t₀ X_1

original raw signal

Phase-Amplitude Coupling: PLV Method Vanhatalo, S et al (2004) PNAS

t₀ X_1 f_p

original raw signal

filter X_1 at phase-modulation band (e.g. theta)

Phase-Amplitude Coupling: PLV Method Vanhatalo, S et al (2004) PNAS

t₀ X_1

 f_p

 original raw signal

filter X_1 at phase-modulation band (e.g. theta)

filter X₁ at amp-modulation band (e.g. gamma)
Phase-Amplitude Coupling: PLV Method Vanhatalo, S et al (2004) PNAS

 f_p

 f_A

original raw signal

filter X₁ at phase-modulation band (e.g. theta)

filter X₁ at amp-modulation band (e.g. gamma)

get amplitude envelope of filtered signal

Phase-Amplitude Coupling: PLV Method Vanhatalo, S et al (2004) PNAS

original raw signal

filter X₁ at phase-modulation band (e.g. theta)

filter X₁ at amp-modulation band (e.g. gamma)

get amplitude envelope of filtered signal

Phase-Amplitude Coupling: PLV Method Vanhatalo, S et al (2004) PNAS

Problem:

PLV is invariant to differences in amplitude between the two time-series (it only considers phase). Thus PLV-PAC doesn't take into account the *amplitude* of the co-modulation.

In the example below, X_1 and X_2 both would produce the same PAC, even though the high-frequency amplitude of X_2 clearly is more strongly modulated by the low-frequency rhythm.

Same PLV-PAC

Canolty et al, (2006) Science

t₀ X1

original raw signal

Canolty et al, (2006) Science

t₀ X1 f_p

original raw signal

filter X_1 at phase-modulation band (e.g. theta)

Canolty et al, (2006) Science

original raw signal

filter X_1 at phase-modulation band (e.g. theta)

extract the instantaneous phase of f_{ρ}

Canolty et al, (2006) Science

original raw signal

filter X₁ at phase-modulation band (e.g. theta)

extract the instantaneous phase of f_{ρ}

filter X₁ at amp-modulation band (e.g. gamma)

Canolty et al, (2006) Science

original raw signal

filter X_1 at phase-modulation band (e.g. theta)

extract the instantaneous phase of f_{ρ}

filter X₁ at amp-modulation band (e.g. gamma)

get amplitude envelope of filtered signal

Canolty et al, (2006) Science

Canolty et al, (2006) Science

Canolty et al, (2006) Science

 $A_{f_A}(t_0$

build complex phasor

with instantaneous

amplitude and phase

 $z_1(t_0) = A_{f_A} e^{i\phi_{f_p}}$

 $\phi_{f_{v}}(t_{0})$

Canolty et al, (2006) Science

Computing PAC in EEGLAB:

pac(IC1, IC2, ..., `method', `mod')

PAC can also be applied between sources/channels (e.g. determine whether the phase of oscillation at freq. w_p in IC1 modulates the amplitude of oscillation at freq. w_A in IC2. This leads to a measure of crossfrequency (non-linear) functional connectivity.

For Modulation Index method (other modes also available)

Saturday, September 24, 2011

Saturday, September 24, 2011

B

Coherence/CC/PLV/PAC indicate *functional*, but not *effective* connectivity

Saturday, September 24, 2011

Non-Invasive

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

Non-Invasive

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

Non-Invasive

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

Data-drivenSimple, but powerful

Non-Invasive

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

- Data-driven
- Simple, but powerful
- Scalable (Valdes-Sosa, 2005)

Non-Invasive

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

- Data-driven
- Simple, but powerful
- Scalable (Valdes-Sosa, 2005)
- Extendable to nonlinear and/or nonstationary systems (Freiwald, 1999; Ding, 2001; Chen, 2004; Ge, 2009)

Non-Invasive

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

- Simple, but powerful
- Scalable (Valdes-Sosa, 2005)
- Extendable to nonlinear and/or nonstationary systems (Freiwald, 1999; Ding, 2001; Chen, 2004; Ge, 2009)
- Extendable to non-parametric representations (Dhamala, 2009a,b)

Non-Invasive

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

- Simple, but powerful
- Scalable (Valdes-Sosa, 2005)
- Extendable to nonlinear and/or nonstationary systems (Freiwald, 1999; Ding, 2001; Chen, 2004; Ge, 2009)
- Extendable to non-parametric representations (Dhamala, 2009a,b)
- Can be (partially) controlled for (unobserved) exogenous causes (Guo, 2008a,b; Ge, 2009)

Non-Invasive

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

- Simple, but powerful
- Scalable (Valdes-Sosa, 2005)
- Extendable to nonlinear and/or nonstationary systems (Freiwald, 1999; Ding, 2001; Chen, 2004; Ge, 2009)
- Extendable to non-parametric representations (Dhamala, 2009a,b)
- Can be (partially) controlled for (unobserved) exogenous causes (Guo, 2008a,b; Ge, 2009)
- Equivalent to Transfer Entropy for Gaussian Variables (Seth, 2009)

Non-Invasive

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

- Simple, but powerful
- Scalable (Valdes-Sosa, 2005)
- Extendable to nonlinear and/or nonstationary systems (Freiwald, 1999; Ding, 2001; Chen, 2004; Ge, 2009)
- Extendable to non-parametric representations (Dhamala, 2009a,b)
- Can be (partially) controlled for (unobserved) exogenous causes (Guo, 2008a,b; Ge, 2009)
- Equivalent to Transfer Entropy for Gaussian Variables (Seth, 2009)
- Flexibly allows us to examine timevarying (dynamic) multivariate causal relationships in either the time or frequency domain

- First introduced by Wiener (1958). Later reformulated by Granger (1969) in the context of linear stochastic autoregressive models
- Relies on two assumptions:

- First introduced by Wiener (1958). Later reformulated by Granger (1969) in the context of linear stochastic autoregressive models
- Relies on two assumptions:

Granger Causality Axioms

- First introduced by Wiener (1958). Later reformulated by Granger (1969) in the context of linear stochastic autoregressive models
- Relies on two assumptions:

Granger Causality Axioms

1. Causes should precede their effects in time (Temporal Precedence)

- First introduced by Wiener (1958). Later reformulated by Granger (1969) in the context of linear stochastic autoregressive models
- Relies on two assumptions:

Granger Causality Axioms

- 1. Causes should precede their effects in time (Temporal Precedence)
- Information in a cause's past should improve the prediction of the effect, above and beyond the information contained in past of the effect (and other measured variables)

Multivariate (Vector) Autoregressive (VAR) Modeling

Saturday, September 24, 2011

The VAR Process

Stochastic Linear Dynamical System

 $\begin{aligned} X_1(t) &= a(t)_{11} X_1(t-1) + a(t)_{12} X_2(t-1) + \epsilon_1(t) \\ X_2(t) &= a(t)_{22} X_2(t-1) + a(t)_{21} X_1(t-1) + \epsilon_2(t) \end{aligned}$

The VAR Process

Stochastic Linear Dynamical System

 $\begin{aligned} X_1(t) &= a(t)_{11} X_1(t-1) + a(t)_{12} X_2(t-1) + \epsilon_1(t) \\ X_2(t) &= a(t)_{22} X_2(t-1) + a(t)_{21} X_1(t-1) + \epsilon_2(t) \end{aligned}$

Stochastic Linear Dynamical System

 $\begin{aligned} X_1(t) &= a(t)_{11} X_1(t-1) + a(t)_{12} X_2(t-1) + \epsilon_1(t) \\ X_2(t) &= a(t)_{22} X_2(t-1) + a(t)_{21} X_1(t-1) + \epsilon_2(t) \end{aligned}$

Stochastic Linear Dynamical System $X_{1}(t) = a(t)_{11}X_{1}(t-1) + a(t)_{12}X_{2}(t-1) + \epsilon_{1}(t)$ $X_{2}(t) = a(t)_{22}X_{2}(t-1) + a(t)_{21}X_{1}(t-1) + \epsilon_{2}(t)$

time step

Stochastic Linear Dynamical System $X_1(t) = a(t)_{11}X_1(t-1) + a(t)_{12}X_2(t-1) + \epsilon_1(t)$ $X_2(t) = a(t)_{22}X_2(t-1) + a(t)_{21}X_1(t-1) + \epsilon_2(t)$

Saturday, September 24, 2011

$$X(t) = \begin{array}{c} t \\ x_1(t) & \mathcal{M}_{\mathcal{M}} & \mathcal{M}_{\mathcal{M}} \\ x_2(t) & \mathcal{M}_{\mathcal{M}} & \mathcal{M}_{\mathcal{M}} \\ \vdots & \vdots \\ x_M(t) & \mathcal{M}_{\mathcal{M}} & \mathcal{M}_{\mathcal{M}} \\ \end{array}$$

$$X(t) = \begin{array}{c} x_1(t) & M & M \\ x_2(t) & M & M \\ \vdots & \vdots \\ x_M(t) & M & M \\ \end{array}$$

VAR[0] model

$$\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)}(t) \mathbf{X}(t-k) + \mathbf{E}(t)$$

M-channel data vector

at current time t

$$X(t) = \begin{array}{c} t \\ x_1(t) & \mathcal{M}_{\mathcal{M}} \\ x_2(t) \\ \vdots \\ x_M(t) \\ \mathcal{M}_{\mathcal{M}} \\ \mathcal{M}_{\mathcal{M} \\ \mathcal{M}_{\mathcal{M}} \\ \mathcal{M}_{\mathcal{M}} \\ \mathcal{M}_{\mathcal{M}} \\ \mathcal{M}_{\mathcal{M}$$

$$\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)}(t) \mathbf{X}(t-k) + \mathbf{E}(t)$$

M-channel data vector at current time t M x M matrix of (time-varying) model coefficients indicating variable dependencies at lag k

$$\mathbf{A}^{(k)}(t) = \left(\begin{array}{ccc} a_{11}^{(k)}(t) & \dots & a_{1M}^{(k)}(t) \\ \vdots & \ddots & \vdots \\ a_{M1}^{(k)}(t) & \cdots & a_{MM}^{(k)}(t) \end{array}\right)$$

$$X(t) = \begin{array}{c} t \\ x_1(t) & \mathcal{M}_{\mathcal{M}} \\ x_2(t) \\ \vdots \\ x_M(t) \\ \mathcal{M}_{\mathcal{M}} \\ \mathcal{M}_{\mathcal{M} \\ \mathcal{M}_{\mathcal{M}} \\ \mathcal{M}_{\mathcal{M}} \\ \mathcal{M}_{\mathcal{M}} \\ \mathcal{M}_{\mathcal{M}$$

VAR[p] mode

 $\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)}(t) \mathbf{X}(t-k) + \mathbf{E}(t)$

M-channel data vector at current time t M x M matrix of (time-varying) model coefficients indicating variable dependencies at lag k

multichannel data k samples in the past

$$\mathbf{A}^{(k)}(t) = \begin{pmatrix} a_{11}^{(k)}(t) & \dots & a_{1M}^{(k)}(t) \\ \vdots & \ddots & \vdots \\ a_{M1}^{(k)}(t) & \cdots & a_{MM}^{(k)}(t) \end{pmatrix}$$

$$X(t) = \begin{array}{c} t \\ x_1(t) & \mathcal{M}_{M} & \mathcal{M}_{M} \\ x_2(t) & \mathcal{M}_{M} & \mathcal{M}_{M} \\ \vdots & \vdots \\ x_M(t) & \mathcal{M}_{M} & \mathcal{M}_{M} \\ \end{array}$$

VAR[p] mode

$$\mathbf{A}^{(k)}(t) = \left(\begin{array}{ccc} a_{11}^{(k)}(t) & \dots & a_{1M}^{(k)}(t) \\ \vdots & \ddots & \vdots \\ a_{M1}^{(k)}(t) & \cdots & a_{MM}^{(k)}(t) \end{array}\right)$$

$$\mathbf{A}^{(k)}(t) = \left(\begin{array}{ccc} a_{11}^{(k)}(t) & \dots & a_{1M}^{(k)}(t) \\ \vdots & \ddots & \vdots \\ a_{M1}^{(k)}(t) & \cdots & a_{MM}^{(k)}(t) \end{array}\right)$$

 $\mathbf{E}(t) = N(0, \mathbf{V})$

VAR[p] mode

M-channel data vector at current time t

M x M matrix of (time-varying) model coefficients indicating variable dependencies at lag k

multichannel data ksamples in the past

$$\mathbf{A}^{(k)}(t) = \begin{pmatrix} a_{11}^{(k)}(t) & \dots & a_{1M}^{(k)}(t) \\ \vdots & \ddots & \vdots \\ a_{M1}^{(k)}(t) & \cdots & a_{MM}^{(k)}(t) \end{pmatrix}$$

 $\mathbf{E}(t) = N(0, \mathbf{V})$

 Model order is typically determined by minimizing information criteria such as Akaike Information Criterion (AIC) for varying model order (p):

 $AIC(p) = 2log(det(V)) + M^2p/N$

 Model order is typically determined by minimizing information criteria such as Akaike Information Criterion (AIC) for varying model order (p):

 $AIC(p) = 2log(det(\mathbf{V})) + M^2p/N$

 Model order is typically determined by minimizing information criteria such as Akaike Information Criterion (AIC) for varying model order (p):

 $AIC(p) = 2log(det(V)) + M^2p/N$

Penalizes high model orders (parsimony)

 Model order is typically determined by minimizing information criteria such as Akaike Information Criterion (AIC) for varying model order (p):

 $AIC(p) = 2log(det(V)) + M^2p/N$

Penalizes high model orders (parsimony)

 Model order is typically determined by minimizing information criteria such as Akaike Information Criterion (AIC) for varying model order (p):

 $AIC(p) = 2log(det(V)) + M^2p/N$

Penalizes high model orders (parsimony)

• Other considerations:

- A M-dimensional VAR model of order p has at most Mp/2 spectral peaks distributed amongst the M variables. This means we can observe at most p/2 peaks in each variables' spectrum (or in the causal spectrum between two each pair of variables)
- Optimal model order depends on sampling rate (higher sampling rate often requires higher model orders)

Saturday, September 24, 2011

 Jansen (1981) and Florian and Pfurtscheller (1995) demonstrated that a model order of 10 was generally quite adequate for describing EEG spectra

- Jansen (1981) and Florian and Pfurtscheller (1995) demonstrated that a model order of 10 was generally quite adequate for describing EEG spectra
- VAR model is an "all-pole" filter well-suited for modeling oscillatory processes with "peaky" spectra (like EEG!)

Saturday, September 24, 2011

"Weak" stationarity of the data

"Weak" stationarity of the data

mean and variance do not change with time

"Weak" stationarity of the data

- mean and variance do not change with time
- An EEG trace containing prominent evoked potentials is a classic example of a non-stationary time-series

"Weak" stationarity of the data

- mean and variance do not change with time
- An EEG trace containing prominent evoked potentials is a classic example of a non-stationary time-series

Stability

"Weak" stationarity of the data

- mean and variance do not change with time
- An EEG trace containing prominent evoked potentials is a classic example of a non-stationary time-series

Stability

A stable process will not "blow up" (diverge to infinity)

"Weak" stationarity of the data

- mean and variance do not change with time
- An EEG trace containing prominent evoked potentials is a classic example of a non-stationary time-series

Stability

- A stable process will not "blow up" (diverge to infinity)
- Importantly, stability implies stationarity and SIFT provides you techniques for verifying the stability

Granger Causality
Does
$$X_4$$
 granger-cause X_1 ?
(conditioned on X_2, X_3)
 $X_1(t)$
 $X_2(t)$
 $X_3(t)$
 $X_4(t)$
 $M_4(t)$

Γ

Granger Causality
Does X₄ granger-cause X₁?
(conditioned on X₂, X₃)

$$\begin{pmatrix} X_1(t) & & & & \\ X_2(t) & & & & & \\ X_3(t) & & & & & & \\ X_4(t) & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & &$$

$$X_1(t)$$
 and $X_2(t)$ manual $X_3(t)$ and $X_3(t)$ and

$$\begin{array}{c} \text{Granger Causality} \\ \text{Does } X_4 \text{ granger-cause } X_1? \\ \text{(conditioned on } X_2, X_3) \\ \end{array}$$

$$X_{1}(t) \longrightarrow X_{2}(t) \longrightarrow X_{3}(t) \longrightarrow X_{3}(t) \longrightarrow X_{4}(t-k) + \tilde{E}(t)$$

$$X_{1}(t) \longrightarrow X_{2}(t) \longrightarrow X_{3}(t) \longrightarrow X_{3}(t) \longrightarrow X_{4}(t) = \sum_{k=1}^{p} \tilde{A}^{(k)} X_{4}(t-k) + \tilde{E}(t)$$

$$\begin{array}{c} \text{Granger Causality} \\ \text{Does } X_4 \text{ granger-cause } X_1? \\ \text{(conditioned on } X_2, X_3) \\ (\text{conditioned on } X_2, X_3) \\ (x_1(t)) \\ X_3(t) \\ X_4(t) \\ X_4(t) \\ X_4(t) \\ X_5(t) \\ X_5$$

Granger Causality

Granger Causality

Granger (1969) quantified this definition for **bivariate** processes in the form of an F-ratio: reduced model

$$F_{X_1 \leftarrow X_2} = \ln \left(\frac{var(\tilde{E}_1)}{var(E_1)} \right) = \ln \left(\frac{var(X_1(t) \mid X_1(\cdot))}{var(X_1(t) \mid X_1(\cdot), X_2(\cdot))} \right)$$
full model

Granger Causality

Granger (1969) quantified this definition for **bivariate** processes in the form of an F-ratio: reduced model

$$F_{X_1 \leftarrow X_2} = \ln \left(\frac{var(\tilde{E}_1)}{var(E_1)} \right) = \ln \left(\frac{var(X_1(t) \mid X_1(\cdot))}{var(X_1(t) \mid X_1(\cdot), X_2(\cdot))} \right)$$
full model

Alternately, for a multivariate interpretation we can fit a single MVAR model to all channels and apply the following definition:

Definition 1

 X_j granger-causes X_i conditioned on all other variables in **X**

if and only if $A_{ii}(k) >> 0$ for some lag $k \in \{1, ..., p\}$

Example: 2-channel MVAR process of order 1

$$\begin{pmatrix} X_1(t) \\ X_2(t) \end{pmatrix} = \begin{pmatrix} -0.5 & 0 \\ 0.7 & 0.2 \end{pmatrix} \begin{pmatrix} X_1(t-1) \\ X_2(t-1) \end{pmatrix} + \begin{pmatrix} E_1(t) \\ E_2(t) \end{pmatrix}$$

 $X_{1}(t) = -0.5X_{1}(t-1) + 0X_{2}(t-1) + E_{1}(t)$ $X_{2}(t) = 0.7X_{1}(t-1) + 0.2X_{2}(t-1) + E_{2}(t)$

Which causal structure does this model correspond to?

a) $1 \rightarrow 2$ b) $1 \leftarrow 2$ c) $1 \leftarrow 2$

Example: 2-channel MVAR process of order 1

$$\begin{pmatrix} X_1(t) \\ X_2(t) \end{pmatrix} = \begin{pmatrix} -0.5 & 0 \\ 0.7 & 0.2 \end{pmatrix} \begin{pmatrix} X_1(t-1) \\ X_2(t-1) \end{pmatrix} + \begin{pmatrix} E_1(t) \\ E_2(t) \end{pmatrix}$$

 $X_{1}(t) = -0.5X_{1}(t-1) + 0X_{2}(t-1) + E_{1}(t)$ $X_{2}(t) = 0.7X_{1}(t-1) + 0.2X_{2}(t-1) + E_{2}(t)$

Which causal structure does this model correspond to?

a) $1 \rightarrow 2$ b) $1 \leftarrow 2$ c) $1 \leftarrow 2$

Example: 2-channel MVAR process of order 1

$$\begin{pmatrix} X_1(t) \\ X_2(t) \end{pmatrix} = \begin{pmatrix} -0.5 & 0 \\ 0.7 & 0.2 \end{pmatrix} \begin{pmatrix} X_1(t-1) \\ X_2(t-1) \end{pmatrix} + \begin{pmatrix} E_1(t) \\ E_2(t) \end{pmatrix}$$

$$X_{1}(t) = -0.5X_{1}(t-1) + 0X_{2}(t-1) + E_{1}(t)$$

$$X_{2}(t) = 0.7X_{1}(t-1) + 0.2X_{2}(t-1) + E_{2}(t)$$

Which causal structure does this model correspond to?

 $(2) b) (1) \leftarrow (2) c) (1) \leftarrow (2)$

a) (1) ---->

Example: 2-channel MVAR process of order 1

$$\begin{pmatrix} X_{1}(t) \\ X_{2}(t) \end{pmatrix} = \begin{pmatrix} -0.5 & 0 \\ 0.7 & 0.2 \end{pmatrix} \begin{pmatrix} X_{1}(t-1) \\ X_{2}(t-1) \end{pmatrix} + \begin{pmatrix} E_{1}(t) \\ E_{2}(t) \end{pmatrix}$$

$$X_{1}(t) = -0.5X_{1}(t-1) + 0X_{2}(t-1) + E_{1}(t)$$

$$X_{2}(t) = 0.7X_{1}(t-1) + 0.2X_{2}(t-1) + E_{2}(t)$$

Which causal structure does this model correspond to?

 $(2) b) (1) \leftarrow (2) c) (1) \leftarrow (2)$

a) (1) –

$$\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)} \mathbf{X}(t-k) + \mathbf{E}(t)$$

$$\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)} \mathbf{X}(t-k) + \mathbf{E}(t)$$

Fourier-transforming $\mathbf{A}^{(k)}$ we obtain

$$\mathbf{A}(f) = -\sum_{k=0}^{p} \mathbf{A}^{(k)} e^{-i2\pi fk}; \mathbf{A}^{(0)} = I$$

Likewise, **X**(*f*) and **E**(*f*) correspond to the fourier transforms of the data and residuals, respectively

$$\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)} \mathbf{X}(t-k) + \mathbf{E}(t)$$

Fourier-transforming $\mathbf{A}^{(k)}$ we obtain

$$\mathbf{A}(f) = -\sum_{k=0}^{p} \mathbf{A}^{(k)} e^{-i2\pi fk}; \mathbf{A}^{(0)} = I$$

We can then define the spectral matrix $\mathbf{X}(f)$ as follows:

 $\mathbf{X}(f) = \mathbf{A}(f)^{-1}\mathbf{E}(f) = \mathbf{H}(f)\mathbf{E}(f)$

Where H(f) is the *transfer matrix* of the system.

$$\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)} \mathbf{X}(t-k) + \mathbf{E}(t)$$

Fourier-transforming $\mathbf{A}^{(k)}$ we obtain

$$\mathbf{A}(f) = -\sum_{k=0}^{p} \mathbf{A}^{(k)} e^{-i2\pi fk}; \mathbf{A}^{(0)} = I$$

Likewise, **X**(*f*) and **E**(*f*) correspond to the fourier transforms of the data and residuals, respectively

We can then define the spectral matrix $\mathbf{X}(f)$ as follows:

 $\mathbf{X}(f) = \mathbf{A}(f)^{-1}\mathbf{E}(f) = \mathbf{H}(f)\mathbf{E}(f)$

Where H(f) is the *transfer matrix* of the system.

Definition 2

 X_j granger-causes X_i conditioned on all other variables in **X** if and only if $|\mathbf{A}_{ii}(f)| >> 0$ for some frequency f

$$\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)} \mathbf{X}(t-k) + \mathbf{E}(t)$$

Fourier-transforming $\mathbf{A}^{(k)}$ we obtain

$$\mathbf{A}(f) = -\sum_{k=0}^{p} \mathbf{A}^{(k)} e^{-i2\pi fk}; \mathbf{A}^{(0)} = I$$

Likewise, **X**(*f*) and **E**(*f*) correspond to the fourier transforms of the data and residuals, respectively

We can then define the spectral matrix $\mathbf{X}(f)$ as follows:

 $\mathbf{X}(f) = \mathbf{A}(f)^{-1}\mathbf{E}(f) = \mathbf{H}(f)\mathbf{E}(f)$

Where H(f) is the *transfer matrix* of the system.

Definition 2

 X_j granger-causes X_i conditioned on all other variables in **X** if and only if $|\mathbf{A}_{ii}(f)| >> 0$ for some frequency f leads to PDC

$$\begin{array}{c} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{M}(t) \end{array} \begin{array}{c} \mathcal{M}_{M} \mathcal{M} \mathcal{M}_{M} \mathcal{M$$

$$\begin{array}{c} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{M}(t) \end{array} \begin{array}{c} \mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)} \mathbf{X}(t-k) + \mathbf{E}(t) \\ \mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)} \mathbf{X}(t-k) + \mathbf{E}(t) \\ \mathbf{A}(f) = -\sum_{k=0}^{p} \mathbf{A}^{(k)} e^{-i2\pi fk}; \ \mathbf{A}^{(0)} = I \\ \mathbf{X}(f) = \mathbf{A}(f)^{-1} \mathbf{E}(f) = \mathbf{H}(f) \mathbf{E}(f) \end{array}$$

Ground Truth

PDC versus DTF methods (spectral considerations)

PDC

dDTF

- Brain network dynamics often change rapidly with time (non-stationarity)
 - event-related responses
 - transient network changes during information processing

- Brain network dynamics often change rapidly with time (non-stationarity)
 - event-related responses
 - transient network changes during information processing
- How can we perform time-varying, frequency-domain analysis of network dynamics?
Many ways to do time-varying MVAR estimation

Many ways to do time-varying MVAR estimation

Short-Time adaptive multivariate autoregression (AMVAR)

Many ways to do time-varying MVAR estimation

- Short-Time adaptive multivariate autoregression (AMVAR)
- Non-parametric MVAR estimation (minimum-phase spectral matrix factorization)

Many ways to do time-varying MVAR estimation

- Short-Time adaptive multivariate autoregression (AMVAR)
- Non-parametric MVAR estimation (minimum-phase spectral matrix factorization)

Kalman Filtering

Many ways to do time-varying MVAR estimation

- Short-Time adaptive multivariate autoregression (AMVAR)
- Non-parametric MVAR estimation (minimum-phase) spectral matrix factorization)
- Kalman Filtering

Many ways to do time-varying MVAR estimation

- Short-Time adaptive multivariate autoregression (AMVAR)
- Non-parametric MVAR estimation (minimum-phase spectral matrix factorization)
- Kalman Filtering

(Ding et al, 2000)

Analogous to shorttime Fourier transform

Saturday, September 24, 2011

(Ding et al, 2000)

Analogous to shorttime Fourier transform

Saturday, September 24, 2011

(Ding et al, 2000)

Analogous to shorttime Fourier transform

(Ding et al, 2000)

Analogous to shorttime Fourier transform

(Ding et al, 2000)

(Ding et al, 2000)

Saturday, September 24, 2011

What is a good window length?

Considerations:

- Considerations:
 - Temporal smoothing

- Considerations:
 - Temporal smoothing
 - Local stationarity

- Considerations:
 - Temporal smoothing
 - Local stationarity
 - Sufficient amount of data

- Considerations:
 - Temporal smoothing
 - Local stationarity
 - Sufficient amount of data
 - Process dynamics

Consideration: Temporal Smoothness

Consideration: Temporal Smoothness

Too-large windows may smooth out interesting transient dynamic features.

Consideration: Local Stationarity

Consideration: Local Stationarity

Too-large windows may not be locally-stationary

Consideration: Local Stationarity

Saturday, September 24, 2011

Consideration: Sufficient data

Consideration: Sufficient data

M = number of variables

Consideration: Sufficient data

M = number of variables p = model order

Consideration: Sufficient data

$$\label{eq:model} \begin{split} M &= number \mbox{ of variables} \\ p &= model \mbox{ order} \\ N_{tr} &= number \mbox{ of trials} \end{split}$$

Consideration: Sufficient data

- M = number of variables
- p = model order
- $N_{tr} = number of trials$
- W = length of each window (sample points)

Consideration: Sufficient data

- M = number of variables
- p = model order
- $N_{tr} = number of trials$
- W = length of each window (sample points)

Consideration: Sufficient data

- M = number of variables
- p = model order
- $N_{tr} = number of trials$
- W = length of each window (sample points)

We have M²p model coefficients to estimate. This requires a minimum of M²p independent samples.

Consideration: Sufficient data

- M = number of variables
- p = model order
- N_{tr} = number of trials
- W = length of each window (sample points)

We have M²p model coefficients to estimate. This requires a minimum of M²p independent samples. So we have the constraint M²p $\leq N_{tr}$ W.

Consideration: Sufficient data

- M = number of variables
- p = model order
- N_{tr} = number of trials
- W = length of each window (sample points)

We have M²p model coefficients to estimate. This requires a minimum of M²p independent samples. So we have the constraint M²p <= N_{tr} W. In practice, however, a better heuristic is M²p <= (1/10)N_{tr} W.

Consideration: Sufficient data

- M = number of variables
- p = model order
- $N_{tr} =$ number of trials
- W = length of each window (sample points)

We have M^2p model coefficients to estimate. This requires a minimum of M^2p independent samples. So we have the constraint $M^2p \le N_{tr}W$. In practice, however, a better heuristic is $M^2p \le (1/10)N_{tr}W$.

Or: W >= 10(M²p/N_{tr})

10x more data points than parameters to estimate

Consideration: Sufficient data

- M = number of variables
- p = model order
- $N_{tr} =$ number of trials
- W = length of each window (sample points)

We have M^2p model coefficients to estimate. This requires a minimum of M^2p independent samples. So we have the constraint $M^2p \le N_{tr}W$. In practice, however, a better heuristic is $M^2p \le (1/10)N_{tr}W$.

Or: W >= 10(M²p/N_{tr})

10x more data points than parameters to estimate

SIFT will let you know if your window length is not optimal
Saturday, September 24, 2011

Consideration: Process dynamics

• Your window must be larger than the maximum expected interaction time lag between any two processes.

- Your window must be larger than the maximum expected interaction time lag between any two processes.
- Your window should be large enough to span ~1 cycle of the lowest frequency of interest (remember the Heisenberg uncertainty principle)

- Your window must be larger than the maximum expected interaction time lag between any two processes.
- Your window should be large enough to span ~1 cycle of the lowest frequency of interest (remember the Heisenberg uncertainty principle)

- Your window must be larger than the maximum expected interaction time lag between any two processes.
- Your window should be large enough to span ~1 cycle of the lowest frequency of interest (remember the Heisenberg uncertainty principle)

Many ways to do time-varying MVAR estimation

- Short-Time adaptive multivariate autoregression (AMVAR)
- Non-parametric MVAR estimation (minimum-phase spectral matrix factorization)
- Kalman Filtering

. . .

Based on rich dynamical systems theory.

• Well-established state-space algorithms for tracking in non-stationary, highdimensional, partially-observed, noisy systems

- Easily extendable to nonlinear systems
- Allows for the additional modeling of (known or inferred) exogenous inputs
- Allows for estimation of additional unknown sources (as additional states)

Based on rich dynamical systems theory.

• Well-established state-space algorithms for tracking in non-stationary, highdimensional, partially-observed, noisy systems

- Easily extendable to nonlinear systems
- Allows for the additional modeling of (known or inferred) exogenous inputs
- Allows for estimation of additional unknown sources (as additional states)

• Based on rich dynamical systems theory.

• Well-established state-space algorithms for tracking in non-stationary, highdimensional, partially-observed, noisy systems

- Easily extendable to nonlinear systems
- Allows for the additional modeling of (known or inferred) exogenous inputs
- Allows for estimation of additional unknown sources (as additional states)

Saturday, September 24, 2011

$$z(t) = vec \left([A^{(1)}(t), \dots, A^{(p)}(t)]^T \right)_{[M^2 p \times 1]}$$
 unknown VAR parameters

$$y(t) = X(t)$$

$$H(t) = I_M \otimes vec \left(\begin{bmatrix} X(t-1) & \dots & X(t-p) \end{bmatrix}^T \right)_{[1 \times Mp]}^T$$

$$z(t) = vec \left([A^{(1)}(t), \dots, A^{(p)}(t)]^T \right)_{[M^2 p \times 1]}$$
 unknown VAR parameters

$$y(t) = X(t)$$

$$H(t) = I_M \otimes vec \left(\begin{bmatrix} X(t-1) & \dots & X(t-p) \end{bmatrix}^T \right)_{[1 \times Mp]}^T$$

State-Space Model

Saturday, September 24, 2011

$$z(t) = vec \left([A^{(1)}(t), \dots, A^{(p)}(t)]^T \right)_{[M^2 p \times 1]}$$
 unknown VAR parameters

$$y(t) = X(t)$$

$$H(t) = I_M \otimes vec \left(\begin{bmatrix} X(t-1) & \dots & X(t-p) \end{bmatrix}^T \right)_{[1 \times Mp]}^T$$

$$z(t) = z(t-1) + v(t) -$$

state transition equation (random walk)

State-Space Model

$$z(t) = vec \left([A^{(1)}(t), \dots, A^{(p)}(t)]^T \right)_{[M^2 p \times 1]}$$
 unknown VAR parameters

$$y(t) = X(t)$$

$$H(t) = I_M \otimes vec \left(\begin{bmatrix} X(t-1) & \dots & X(t-p) \end{bmatrix}^T \right)_{[1 \times Mp]}^T$$

 $z(t) = z(t-1) + v(t) - y(t) = H(t)z(t) + \epsilon(t) - \epsilon(t)$

state transition equation (random walk)

observation equation (VAR model)

State-Space Model

$$\begin{aligned} z(t) &= vec \left([A^{(1)}(t), \dots, A^{(p)}(t)]^T \right)_{[M^2 p \times 1]} & \text{unknown VAR parameters} \\ y(t) &= X(t) \\ H(t) &= I_M \otimes vec \left(\left[X(t-1) \dots X(t-p) \right]^T \right)_{[1 \times Mp]}^T \\ z(t) &= z(t-1) + v(t) \\ y(t) &= H(t)z(t) + \epsilon(t) \end{aligned}$$
 state transition equation (random walk)
observation equation (VAR model) \\ \end{aligned}

How do we solve for the time-varying unknown states?

Kalman Filtering (and extensions)

Kalman Filtering

GPDC Causality From

Time (sec)

Scalp or Source?

Or

 $S(t) = \sum_{k=1}^{p} A^{(k)}(t) S(t-k) + E(t)$

 $S(t) = \sum_{k=1}^{p} A^{(k)}(t) S(t-k) + E(t)$

 $S(t) = \sum_{k=1}^{p} A^{(k)}(t) S(t-k) + E(t)$

 $S(t) = \sum_{k=1}^{p} A^{(k)}(t) S(t-k) + E(t)$

S(t) = $A^{(k)}(t)S(t-k) + E(t)$

 $S(t) = \tilde{S}(t)$ $A^{(k)}(t)S(t-k) + E(t)$

Forward/Inverse Modeling

Saturday, September 24, 2011

Forward/Inverse Modeling

Akalin Acar

Forward/Inverse Modeling

A Recipe for Reducing Errors:
Anatomically Realistic Forward Model
Appropriately Constrained Inverse Model
Akalin Acar and Makeig, 2010

Isn't it a contradiction to examine dependence between Independent Components?

- Isn't it a contradiction to examine dependence between Independent Components?
- Instantaneous (e.g., Infomax) ICA only explicitly enforces instantaneous independence. Time-delayed dependencies may be preserved

- Isn't it a contradiction to examine dependence between Independent Components?
- Instantaneous (e.g., Infomax) ICA only explicitly enforces instantaneous independence. Time-delayed dependencies may be preserved
- ICA seeks to maximize *global* independence (over entire recording session), transient dependencies are often preserved

Saturday, September 24, 2011

0.5

 -31 ms -500 -400 -200 0 200 400 500 800 Time (ms)

0.00

Time (sec)

Saturday, September 24, 2011

EEGLAB Software framework

Delorme, Mullen, Kothe, Akalin Acar, Bigdely-Shamlo, Vankov, Makeig, Computational Intelligence and Neuroscience, vol 12, 2011

 A new (alpha) toolbox for source-space electrophysiological information flow and causality analysis (single-subject or group analysis) integrated into the EEGLAB software environment

- A new (alpha) toolbox for source-space electrophysiological information flow and causality analysis (single-subject or group analysis) integrated into the EEGLAB software environment
- Modular architecture intended to support multiple modeling approaches

- A new (alpha) toolbox for source-space electrophysiological information flow and causality analysis (single-subject or group analysis) integrated into the EEGLAB software environment
- Modular architecture intended to support multiple modeling approaches
- Emphasis on vector autoregression and time-frequency domain approaches

- A new (alpha) toolbox for source-space electrophysiological information flow and causality analysis (single-subject or group analysis) integrated into the EEGLAB software environment
- Modular architecture intended to support multiple modeling approaches
- Emphasis on vector autoregression and time-frequency domain approaches
- Standard and novel interactive visualization methods for exploratory analysis of connectivity across time, frequency, and spatial location

- A new (alpha) toolbox for source-space electrophysiological information flow and causality analysis (single-subject or group analysis) integrated into the EEGLAB software environment
- Modular architecture intended to support multiple modeling approaches
- Emphasis on vector autoregression and time-frequency domain approaches
- Standard and novel interactive visualization methods for exploratory analysis of connectivity across time, frequency, and spatial location
- Requirements: EEGLAB, MATLABTM 2008b, Signal Processing Toolbox, Statistics Toolbox (for some functions -- may be removed in the future)

	SIFT				Pre-processing		
Locate dipoles using DIPFIT 2.x Peak detection using EEG toolbox				ox	Model fitting and validation Connectivity Statistics		
	FMRIB Tools	5		•	Visualization		
00	Locate dipo	les using	LORETA	•			
File Edit	Tools Plot	Study	Datasets	Help			
#1: Bu Filename Channels Frames p Epochs Events Sampling Epoch st Epoch en Reference Channel ICA weig Dataset	<pre>utton press :eta/Data/bt? per frame er epoch rate (Hz) art (sec) d (sec) e locations hts size (Mb)</pre>	epochs 3 RespWros 127 1024 165 1451 256 -2.000 1.996 unknown Yes Yes 175.3	ng.set				

		SIFT				×	Pre-processing	
		Locat Peak	e dipo detecti	les using on using	DIPFIT 2.> g EEG toolb	c ► box	Model fitting and validation Connectivity Statistics	
		FMRI	B Tools			•	Visualization •	
0		Locat	e dipo	les using	LORETA	•	(D) III I I I I I I I I I I I I I I I I I	
File	Edit	Tools	Plot	Study	Datasets	Help	Mar han mar have	
							mmmmmmm	
	#1: Bi	utton p	ress	epochs	3		mmmmmm	
	Filename	:eta/I	Data/bt7	3 RespWro	ng.set			
	Channels	per frame	2	127				
	Frames p	er epoch		1024				
	Epochs			165				
	Events			1451				
	Sampling	rate (Hz))	256				
	Epoch st	art (sec)		-2.000				
	Epoch en	d (sec)		1.996				
	Referenc	е		unknow	1			
	Channel	locations		Yes				
	ICA weig	hts		Yes				
	Dataset	size (Mb)		175.3				

		SIFT				•	Pre-processing	
		Locat Peak	e dipo detecti	les using ion using	DIPFIT 2.> EEG toolb	c ► box	Model fitting and validation Connectivity Statistics	*
		FMRI	B Tools	5		•	Visualization	►
0	0	Locat	e dipo	les using	LORETA	•	AL	
File	Edit	Tools	Plot	Study	Datasets	Help	MMM manuna	
	#1: Bi	utton p	ress	epochs			www.www.	
	Filename	:eta/I	Data/bt7	3 RespWron	q.set			
	Channels	per frame	È	127			Pre-processin	a
	Frames p	er epoch		1024				9
	Epochs			165				

1451

256

Yes Yes

175.3

1.996

unknown

Events

Reference

ICA weights

Sampling rate (Hz)

Epoch start (sec) Epoch end (sec)

Channel locations

Dataset size (Mb)

Preprocessing

Modeling

Statistics

Visualization

Source-separation and localization (performed externally using EEGLAB or other toolboxes)

- Filtering/Detrending
- Downsampling
- Differencing
- Normalization (temporal or ensemble)
- Trial balancing
- Tests for stationarity of the data (linear methods)

Preprocessing

Modeling

Statistics

Visualization

Pre-processing

Model fitting and validation	
Connectivity	
Statistics	
Visualization	

►

•

	Preprocessi	ng options			
∄ <u>4</u> [■ ₽ ‡ ₽ <u></u> ¥				
▼ Miscell	aneous				
Verbos	ityLevel	2			
🔻 Data Se	election				
SelectC	omponents				
Com	ponentsToKeep	1; 2; 3; 4; 5; 6;			
EpochT	imeRange	[-0.5 0]			
TrialSub	osetToUse	0			
Filterin	g				
NewSar	nplingRate	0			
FilterDa	ita	[0.01 0]			
 Differer 	nceData	\checkmark			
Diffe	rencingOrder	1			
Detrend	d	\checkmark			
Detr	endingMethod	linear			
▼ Norma	ization				
▼ Normal	izeData	✓			
Meth	od	ensemble			
NormalizaData					
Data normalization Normalize trials across					
time ensemble or both					
child, child	intere, or both				
He	lp Can	Icel OK			

Preprocessing		Modeling		Statistics	Visualization	
	Model Fitt	ing Validation	nectivity			
		Linear		Nor	nlinear	
Parametric	MVAR Mc Sparse M Linear Kal	odeling VAR man Filtering		Extended/Cubature	Kalman Filtering	
Nonparametric	Nonparan phase spe Multivariat	netric MVAR (minimu ectral factorization) te phase distribution	IM-	Transfer Entropy		
and toward	fully impler	mented	parti	ally-developed	coming soon	

Saturday, September 24, 2011

Preprocessing	Modeling	Statistics	Visualization
Model Fitti	ng Validation Co	onnectivity	
Pre-processing Model fitting and validation ► Connectivity Statistics ► Visualization ►	Fit AMVAR Model Validate model		
😝 🔿 🔿 Fit AMVAR Model			
1. Select MVAR algorithm			
2. Window length (sec) 0.5	5		
Start Window Length Assistant			
3. Step size (sec) 0.0	3		
4. Model order 10			
Start Model Order Assistant			
Help Cancel	Ok		

Preprocessing	Modeling	Statistics	Visualization
Model Fit	ting Validation Co Option Order criteria	Value Select all (hold down Ctrl (W (Mac) and click to se	Vin/Linux) or Command elect multiple criteria)
Pre-processing	Downdate model	checked	· ,
Connectivity	Validate model	1 - 30	
Statistics	s to sample	100	
Visualization			
😑 🕙 💮 🛛 Fit AMVAR Model			
		Criteria	
4. Onland MMAD along the	e o Plot Information	n Criteria	
1. Select MVAH algorithm	Colort order criteria to estimat	+	
ARFIT	Select order criteria to estima	te	
2 Window length (see)	0.5 (hold Ctrl to select multiple)		
	FPE		
Start Window Length Assista	HQ		
3. Step size (sec)	0.03		
0. 0.00 0.20 (000)	10		
4. Model order	To Downdate model		
Start Model Order Assistan	t model order range:	30	
	% windows to sample	100	
Help Cancel	Ok Help Cano	cel Ok	
		11.	

Canzer for Computational Neuroscience

Whiteness of Residuals

- Portmanteau tests
- Autocorrelation function
- Model Consistency
- Model Stability

fully implemented

Preprocessing Modeling	Sta	atistics	Visualization
Model Fitting Validation Con	nectivity		
VAR			Other
 -Power spectrum (ERSP) -Coherence (Coh), Partial Coherence (pCoh), M Coherence (mCoh) -Partial Directed Coherence (PDC) -Generalized PDC (GPDC) -Partial Directed Coherence Factor (PDCF) -Partial Directed PDC (rPDC) * -Directed Transfer Function (DTF) -Direct Directed Transfer Function (dDTF) -Granger-Geweke Causality (GGC) -Conditional GGC -Blockwise GGC * 	<i>Iultiple</i>	-Transfer Entr -Multivariate p (mPLV) *	opy * bhase-locking value

Preprocessing	Modeling	Statistics	Visualization
Pre-processing Model fitting and vali Connectivity Statistics Visualization	Ing Validation Construction dation Image: Construction of the select multication of the se	Connectivity Measures Example to calculate tiple) EXPENSION MEASURES (ausal normalization) (ffDTF) COHERENCE MEASURES DOTF) COHERENCE MEASURES DIFCTED COHERENCE (GPDC) Directed Coherence (GPDC) Directed Coherence (RPDC) ENCEMEASURES ausality (GGC) ENCEMEASURES ausality (GGC) ENCEMEASURES ensity Ditude of complex measures nsity to decibels 1:127	
FEG Sentellonal urodelende	Help	Cancel Ok	

SUCZZ

Modeling

Statistics

Visualization

Saturday, September 24, 2011

Modeling

Statistics

Visualization

Parametric

Asymptotic analytic estimates of confidence intervals

Applies to: PDC, nPDC, DTF, nDTF, rPDC Tests: H_{null}, H_{base}, H_{AB}

Confidence intervals using thinplate smoothing splines Applies to: dDTF Tests: H_{base}, H_{AB}

fully implemented partially-

Modeling

Statistics

Visualization

Parametric

Non-parametric

Asymptotic analytic estimates of confidence intervals

Applies to: PDC, nPDC, DTF, nDTF, rPDC Tests: H_{null}, H_{base}, H_{AB}

Confidence intervals using thinplate smoothing splines Applies to: dDTF Tests: H_{base}, H_{AB}

fully implemented

Phase-randomization

Applies to: all Tests: H_{null}

Permutation Tests

Applies to: all Tests: H_{AB}, H_{base}

Bootstrap and Jacknife Applies to: all Tests: H_{AB}, H_{base}

 H_{null} : $C_{\text{ij}} \leq C_{\text{null}}$

 H_{AB} : $\mathbf{C}^{A_{ij}} = \mathbf{C}^{B_{ij}}$

partially-developed

Beta Release

Modeling

Statistics

Visualization

Parametric

Non-parametric

00	Analytic Statistics
 ♣ ♣ ♣ ♣ ♣ Miscellaneous Estimator Statistic Alpha VerbosityLevel 	RPDC; nPDC ; ConfidenceInterval V. P-value Threshold ConfidenceInterval Cancel OK
Statistic Statistical quantities to	return.
Help	Cancel OK

\varTheta 🔿 🔿 Surro	🔿 🔿 Surrogate Statistics	
1 2 I III I I I		
▼ Miscellaneous		
▼ Mode	Bootstrap 💌	
NumPermutations	Bootstrap	
AutoSave	Jacknife	
ConnectivityMethods	InverseJacknife	
VerbosityLevel	Crossval	
	PhaseRand	
Mode Resampling modes. Bootstra replacement), Jacknife (leave- (k-fold cross-validation), Pha randomization)	p (Efron Bootstrap resampling with one-out cross-validation), Crossval aseRand (Theiler phase	
Help	Cancel OK	

Modeling

Statistics

Visualization

Parametric

Non-parametric

00	Analytic Statistics	00
 Ai Im Ai Chi Miscellaneous Estimator Statistic Alpha VerbosityLevel 	RPDC; nPDC ; ConfidenceInterval P-value Threshold ConfidenceInterval Cancel OK	Mode NumPerm AutoSave ConnectivityM VerbosityLev
<mark>Statistic</mark> Statistical quantities to	return.	Mode Resampling m replacement), J (k-fold cross- randomization
Help	Cancel OK	Help

0 0	Surrogate Statistics	
1 2 I III III III		
▼ Miscellaneous		
▼ Mode		Bootstrap
NumPermutations		Bootstrap
AutoSave		Jacknife
ConnectivityMethods		InverseJacknife
VerbosityLevel		Crossval
		PhaseRand
Mode Resampling modes. Bo replacement), Jacknife ((k-fold cross-validation randomization)	otstrap (Efron Bootst (leave-one-out cross n), PhaseRand (Theile	rap resampling with -validation), Crossval r phase
Help	Cancel	OK

fully implemented

Preprocessing Modeling Statistics Visualization

fully implemented

Interactive Time-Frequency Grid

fully implemented

Visualization

Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

fully implemented

Visualization

Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Density Movie

Visualization

Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Density Movie

Directed Graphs on anatomicals (ECoG)

Visualization

Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Density Movie

Directed Graphs on anatomicals (ECoG)

and more...

Statistics

Visualization

Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Density Movie

Directed Graphs on anatomicals (ECoG)

and more...

All of these currently support single-subject or (in beta version) group analysis ROI connectivity analysis can currently be performed using dipole clustering

fully implemented

Interactive Time-Frequency Grid

Pre-processing Model fitting and validation Connectivity Statistics	*	
Visualization	\mathbf{b}	Time-Frequency Grid
		BrainMovie3D Causal Projection

	y and options
5 <u>0</u> 2+ 000 °∓ °±i	
DisplayProperties	
ConnectivityMethods	DTF
ColorLimits	100
TimesToPlot	[-0.75 0.98828125]
FrequenciesToPlot	[1:50]
PlotContour	
MatrixLayout	all
PlottingOrder	0
SourceMarginPlot	dipole
NodeLabels	{ '8' , '11' , '13' , '19' , '20'
EventMarkers	{{0, 'r', ':', 2}}
FrequencyScale	linear
Colormap	jet(300)
Thresholding	
Thresholding	Simple
PercentileThreshold	100
AbsoluteThreshold	0
DataProcessing	
Baseline	0
Smooth2D	
SubplotExpansion	
SubplotExpansionProperties	
FrequencyMarkers	
FrequencyMarkers	0
FrequencyMarkerColor	0
TextAndFont	
TitleString	
TitleFontSize	12
AxesFontSize	10
TextColor	[1 1 1]
BackgroundColor	[0 0 0]
PercentileThreshold Percentile threshold. If of form [pe s applied elementwise across the s	rcentile, dimension], percentile specified dimension.
Help Can	cel OK

Interactive Time-Frequency Grid

Pre-processing Model fitting and validation Connectivity Statistics	*	
Visualization	\mathbf{b}	Time-Frequency Grid
		BrainMovie3D Causal Projection

	y and options
5 <u>0</u> 2+ 000 °∓ °±i	
DisplayProperties	
ConnectivityMethods	DTF
ColorLimits	100
TimesToPlot	[-0.75 0.98828125]
FrequenciesToPlot	[1:50]
PlotContour	
MatrixLayout	all
PlottingOrder	0
SourceMarginPlot	dipole
NodeLabels	{ '8' , '11' , '13' , '19' , '20'
EventMarkers	{{0, 'r', ':', 2}}
FrequencyScale	linear
Colormap	jet(300)
Thresholding	
Thresholding	Simple
PercentileThreshold	100
AbsoluteThreshold	0
DataProcessing	
Baseline	0
Smooth2D	
SubplotExpansion	
SubplotExpansionProperties	
FrequencyMarkers	
FrequencyMarkers	0
FrequencyMarkerColor	0
TextAndFont	
TitleString	
TitleFontSize	12
AxesFontSize	10
TextColor	[1 1 1]
BackgroundColor	[0 0 0]
PercentileThreshold Percentile threshold. If of form [pe s applied elementwise across the s	rcentile, dimension], percentile specified dimension.
Help Can	cel OK

Saturday, September 24, 2011

FROM (21) . . (13) • ≣FC (15) Frequency (Hz) r/FC (15) R02a (16) RC2p (24) 112 PCC (16) емТ (5) IMT (14) 1SM (16) 2 rSM (15)

Time (sec)

Saturday, September 24, 2011

Interactive BrainMovie3D

Saturday, September 24, 2011

Interactive BrainMovie3D

Pre-processing	
Model fitting and validation	•
Connectivity	
Statistics	>
Visualization	Time-Frequency Grid
	BrainMovie3D
	Causal Projection
O BrainMovie3D Con	trol Panel
194 m = 2	
DataProcessing	
ConnectivityMethod	nDTF
MovieTimeRange	[-0.75 0.98828125]
FrequenciesToCollapse	[3:7]
FreqCollapseMethod	mean
TimeResamplingFactor	0
SubtractConditions	
Baseline	0
DisplayProperties	
NodeLabels	['8', '11', '13', '19', '20', '2
NodesToExclude	
EdgeColorMapping	Connectivity
EdgeSizeMapping	ConnMagnitude
NodeColorMapping	AsymmetryRatio 💌
NodeSizeMapping	None
FooterPanelDisplaySpec	Outflow
icaenvelopevars	Inflow
backprojectedchans	CausalFlow
BrainMovieOptions	Outdegree
Visibility	Indegree
RotationPath3D	CausalDegree
InitialView	AsymmetryRatio
ProjecturaphunMki	
* KenderCorocalSurface	
liteOperCl	0.7
EventElachTimes	0
Display epandPapel	00
Shoul steary	
Display@TProbability	8
BackgroundColor	[0.0.0]
	[0 0 0]
ecify mapping for node color. This deter- lormap. Options are as follows. None: no utflow: sum connectivity strengths over o nnectivity strengths over incoming edges symmetry Ratio: node colors are defined b utflow-inflow/(outflow+inflow)). This is 0 cclusive outflow, and 0.5 for balanced infl Preview BrainMovie	mines how we index into the de color is not modulated. utgoing edges. Inflow: sum i. CausalFlow: Outflow-Inflow. ry the equation C = 0.5*(1 + for exclusive inflow, 1 for ow/outflow
Select a time point to imag	e (click to refresh)
	2414
-0.75 0.0898430	3 0.988281
Help Cancel	Make Movie!

Interactive BrainMovie3D

Visualization		Time-Frequency Cri
TISUENZELIGI	_	PrainMovie2D
		Brainwovieso
		Causal Projection
O BrainMovie3D	Control	Panel
)화 🚥 =: 11		
DataProcessing		
ConnectivityMethod		nDTF
MovieTimeRange		[-0.75 0.98828125]
FrequenciesToCollapse		[3:7]
FreqCollapseMethod		mean
TimeResamplingFactor		
SubtractConditions		
Baseline		u
DisplayProperties		
NodecToEvolude		(0, 11, 13, 19, 20, 2
Nodes Fockcode		Canaditate
EdgeColorMapping		Connectivity
NodeColorManaion	_	Asymmeto@atio
NodeColorMapping		Norm
FooterPapelDisplaySper		Outform
icaenvelopevars		laffeet
hackprojectedchans		Constitution
BrainMovieOptions		CausalFlow
Visibility		Outbegree
RotationPath3D		Indegree
InitialView		CausalDegree
ProjectGraphOnMRI		AsymmetryRatio
RenderCorticalSurface		S
Transparency		0.3
UseOpenGL		on
EventFlashTimes		0
DisplayLegendPanel		on
ShowLatency		2
DisplayRTProbability		
BackgroundColor		(0 0 0)
odeColorManning		
odeColorMapping		

exclusive outflow, and 0.5 for balanced inflow/outflow Preview BrainMovie

Saturday, September 24, 2011

Causal Projection

Error > Correct (p < 0.05, N=24)

ERP envelope (backprojected components)

Causal Projection

Error > Correct (p < 0.05) 3-7 Hz

Group Analysis

Saturday, September 24, 2011

Group Analysis

Disjoint Clustering

This approach adopts a 3-stage process: **1.** Identify K ROI's (clusters) by affinity clustering of sources across subject population using EEGLAB's Measure-Product clustering.

 Average all incoming and outgoing statistically significant connections between each pair of ROIs to create a [K X K [x freq x time]] group connectivity matrix.
 Visualize the results using any of SIFTs visualization routines. This method suffers from low statistical power when subjects do not have high agreement in terms of source locations (missing variable problem).

Group Analysis

Disjoint Clustering

This approach adopts a 3-stage process: **1.** Identify K ROI's (clusters) by affinity clustering of sources across subject population using EEGLAB's Measure-Product clustering.

 Average all incoming and outgoing statistically significant connections between each pair of ROIs to create a [K X K [x freq x time]] group connectivity matrix.
 Visualize the results using any of SIFTs visualization routines. This method suffers from low statistical power when subjects do not have high agreement in terms of source locations (missing variable problem).

Bayesian Mixture Model

A more robust approach (in development with Wes Thompson and to be released in SIFT 1.0b) uses smoothing splines and Monte-Carlo methods for joint estimation of posterior probability (with confidence intervals) of cluster centroid location and between-cluster connectivity. This method takes into account the "missing variable" problem inherent to the disjoint clustering approach and provides robust group connectivity statistics.

See Thompson and Mullen et al (2011), *ICON XI*

Bayesian Group Inference

Error > Baseline (p < 0.01, N=24)

dDTF

3-7 Hz

