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(Bullmore and Sporns, Nature, 2009)
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Categorizations of Large-Scale
Brain Connectivity Analysis

(Bullmore and Sporns, Nature, 2009)
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Estimating Functional
Connectivity

Correlative Measures

x Cross-Correlation
x Coherence
® Phase-L.ocking Value

® Phase-amplitude coupling
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Theory: Euler's Formula

phase shift angular frequency
g=m/2 ® =21 f =21 rad/sec

-T1/2 0 /2 T 311/2 21T

A

1.2 : .
any sinusoid can be expressed as the sum
A=1.2 of two complex numbers... A
A-cos(@t + @) = — " 4 — D
2 2
= Re{Ae """ =Re{S(w,1)}

Instantaneous

complex power

(amplitude and
phase)
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Theory: Euler's Formula

iInstantaneous
phase shift angular frequency complex power
g=m/2 ® =21 f =27 rad/sec (amplitude and
phase)
1.2 any sinusoid can be expressed as the sum
1.2 /\ of two complex numbers... A A
\ A-cos(or +¢) = o0t 4 I pri(@itd)
2 2
= Re{Ae """ =Re{S(w,1)}
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Theory: Euler's Formula

instantaneous
phase shift angular frequency complex power
g=m/2 ® =21 f =21 rad/sec (amplitude ana

phase)
1.2 any sinusoid can be expressed as the sum
A=1.2 of two complex numbers... A A
A-cos(@t + @) = — "y —
2 2
= Re{Ae'“""?} = Re{S(®,1)}

-T1/2 0 /2 T 311/2 21T

O=ZLS(w,1)
=mw/2

a A

_ -
s@ol=14l 7R
Spectral Power v

Phasor!
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Theory: Euler's Formula

instantaneous
phase shift angular frequency complex power
g=m/2 ® =21 f =21 rad/sec (amplitude ana

phase)
1.2 any sinusoid can be expressed as the sum
A=1.2 of two complex numbers... A A
A-cos(@t + @) = — "y —
2 2
= Re{Ae """ =Re{S(w,1)}

-T1/2 0 /2 T 311/2 21T

O=ZLS(w,1)
=mw/2

Another version:

a A

¢t = cos(wr + @) +isin(@r +¢)  |S(w,0)|=|A] 7/§<

S ——

/ Spectral Power v

Real part
Cosine component Phasor!
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Phasers
N 4

A -cos(wt + @) = Re{Ae' """}
= Re{S(w,?)}

O=2LS(w,t)

— =mw/2
S@.0) = A 7/§<

Phasor!
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Phasors
N 4

A -cos(wt + @) = Re{Ae' """}
= Re{S(w,?)}

O=2LS(w,t)

— =mw/2
S@.0) = A 7/%

Phasor!
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Rotation velocity (Rad/S; Hz)
= (angular) frequency (w; f) P h aSO rS ?

A -cos(wt + @) = Re{Ae' """}

= Re{S(w,?)}
"""""" Y 0= /S(w.1)
S =r/2
: S(w.D) =|Al %
: S(w,1)| =] @
Phasor!

......

Polar animations courtesy Wikipedia

Saturday, September 24, 2011



Rotation velocity (Rad/S; Hz)
= (angular) frequency (w; f) P h aSO rS ?

A -cos(wt + @) = Re{Ae' """}
= Re{S(w,?)}

O=2LS(w,t)
=mw/2

Phasor!

.......

Polar animations courtesy Wikipedia

Saturday, September 24, 2011



Rotation velocity (Rad/S; Hz)
= (angular) frequency (w; f)

......

Polar animations courtesy Wikipedia

-------

Phasors

R 4

A -cos(wt + @) = Re{Ae' """}

= Re{S(w,?)}

O=2LS(w,t)
=mw/2

Shorthand
phasor notation:

Phasor!
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Phase-Locking Value (PLV)

Lachaux, J.P., et al (1999) HBM ( difference )
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Phase-Locking Value (PLV)

Lachaux, J.P., et al (1999) HBM ( difference )
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Phase-Locking Value (PLV)

Lachaux, J.P., et al (1999) HBM ( difference )
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Phase-Locking Value (PLV)

Lachaux, J.P., et al (1999) HBM ( difference )
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Phase-Locking Value (PLV)

Lachaux, J.P., et al (1999) HBM

Computing PLV (“phase coherence”) in EEGLAB:

pop newcrossf(...., ‘type’, ‘phase’)
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Phase-Amplitude Coupling

‘burst-suppress’ oscillators
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Phase-Amplitude Coupling

‘burst-suppress’ oscillators 50
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Phase-Amplitude Coupling
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Phase-Amplitude Coupling

‘burst-suppress’ oscillators 50
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Phase-Amplitude Coupling

® May present a functional role in execution of cognitive
functions (Axmacher et al. 2010; Cohen et al. 2009a,b;
Lakatos et al. 2008; Tort et al. 2008, 2009).

® Suggested involvement in sensory signal detection
(Handel and Haarmeier 2009), attentional selection
(Schroeder and Lakatos 2009), and memory processes
(Axmacher et al. 2010; Tort et al. 2009)

10
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Phase-Amplitude Coupling:
PLV Meth Od Vanhatalo, S et al (2004) PNAS

to

X1 W original raw signal
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Phase-Amplitude Coupling:
PLV Meth Od Vanhatalo, S et al (2004) PNAS

fo
X1 Wv/ original raw signal
J W\/\_/ filter X1 at phase-modulation band

(e.g. theta)

f filter X1 at amp-modulation band
A V\/\fVI\N\N\J\/W\/\/W\/VVV\/\N\/\/\AjVV» (e.9. gamma)
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Phase-Amplitude Coupling:
PLV Meth Od Vanhatalo, S et al (2004) PNAS

X1 original raw signal

filter X4 at phase-modulation band
(e.g. theta)

filter X1 at amp-modulation band
(e.g. gamma)

Ja

get amplitude envelope of filtered signal
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Phase-Amplitude Coupling:
PLV Meth Od Vanhatalo, S et al (2004) PNAS
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filter X4 at phase-modulation band
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Phase-Amplitude Coupling:
PLV Meth Od Vanhatalo, S et al (2004) PNAS

to “\(pfp (1,7,)
fp ' @ >

E m% (L,t,) (/

: ._‘ ¢AfA (lato)_¢fp (lato)
4, ;

>

Compute PLV between phase- 0 yia1s=—

modulation time-series (fp) and

amplitude envelope of amplitude AVERAGE difference

modulation time-series (Ara). phasors across trials

Significant PLV indicates that the .

central frequency of f, modulates u t0)=i26i(% (kot) =6y, (Kot )
the amplitude of the central p

frequency of fa

12
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Phase-Amplitude Coupling:
PLV Meth Od Vanhatalo, S et al (2004) PNAS

Problem:

PLV is invariant to differences in amplitude between the two time-series (it only
considers phase). Thus PLV-PAC doesn’t take into account the amplitude of the
co-modulation.

In the example below, X1 and X2 both would produce the same PAC, even though
the high-frequency amplitude of Xo clearly is more strongly modulated by the
low-frequency rhythm.

Same PLV-PAC

13
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Phase-Amplitude Coupling:
Modulation Index Method

Canolty et al, (2006) Science
to

X1 /"\’M original raw signal
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Phase-Amplitude Coupling:
Modulation Index Method

Canolty et al, (2006) Science
to

X1 W original raw signal
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Phase-Amplitude Coupling:
Modulation Index Method

Canolty et al, (2006) Science
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A /WWW original raw signal
fp /\/\/\/\_/ filter X1 at phase-modulation band
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—TT )
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A
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Phase-Amplitude Coupling:
Modulation Index Method

Canolty et al, (2006) Science

original raw signal

Iy

filter X4 at phase-modulation band
(e.g. theta)

6, of
£, 0 / / / / extract the instantaneous phase of 7,
T

filter X1 at amp-modulation band
(e.g. gamma)

Ja

get amplitude envelope of filtered signal
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Phase-Amplitude Coupling:

Modulation Index Method

Canolty et al, (2006) Science
to

M////

15
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Phase-Amplitude Coupling:

Modulation Index Method

Canolty et al, (2006) Science

to
Trial 1

M////

15

Saturday, September 24, 2011



Phase-Amplitude Coupling: . .
Modulation Index Method it metontaneces |

Canolty et al, (2006) Science amplitude and phase
: Trial 1 S V g
- ria |
! <4 (fo) — AfAe 2t
T
O o{ / / / /
" ; A, (1, ‘/

: ¢fp (%)

4,

15
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Phase-Amplitude Coupling: . .
Modulation Index Method it metontaneces |

Canolty et al, (2006) Science \amp”“‘de and phase)

Trial 1 \/ i¢
Zl(to) — AfAe &

T
¢fp _;{///// AfA (to ‘/
b, (1)

Ja

~+
o

\iS

other trials ™ |

AVERAGE complex
phasors across trials

15
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Phase-Amplitude Coupling: . .
Modulation Index Method it metontaneces |

Canolty et al, (2006) Science \amp”“‘de and phase
J

Trial 1 V |
Zl (tO) — AfAe ¢fp

T
¢fp _;{///// AfA (to ‘/
b, (1)

~+
o

AfA :
\»
other trials = |
_ _ AVERAGE complex
CCI;T\F;_’C]I;ES”- phasors across trials

mean
complex phasor

u(to)
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Phase-Amplitude Coupling:
Modulation Index Method

Computing PAC in EEGLAB:
pac (IC1,IC2,..., ‘method’, ‘mod’)

A

( PAC can also be applied\
between sources/channels (e.g.
determine whether the phase of
oscillation at freq. wp in ICT
modulates the amplitude of
oscillation at freq. wain IC2. This
leads to a measure of cross-
frequency (non-linear) functional

Canolty et al, (2006) Science

|

-

\_connectivity. y

\_

For Modulation Index method
(other modes also available)

~

J
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(Cross)-Correlation = Causation




(Cross)-Correlation = Causation
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(Cross)-Correlation = Causation

J




(Cross)-Correlation = Causation

-correlation

time lag

Coherence/CC/PLV/PAC indicate functional,
but not effective connectivity

urday, September 24, 20




Estimating Effective
Connectivity

Non-lnvasive

» Post-hoc analyses
applied to measured
neural activity

= Confirmatory

x Dynamic Causal Models

x Structural Equation Models
= Exploratory

x Granger-Causal methods

18
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Estimating Effective
Connectivity

Non-Invasive ® Data-driven
® Simple, but powerful

» Post-hoc analyses
applied to measured
neural activity

= Confirmatory

x Dynamic Causal Models

x Structural Equation Models
= Exploratory

x Granger-Causal methods
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Estimating Effective
Connectivity

Non-Invasive ® Data-driven
® Simple, but powerful
- POSt-hOC analyses ® Scalable aldes-sosa, 2005)

applied to measured
neural activity

= Confirmatory

x Dynamic Causal Models

x Structural Equation Models
= Exploratory

x Granger-Causal methods
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Estimating Effective
Connectivity

Non-lnvasive e Data-driven
® Simple, but powerful
- POSt_hOC analyses ® Scalable (Valdes-Sosa, 2005)
applied to measured e Extendable to nonlinear and/or non-
o stationary systems (Freiwald, 1999; Ding,
ﬂeural aCthIty 2001; Chen, g04;>c/ae, 2009) kg B ui

= Confirmatory

x Dynamic Causal Models

x Structural Equation Models
= Exploratory

x Granger-Causal methods

18
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Estimating Effective

Connectivity

Non-lnvasive

» Post-hoc analyses
applied to measured
neural activity

= Confirmatory

x Dynamic Causal Models

x Structural Equation Models
= Exploratory

x Granger-Causal methods

e Data-driven

® Simple, but powerful

® Scalable (valdes-sosa, 2005)

® Extendable to nonlinear and/or non-

stationary systems (rreiwald, 1999; Ding,
2001; Chen, 2004; Ge, 2009)

® Extendable to non-parametric
representations (hamala, 2009a,b)

18
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® Extendable to nonlinear and/or non-

stationary systems (rreiwald, 1999; Ding,
2001; Chen, 2004; Ge, 2009)

® Extendable to non-parametric
representations (hamala, 2009a,b)
e Can be (partially) controlled for

(unobserved) exogenous causes
(Guo, 2008a,b; Ge, 2009)
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Connectivity

Non-lnvasive

» Post-hoc analyses
applied to measured
neural activity

= Confirmatory

x Dynamic Causal Models

x Structural Equation Models
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e Data-driven

® Simple, but powerful

® Scalable (valdes-sosa, 2005)

® Extendable to nonlinear and/or non-

stationary systems (rreiwald, 1999; Ding,
2001; Chen, 2004; Ge, 2009)

® Extendable to non-parametric
representations (hamala, 2009a,b)
e Can be (partially) controlled for

(unobserved) exogenous causes
(Guo, 2008a,b; Ge, 2009)

® Equivalent to Transfer Entropy for
Gaussian Variables (seth, 2009)
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Estimating Effective

Connectivity

Non-lnvasive

» Post-hoc analyses
applied to measured
neural activity

= Confirmatory

= Exploratory

x Dynamic Causal Models

x Structural Equation Models

x Granger-Causal methods

e Data-driven

® Simple, but powerful

® Scalable (valdes-sosa, 2005)

® Extendable to nonlinear and/or non-

stationary systems (rreiwald, 1999; Ding,
2001; Chen, 2004; Ge, 2009)

® Extendable to non-parametric
representations (hamala, 2009a,b)
e Can be (partially) controlled for

(unobserved) exogenous causes
(Guo, 2008a,b; Ge, 2009)

® Equivalent to Transfer Entropy for
Gaussian Variables (seth, 2009)

® Fexibly allows us to examine time-
varying (dynamic) multivariate
causal relationships in either the
time or frequency domain

18
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Granger Causality

® First introduced by Wiener (1958). Later reformulated by
Granger (1969) in the context of linear stochastic

autoregressive models
x Relies on two assumptions:

19
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Granger Causality

® [irst introduced by Wiener (1958). Later reformulated by
Granger (1969) in the context of linear stochastic

autoregressive models
x Relies on two assumptions:

Granger Causality Axioms

19
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Granger Causality

® [irst introduced by Wiener (1958). Later reformulated by
Granger (1969) in the context of linear stochastic

autoregressive models
x Relies on two assumptions:

Granger Causality Axioms

1. Causes should precede their effects in time (Temporal
Precedence)

19
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Granger Causality

® [irst introduced by Wiener (1958). Later reformulated by
Granger (1969) in the context of linear stochastic

autoregressive models
x Relies on two assumptions:

Granger Causality Axioms

1. Causes should precede their effects in time (Temporal
Precedence)

2. Information in a cause’s past should improve the
orediction of the effect, above and beyond the information

contained In past of the effect (and other measured
variables)

19
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Multivariate (Vector)
Autoregressive (VAR) Modeling

Xl (t ) “JV\ 'V\ﬁﬁ\-k‘nﬁ‘/\l' 'N“,\J*\p’

Granger Causality Coherence Spectrum




The VAR Process

€, (1)
Stochastic Linear Dynamical System j\/'/ \(’212 a(t )2
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The VAR Process
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time step
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The VAR Process

€, (1)
(t)n a(t)zz

Stochastic Linear Dynamical System / \
X)) =a@), X,t-D+a(), X, -1 +¢() X Af = )
X,(t)=a(),,X,t—-1D+a(t),, X,(t—-1)+¢(7) a(t)n a'(% /

€ (1)

€ (1)
a(1)11 \

X1(0) > Xq(1)

X2(0) —»  Xo(1)

t:O t:1

time step
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The VAR Process

€, (1)
(t)n a(t)zz

Stochastic Linear Dynamical System / \
X)) =a@), X,t-D+a(), X, -1 +¢() X Af = )
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€(1)
€ (1)
a(1)11 \
X(0) > (1) > 1
a(1)12
a(1)2
X2(0) —»  X>(1) —)p 11
a(1)2o 4
& (1)
t=0 t=1
time step

Saturday, September 24, 2011




The VAR Process

€, (1)
(t)n a(t)zz

Stochastic Linear Dynamical System / \
X)) =a@), X,t-D+a(), X, -1 +¢() X Af = )
X,(t)=a(),,X,t—-1D+a(t),, X,(t—-1)+¢(7) a(t)n a'(% /

€ (1)
61(1) el(n_z)
a(1)41 + +
Xi(0) > Xi(1) > s - Xi(n-2)
a(1)12
8(1)21
X2(0) —> Xo(1) — s > Xe(n-2)
a(1)22 * *
6 (1) 6,(n—2)
t=0 t=1 t=n-2
time step
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The VAR Process

& (1)
Stochastic Linear Dynamical System / \(2212 a(t)”
X)) =a@), X,t-D+a(), X, -1 +¢() X Af = )
X,(t)=a(),,X,t—-1D+a(t),, X,(t—-1)+¢(7) a(t)n a'(% /

€(1)
€ (1) €(n—2) e(n—1)
a(1)11 \ \ a(n-1)11 \4
X1(0) -+ X;(1) - = & Xi(n-2) - Xi(n-1)
a(1)12 ain-1)12
a(1)21 a(n-1)o1
X2(0) - Xo(1) — s &> X2(n-2) > X2(n-1)
a(1)22 * * a(n-1)o2 *
6 (1) € (n—12) 6(n—1)
t=0 t=1 t=n-2 t=n-1
time step
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The VAR Process

€, (1)
(t)n a(t)zz

Stochastic Linear Dynamical System / \
X)) =a@), X,t-D+a(), X, -1 +¢() X Af = )
X,(t)=a(),,X,t—-1D+a(t),, X,(t—-1)+¢(7) a(t)n a'(% /

€ (1)
e (1) € (n 2) € (n 1) € (n)
a(1)11 \ a(n)11
Xi1(0) > Xi(1) > o »> Xi(n-2) > Xi{n-1) +>  Xi(n
a(1)12
a(1)21
X2(O) —) X2(1) —p =1 & - X2n 2 X2n1 - X2
a(1)z2 N)22
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time step
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The VAR Process

& (1)
Stochastic Linear Dynamical System / \(2212 a(t)”
X)) =a@), X,t-D+a(), X, -1 +¢() X Af = )
X,(t)=a(),,X,t—-1D+a(t),, X,(t—-1)+¢(7) a(t)n a'(% /

€(1)
e (1) 61(n 2) el(n 1) el(n)
P a(1)11 \ a(n)
0 — X+(0) > Xi(1) > =1 »> Xi(n-2) > Xi(n-1) +>  Xi(n
< O
> g a(1)12
CTJ % a(1)z1
2 3
O O X(0) —>  Xo(1) — e +> Xz(n-2) » X2(n-1) +» Xz
| -
AR a(1)22 N)22
6 (1) o) ey o
t=0 t=1 t=n-2 t=n-1 t=n
time step
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The VAR Model

x, (1) MR P pAS A I
SNQY - n VA AN

X(t) =

Xy (1) V\N\MNM\\‘WN‘W
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The VAR Model
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X(t) =
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The VAR Model

I
o) ERTTN Evve———w—y

X(t) =

X(0)=), APYOX(—k)+E(r)

M-channel data vector
at current time t

o
O
®,
-
()
<
>




The VAR Model

I
o) ERTTN Evve———w—y

X(0)=), APYOX(—k)+E(r)

VAR([p] model

M-channel data vector M x M matrix of (time-varying) model
at current time t coefficients indicating variable dependencies
at lag k
( (k{ (k)
az11 ) ... (t)
AP ()=
ay, (t) Ay (t)
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The VAR Model

S S
ORI g Mg

X(t) =

X()=), APV ®OX(-k)+E(r)

VAR([p] model

M-channel data vector M x M matrix of (time-varying) model multichannel data k
at current time t coefficients indicating variable dependencies samples in the past
at lag k
( (k)( (k)
az11 ) ... (t)
LSOE
ay, (t)  dy, (t)
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The VAR Model

S S
ORI g Mg

X(t)=
6 model order
O
2 P
_ (k)
= X()=) AYOX(-k)+E()
m M-channel data vector M x M matrix of (time-varying) model multichannel data k
<|: at current time t coefficients indicating variable dependencies samples in the past
> at lag k
( (k)( (k)
az11 ) ... (t)
LSOE
ay, (t)  dy, (t)
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The VAR Model

I
o) ERTTN Evve———w—y

X(t)=
E del ord
S model order
®, p (k) random noise process
E L X(n=), AYOX(-k)+E(r)
m M-channel data vector M x M matrix of (time-varying) model multichannel data k
<|: at current time ¢ coefficients indicating variable dependencies samples in the past
> at lag k
( (k (k)
anft) (t)
AV (1) = E(1)=N(0,V)
ay, (t)  dy, (t)
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The VAR Model

I
o) ERT Evve—

Ordinary Least-Squares
Lattice Filters

YMOE . : :
: : Bayesian Estimation
6 model order
[©®)
®, p (k) random noise process
= X()=) AYOX(-k)+E()
m M-channel data vector M x M matrix of (time-varying) model multichannel data k
<|: at current time ¢ coefficients indicating variable dependencies samples in the past
> at lag k
agf;m e a® (t)
AP (1) = E()=N(0,V)
ay, (t)  dy, (t)
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Selecting a VAR Model Order

x Model order is typically determined by minimizing information criteria
such as Akaike Information Criterion (AlC) for varying model order (p):

AlC(p) = 2log(det(V)) + M?p/N
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Selecting a VAR Model Order

x Model order is typically determined by minimizing information criteria
such as Akaike Information Criterion (AlC) for varying model order (p):

AlC(p) = 2log(det(V)) + M?p/N

entropy rate (amount of prediction error)
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Selecting a VAR Model Order

x Model order is typically determined by minimizing information criteria
such as Akaike Information Criterion (AlC) for varying model order (p):

A|C(p) — 2|Qg(de’[(\[)) + |\/|2p/N Penalizes high model orders (parsimony)

entropy rate (amount of prediction error)
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Selecting a VAR Model Order

x Model order is typically determined by minimizing information criteria
such as Akaike Information Criterion (AlC) for varying model order (p):

A|C(p) — 2|Qg(de’[(\[)) + |\/|2p/N Penalizes high model orders (parsimony)

entropy rate (amount of prediction error)

AIC (bits)

model order
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Selecting a VAR Model Order

x Model order is typically determined by minimizing information criteria
such as Akaike Information Criterion (AlC) for varying model order (p):

A|C(p) — 2|Qg(de’[(\[)) + |\/|2p/N Penalizes high model orders (parsimony)

entropy rate (amount of prediction error)

optimal order

D f 8 9 1011 12 1314 15 16 17 1 19 20
model order
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Selecting a VAR Model Order

» Other considerations:

= A M-dimensional VAR model of order p has at most Mp/2 spectral
peaks distributed amongst the M variables. This means we can
observe at most p/2 peaks in each variables’ spectrum (or in the
causal spectrum between two each pair of variables)

x Optimal model order depends on sampling rate (higher sampling
rate often requires higher model orders)
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Selecting a VAR Model Order

x Jansen (1981) and Florian and Pfurtscheller (1995)
demonstrated that a model order of 10 was
generally quite adequate for describing EEG spectra
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Selecting a VAR Model Order

x Jansen (1981) and Florian and Pfurtscheller (1995)
demonstrated that a model order of 10 was

generally quite adequate for describing EEG spectra

x /AR model is an “all-pole” filter well-suited for

modeling oscillatory processes with “peaky” spectra
(like EEG!)
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VAR Modeling: Assumptions

x “Weak” stationarity of the data
= Mmean and variance do not change with time

®x An EEG trace containing prominent evoked potentials is
a classic example of a non-stationary time-series
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a classic example of a non-stationary time-series

x Stability
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VAR Modeling: Assumptions

x “Weak” stationarity of the data
= Mmean and variance do not change with time

®x An EEG trace containing prominent evoked potentials is
a classic example of a non-stationary time-series

x Stability

® A stable process will not “blow up” (diverge to infinity)
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VAR Modeling: Assumptions

x “Weak” stationarity of the data
= Mmean and variance do not change with time

®x An EEG trace containing prominent evoked potentials is
a classic example of a non-stationary time-series

= Stability
® A stable process will not “blow up” (diverge to infinity)

= |mportantly, stability implies stationarity and SIFT
provides you techniques for verifying the stability
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Does X4 granger-cause Xi17
(conditioned on Xz, Xa3)




Granger Causality

Does X4 granger-cause Xi17
X, (1)

(conditioned on Xz, Xa3)
| X -

X (¢) = \‘ W AP NN g [ o
X4 (t) ’JV\W{"\’\,ﬁ\.@“ﬁJ\r.N%& X(t) = Z::1 A(k)X(t — k) + E(7)
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Granger Causality

Does X4 granger-cause Xi17
(conditioned on Xz, Xa3)

X, ()
T\ X0

B, VAR ALt A

prediction error for X;

(variance of residuals E1)

—> VSt —>  var(Eq(t))

X(0)=), A“X(r-k)+E(@)
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Granger Causality

Does Xa granger-cause X17? g
(conditioned on Xz, Xs)

DAL VAN ot aa A

o X0 Mo A NS — NS
A Y N it T

X, (1) X(1)=Y." AWX(1~k)+E(r)

—>  var(E1(b))
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Granger Causality

Does Xa granger-cause X17? g
(conditioned on Xz, Xs)

’ X, (1) BT WWN\WWM\\!\f mmd VAR K (=210)
B, A VAN At g

X, (1) X(1)=Y." AWX(1~k)+E(r)
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Granger Causality

Does Xa granger-cause X17? g
(conditioned on Xz, Xs)

X | (1) M V\ D SN Y N ) ‘W\f"

X3 (t) JV\WM\\'V\AAJJ ‘W‘ﬁ'

X, (1) X(1)=Y." AWX(1~k)+E(r)

X, (1) f V\ LN AS M’V\f'f"
X, (1) R e APV Y, > IRV =P
X, (1)l WA At gt

X, (=) " A“X (1-k)+E@)
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Granger Causality

Does Xa granger-cause X17? g
(conditioned on Xz, Xs)

X | (1) M V\ D SN Y N ) ‘W\f"

X3 (t) JV\WM\\'V\AAJJ ‘W‘ﬁ'

X, (1) X(1)=Y." AWX(1~k)+E(r)

X, (1) f V\ LN AS M’V\f'f"
X, (1) A AV LAY, —>
X,() N V\N\,{\r’v\w«wnwmr-’“‘%«”

~

VAR EemmdZl(=10)

X, (=) " A“X (1-k)+E@)
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Granger Causality

Does Xa granger-cause X17? g
(conditioned on Xz, Xs)

’ X, (1) ¢MWWW~\WWM\A1\ I
) N O e et

X, () X()=3" APX(t-k)+E() l

—>  var(E1(b))
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Granger Causality

B Granger (1969) quantified this definition for bivariate processes in the

form of an F-ratio: £ equced model

_— (W@)j_ ( var(X,(0)] X,() )
= In In
var(X, (1) | X, (), X, ()

var(E )

Xle)(2

full model
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Granger Causality

B Granger (1969) quantified this definition for bivariate processes in the

form of an F-ratio: £ equced model

A (W(EI))_ ( var(X (t)| X,()) j
X ex, M =In
var(E ) var(X ()| X,(-), X, ("))

1 2

full model

B Alternately, for a multivariate interpretation we can fit a single MVAR
model to all channels and apply the following definition:

Definition 1
| X; granger-causes X; conditioned on all other variables in X

if and only if A (k)>>0 forsomelag ke {1, ..., p}
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Granger Causality Quiz

® Example: 2-channel MVAR process of order 1

[ x (—0.5 0 ]f xe-n | [ E@®

X0 ) {07 02 )| X(-D E,()

N J \

X (@F-05Xk-1) + 0X (z-1) + E ()
X (F 07X (-1) + 02X (¢-1) + E (¢)

Which causal structure does this model correspond to?

2 @—0 »HO—O0 0—O
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Granger Causality Quiz

® Example: 2-channel MVAR process of order 1

/

X0 | (05 o | x| [ E®
X0 | {07 02 )| xe-n )| E®

N J \

X (@F-05Xk-1) + 0X (z-1) + E ()
X (tF 0.7X (z-1) 0.2X (z-1) E (1)

Which causal structure does this model correspond to?

) ®— 0O
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Granger Causality Quiz

® Example: 2-channel MVAR process of order 1

(X)) ( 04 ]( x@-y )| [ E@
X, 07 02 X, =D E0)

X (@F-05Xx-1) + 0X (-1) + E ()

X,(= 07X (t-1) |+ 02X, (t-1) + E, (1)

)

N J \

Which causal structure does this model correspond to?

) @—>0 b -— c) @) «—>
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Granger Causality Quiz

® Example: 2-channel MVAR process of order 1

(X)) ( 04 ]( x@-y )| [ E@
X, 0.7 02 X, =D E0)

X (@F-05X(x-1) + |0X (z-1) |+ E ()

X (= 07X (t-1) |+ 02X (t-1) + E, (1)

)

N J \

Which causal structure does this model correspond to?

) @—>0 b -— c) @) «—>
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Granger Causality — Frequency
Domain

X(0)=), AVX(-k)+E(@)




Granger Causality — Frequency
Domain

X(H)=)Y" A“X(t-k)+E()
k=1 Likewise, X(f) and E(f) correspond to

Fourier-transforming A% we obtain the fourier transforms of the data
and residuals, respectively

A(f)= _EZZO A(k)e—iank;A(O) — 7
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Granger Causality — Frequency
Domain

X(H)=)Y" A“X(t-k)+E()
k=1 Likewise, X(f) and E(f) correspond to

Fourier-transforming A% we obtain the fourier transforms of the data
and residuals, respectively

A(f) = _219:0 A(k)e—iZEfk;A(O) — ]

k
We can then define the spectral matrix X(f) as follows:

X(f)=A(f) E(f)=H(E(f)

Where H(f) is the transfer matrix of the system.
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Granger Causality — Frequency
Domain

X(0)=), AVX(-k)+E(@)

Fourier-transforming A% we obtain

Likewise, X(f) and E(f) correspond to
the fourier transforms of the data
and residuals, respectively

A(f) = _Zp:() A(k)e—iZEfk;A(O) — ]

k
We can then define the spectral matrix X(f) as follows:

X(f)=A(f) E(f)=H(E(f)

Where H(/) is the transfer matrix of the system.

Definition 2

X; granger-causes X; conditioned on all other variables in X
if and only if |A(f)| >> O for some frequency f
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Granger Causality — Frequency
Domain

X(0)=), AVX(-k)+E(@)

Fourier-transforming A% we obtain

Likewise, X(f) and E(f) correspond to
the fourier transforms of the data
and residuals, respectively

A(f) = _Zp:() A(k)e—iZEfk;A(O) — ]

k
We can then define the spectral matrix X(f) as follows:

X(f)=A(f) E(f)=H(E(f)

Where H(/) is the transfer matrix of the system.

Definition 2

leads to

X; granger-causes X; conditioned on all other variables in X el
if and only if |A(f)| >> O for some frequency f
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xl(t) MM\M‘\WM

X, (1) | AP AN

xM.<t) Mmmww
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Ground Truth

Kus, 2004

Saturday, September 24, 2011



x, (1) MM\MMJ" X(¢) = 2§=1A(k)x(t —k)+E®) Ground Truth
XZ.(f) ‘V‘WM*"“WW A(f)=— PoAB) 2k AO) _ ] e 2000
: k=0 ’ oS

£ 1) PN At | XCF) = ACE) ' E(f) = H(PE(S)

...... spurious

e iNdirect true flow

e irect true flow
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xlifi MJ‘V’\'\NMJ" X(¢) = 2;’ IA(k)X(l‘ —k)+E®) Ground Truth
X, (1) | AP AN - .
: : A(f)=- TOAWe R A0 = ] Kus, 2004

k=0

£ 1) PN At | XCF) = ACE) ' E(f) = H(PE(S)

...... spurious

e iNdirect true flow

e irect true flow

Functional
S(f)=X(HX(f)

= H(f)ZH(f) U\ — -

(Brillinger, 2001) Frequency (Hz)

Power

Spectrum
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x,(1) A VAN st M X(t) = ZZ L AYX( - k) +E()

X, (1) | AP AN

A(f) = _ZZ=0 AR 2. A0 —

£ 1) PN At | XCF) = ACE) ' E(f) = H(PE(S)

=

§  S(H=X(X(Y M

7] =H()ZH(f) A
- (Brillinger, 2001) Frequency (Hz)

O -

% _ 5 ,
5 1 sWs,; f

(Brillinger, 2001)

...... spurious

e iNdirect true flow

e irect true flow

Ground Truth

Kus, 2004
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xliti MM»”‘WW X(¢) = 2;’ IA(k)X(t —k)+E®) Ground Truth
X, (1) | AP AN - .
: : A(f)= _Zzzo AP A =1 Kus, 2004

£ 1) PN At | XCF) = ACE) ' E(f) = H(PE(S)

...... spurious

e iNdirect true flow

e irect true flow

Functional

-
£ SO=XPXY M
7 =H(HZH(f) ~— T~ I
- (Brillinger, 2001) Frequency (Hz)
®) -
o S,(f)
g C,(f)= O
5 IS (NS () |
© (Brillinger, 2001) LN
O]
S 5 s Med >
F2 M Sos 0 SN
"~ 8 T ® ©®

(Brillinger, 2001)
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xlifi MIV\J‘V-'V\MWJ"“M X(¢) = Zi’ IA(k)X(t — k)+E(®7) Ground Truth
X, (1) | AP AN - .
: : A(f)= _Zzzo AP A =1 Kus, 2004

£ 1) PN At | XCF) = ACE) ' E(f) = H(PE(S)

...... spurious

e iNdirect true flow

e irect true flow

Functional

£
£ SH=XX(Y M
7] =H(HZH(f) — A
- (Brillinger, 2001) Frequency (Hz)
O -
% ()= S, (/) o
s TSNS, |
© (Brillinger, 2001) LN
o
25 (-l N o
S N GRS 2 .
O (Brillinger, 2001) o
2
o5 det(S( 1))
= G,.(f)=\/1—
s § S:(/IM,(f)

(Brillinger, 2001)
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xlit; »'WW\MMW X(¢) = Zz IA(k)X(t —k)+E®) Ground Truth
X, (1) | AP AN - .
: : A(f)= _Zzzo AP A =1 Kus, 2004

£ 1) PN At | XCF) = ACE) ' E(f) = H(PE(S)

b eooeoseooe spurious

e iNdirect true flow

e irect true flow

Functional

g S X(AX(F) >
+2 = o U ) R
D () (DX 8 S © X -/ Z)IH (O
& “H(HEH(f) T E o E28Rp- -
(Brillinger, 2001) Frequency (Hz) D 8 @ i)
> I O O (Geweke, 1982; Bressler et al., 2007)
2 M=2
. 5,(/)
) ()=
s TSNS,
© (Brillinger, 2001)
3
S5 §,(/)
€5 L) =T——
§ 2 VSIS
O (Brillinger, 2001)
.
a C
EL%) S”(f)M”(f)

(Brillinger, 2001)
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x, (1) MMMWW X(¢) = ZzzlA(k)X(t —k)+E®) Ground Truth

X, (1) | AP AN

=
E SH=XOXG U\
& =H(/)ZH(f) — A
(Brillinger, 2001) Frequency (Hz)
9 S M=2
o C.(f)= ()
5 IS (NS ()
© (Brillinger, 2001)
g (
TS S.()
€8 AU=T—2=
§ 2 VSIS
O (Brillinger, 2001)
L8
%5 det(S( 1))
£ G,.(f)=\/1—
25 S, ()M, (/)

(Brillinger, 2001)

A(f)= _Zzzo AW A0 = ] Kus, 2004

£ 1) PN At | XCF) = ACE) ' E(f) = H(PE(S)

b eooeoseooe spurious

s iNClirect true flow

e irect true flow

Lo 2

S © X, —(Z I Z ) H ()
c =9 E](f):

C o c% S.(f)
ORONS]

(Geweke, 1982; Bressler et al., 2007)

2

H,(f)
>, X HDf

(Kaminski and Blinowska, 1991)

n.(f)=

Directed
Transfer
Function

Saturday, September 24, 2011



xlit; MM’\WW X(¢) = EZ IA(k)X(t —k)+E®) Ground Truth
X, (1) | AP AN - .
. . A(f) — _2;0 A(k)e_ﬂﬂfk; A(O) =1 Kus, 2004

£ (1) IV e | XOF) = A ECS) = HONE(f)

b eooeoseooe spurious

e iNdirect true flow

e irect true flow

Funciiona

ij _(zz /zu)) | Hy(f) |2
S (f)

S(f)=X(HX()

= H(f)ZH(f) U\ — -

(Brillinger, 2001) Frequency (Hz)

Power

Ej(f):

Granger-
Geweke
Causality

(Geweke, 1982; Bressler et al., 2007)

Coherency Spectrum

S
(=it o s C . = O
j 229 H,(f)
JS.(NS,(f) 888 o ol JoRYe
(Brillinger, 2001) g E % ’ Z 2 (f)‘
QO k=11""1k 0 0 0
o - (Kaminski and Blinowska, 1991)
0 _ M>2
G s 585 Lo |40
g2 JS NS £8s = z
O (Brillinger, 2001) - N O k=1|""k
o M=1 O (Baccalad and Sameshima, 2001)
o
S0 det(S(/))
32 G"(f):\/l_s (/M (/)
> 8 ii ii

(Brillinger, 2001)
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xlit; MM’\WW X(¢) = EZ IA(k)X(t —k)+E®) Ground Truth
X, (1) | AP AN - .
. . A(f) — _2;0 A(k)e_ﬂﬂfk; A(O) =1 Kus, 2004

£ (1) IV e | XOF) = A ECS) = HONE(f)

b eooeoseooe spurious

e iNdirect true flow

e irect true flow

Funciiona

ij _(zz /zu)) | Hy(f) |2
S (f)

S(f)=X(HX()

= H(f)ZH(f) U\ — -

(Brillinger, 2001) Frequency (Hz)

Power

Ej(f):

Granger-
Geweke
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® Brain network dynamics often change rapidly with time
(non-stationarity)

x cvent-related responses

» transient network changes during information processing
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® Brain network dynamics often change rapidly with time
(non-stationarity)

x cvent-related responses

» transient network changes during information processing

= How can we perform time-varying, frequency-domain
analysis of network dynamics?

Saturday, September 24, 2011




Time-Frequency GC




Time-Frequency GC

= Many ways to do time-varying MVAR estimation




Time-Frequency GC

= Many ways to do time-varying MVAR estimation

® Short-Time adaptive multivariate autoregression (AMVAR)

Saturday, September 24, 2011



Time-Frequency GC

= Many ways to do time-varying MVAR estimation
® Short-Time adaptive multivariate autoregression (AMVAR)

» Non-parametric MVAR estimation (minimum-phase
spectral matrix factorization)

Saturday, September 24, 2011



Time-Frequency GC

= Many ways to do time-varying MVAR estimation
® Short-Time adaptive multivariate autoregression (AMVAR)

» Non-parametric MVAR estimation (minimum-phase
spectral matrix factorization)

» Kalman Filtering

Saturday, September 24, 2011



Time-Frequency GC

= Many ways to do time-varying MVAR estimation
® Short-Time adaptive multivariate autoregression (AMVAR)

» Non-parametric MVAR estimation (minimum-phase
spectral matrix factorization)

» Kalman Filtering

Saturday, September 24, 2011



Time-Frequency GC

= Many ways to do time-varying MVAR estimation
® Short-Time adaptive multivariate autoregression (AMVAR)

» Non-parametric MVAR estimation (minimum-phase
spectral matrix factorization)

» Kalman Filtering
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Short-Window Time-Frequency GC

(Ding et al, 2000)
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Analogous to short-
time Fourier transform
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(Ding et al, 2000)
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(Ding et al, 2000)
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time Fourier transform
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ensemble normalization

e
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A(f. == AP0 A =1
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= What is a good window length?
® Considerations:

= [emporal smoothing
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= What is a good window length?
® Considerations:

= [emporal smoothing

» | ocal stationarity

x Sufficient amount of data

® Process dynamics
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Consideration: Temporal Smoothness

1 point window —
10 point window
20 point window -

c
Q
o
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=
Q
Q
o
@
e
&

200

Time (msec)
Ding et al, 2000
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Time-Frequency GC

Consideration: Temporal Smoothness

1 point window —
10 point window
20 point window -

Too-large windows may
smooth out interesting
transient dynamic features.

200

Time (msec)
Ding et al, 2000
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Consideration: Local Stationarity

1 point window —
10 point window
20 point window -
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Consideration: Local Stationarity

1 point window —
10 point window
20 point window -

Too-large windows may not be
locally-stationary

L
o
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o

100 200

Time (msec)
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Consideration: Local Stationarity

1 point window —
10 point window
20 point window -

c
Q
o

©

=

Q
Q

o

@

e
&

200

Time (msec)

Saturday, September 24, 2011



Time-Frequency GC




Time-Frequency GC

Consideration: Sufficient data




Time-Frequency GC

Consideration: Sufficient data

M = number of variables




Time-Frequency GC

Consideration: Sufficient data

M = numlber of variables
P = model order
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M = number of variables
P = model order
Nir = number of trials
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Consideration: Sufficient data

M = number of variables

P = model order

Nir = number of trials

W = length of each window (sample points)

We have M?p model coefficients to estimate. This requires a
minimum of M?p independent samples.
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Consideration: Sufficient data

M = number of variables

P = model order

Nir = number of trials

W = length of each window (sample points)

We have M?p model coefficients to estimate. This requires a
minimum of M?p independent samples.
So we have the constraint M?p <= Ny W.
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Consideration: Sufficient data

M = number of variables

P = model order

Nir = number of trials

W = length of each window (sample points)

We have M?p model coefficients to estimate. This requires a
minimum of M?p independent samples.

So we have the constraint M?p <= Ny W.

In practice, however, a better heuristic is M?p <= (1/10)Ni W.
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Consideration: Sufficient data

M = number of variables

P = model order

Nir = number of trials

W = length of each window (sample points)

We have M?p model coefficients to estimate. This requires a

minimum of M?p independent samples.

So we have the constraint M?p <= Ny W.

In practice, however, a better heuristic is M?p <= (1/10)Ng W.
Or: W >= 10(M?p/Nu)

10x more data points than
parameters to estimate
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Consideration: Sufficient data

M = number of variables

P = model order

Nir = number of trials

W = length of each window (sample points)

We have M?p model coefficients to estimate. This requires a

minimum of M?p independent samples.

So we have the constraint M?p <= Ny W.

In practice, however, a better heuristic is M?p <= (1/10)Ng W.
Or: W >= 10(M?p/Nu)

10x more data points than
parameters to estimate

SIFT will let you know if your window length is not optimal
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Consideration: Process dynamics

® Your window must be larger than the maximum expected
iInteraction time lag between any two processes.
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Consideration: Process dynamics

® Your window must be larger than the maximum expected
iInteraction time lag between any two processes.

® Your window should be large enough to span ~1 cycle of the
lowest frequency of interest (remember the Heisenberg uncertainty
principle)
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Consideration: Process dynamics

® Your window must be larger than the maximum expected
iInteraction time lag between any two processes.

® Your window should be large enough to span ~1 cycle of the
lowest frequency of interest (remember the Heisenberg uncertainty
principle)
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= Many ways to do time-varying MVAR estimation
® Short-Time adaptive multivariate autoregression (AMVAR)

» Non-parametric MVAR estimation (minimum-phase
spectral matrix factorization)

® Kalman Filtering
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The State-Space Model

Exogenous inputs

u, Linear Stochastic Dynamic Causal
model (LSM) model (DCM)

. _ : |
State transition  ZIt1 =AzZ[t-1] + Cu[t-1] + nt] z=Az+2, uB'z + Cu

equations - Discrete time - Continuous time
- Linear - Bi-linear
- Stochastic - Deterministic

Measurements
Y, __ Observation y[t] = Hz[t] + Fu[t] + £[t] y(t) = g(z(t)) +£(t)
_|e § }" equations Observation model: Observation model:
o - Static - Dynamic
Vi !J J“] - Linear - Non-linear

Roebroeck, et al Neurolmage, 2009

® Based on rich dynamical systems theory.
e \\Vell-established state-space algorithms for tracking in non-stationary, high-
dimensional, partially-observed, noisy systems

® Easily extendable to nonlinear systems

e Allows for the additional modeling of (known or inferred) exogenous inputs
e Allows for estimation of additional unknown sources (as additional states)
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The State-Space Model

(1) = vec([A(l)(t),. LAY )(t)]T) unknown VAR parameters
y(t) = X (1) M )
H(t):IM®vec([ Xt-1) ... X(-p) } )

T

[IXMp]

z(H)=z(t—1)+v(r) state transition equation (random walk)
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The State-Space Model

_ (1) (P) (4 \1T unknown VAR parameters
20y = vee([AV(@0),... AT O )
y() = X(1) N\T
Hit)=1, ®vec([ X(t—1) ... X(t—p) } )
[IXMp]
z(H)=z(t—1)+v(r) state transition equation (random walk)
y(t y=H()z(t)+€(t) observation equation (VAR model)

State-Space Model
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The State-Space Model

_ (1) (P) (4 \1T unknown VAR parameters
20y = vee([AV(@0),... AT O )
y() = X(1) N\T
Hit)=1, ®vec([ X(t—1) ... X(t—p) } )
[IXMp]
z(H)=z(t—1)+v(r) state transition equation (random walk)
y(t y=H()z(t)+€(t) observation equation (VAR model)

State-Space Model

= How do we solve for the time-varying unknown states”?

®x Kalman Filtering (and extensions)
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Kalman Filtering
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Channel or Source”?

X(t)= MS(t)= Y MA® )M X (¢t - k)+ ME(¢)
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Channel or Source”?

X(t)= MS(t)= Y MA® @) M X (¢ — k) + ME(¢)

Sensors i

/
1 F 4
J

X(1) = MS(?)
Volume
Conduction
sSources
Solution? Source Separation S(t)=Y AN(N)S(t - k) + E7)
k=1
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Volume conduction
exists for ECoG too!

Channel or Source”?

X(t)= MS(t)= Y MA® @) M X (¢ — k) + ME(¢)
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Akalin Acar
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Forward/Inverse Modeling
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“wg e Anatomically Realistic Forward Model
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® |[nstantaneous (e.q., Infomax) ICA only explicitly enforces
instantaneous independence. Time-delayed dependencies
may be preserved

Saturday, September 24, 2011



Estimating Dependency of
Independent Components

® [SN’t it a contradiction to examine dependence between
Independent Components”?

® |[nstantaneous (e.q., Infomax) ICA only explicitly enforces
instantaneous independence. Time-delayed dependencies
may be preserved

x |CA seeks to maximize global independence (over entire
recording session), transient dependencies are often
preserved

Saturday, September 24, 2011



Estimating Dependency of
Independent Components

SCSA_EM
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2 CICAAR Connectivity Error
MVARICA | + +
ICA [+ — — —HHHH
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SCSA EM[— + — — — —++H+ + +
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+~ CSA
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< CICAAR Z CICAAR

SCSA
o CSA «© CSA
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MVARICA

W Haufe et al, 2008



Mullen, et al, Journal of Neuroscience Methods (in prep, 201 1)
Mullen, Delorme, Kothe, Makeig, Society for Neuroscience, 2010
Delorme, Mullen, Kothe et al, Computational Intelligence and Neuroscience, vol 12,201 |

A 7N I F AMVAR Model
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Analysis

Analysis plugins

Data archive HeadIT

Data sync and handling /J Mat/IElver

~
N

Interactive tools DataRiver
N

\ N
BCILAB Producer

Stimulus control

ERICA framework

[
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Source Information Flow
Toolbox (SIFT)

x A new (alpha) toolbox for source-space electrophysiological information
flow and causality analysis (single-subject or group analysis) integrated
into the EEGLAB software environment

Saturday, September 24, 2011



Source Information Flow
Toolbox (SIFT)

x A new (alpha) toolbox for source-space electrophysiological information

flow and causality analysis (single-subject or group analysis) integrated
into the EEGLAB software environment

x Modular architecture intended to support multiple modeling approaches

.
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Source Information Flow
Toolbox (SIFT)

x A new (alpha) toolbox for source-space electrophysiological information

flow and causality analysis (single-subject or group analysis) integrated
into the EEGLAB software environment

x Modular architecture intended to support multiple modeling approaches

x Emphasis on vector autoregression and time-frequency domain
approaches

.
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Source Information Flow
Toolbox (SIFT)

x A new (alpha) toolbox for source-space electrophysiological information
flow and causality analysis (single-subject or group analysis) integrated
into the EEGLAB software environment

x Modular architecture intended to support multiple modeling approaches

x Emphasis on vector autoregression and time-frequency domain
approaches

x Standard and novel interactive visualization methods for exploratory
analysis of connectivity across time, frequency, and spatial location

.
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Source Information Flow
Toolbox (SIFT)

x A new (alpha) toolbox for source-space electrophysiological information
flow and causality analysis (single-subject or group analysis) integrated
into the EEGLAB software environment

x Modular architecture intended to support multiple modeling approaches

x Emphasis on vector autoregression and time-frequency domain
approaches

x Standard and novel interactive visualization methods for exploratory
analysis of connectivity across time, frequency, and spatial location

x Requirements: EEGLAB, MATLAB™ 2008b, Signal Processing Toolbox,
Statistics Toolbox (for some functions -- may be removed in the future)

S o
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Model fitting and validation »
Connectivity

Statistics b
FMRIB Tools Visualization >

Locate dipoles using DIPFIT 2.x >
Peak detection using EEG toolbox

Locate dipoles using LORETA
File Edit [REEEH Plot Datasets Help

#1: Button press epochs
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Model fitting and validation »
Connectivity

Statistics

FMRIB Tools Visualization

Locate dipoles using DIPFIT 2.x
Peak detection using EEG toolbox

Locate dipoles using LORETA
File Edit @l Datasets Help

o
@ 53
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Model fitting and validation »
Connectivity

Statistics

FMRIB Tools Visualization

Locate dipoles using DIPFIT 2.x
Peak detection using EEG toolbox

Locate dipoles using LORETA
File Edit § Datasets Help

Pre-processing

end (sec

o
@ 53
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Model fitting and validation »
Connectivity

Statistics

FMRIB Tools Visualization

Locate dipoles using DIPFIT 2.x
Peak detection using EEC toolbox

Locate dipoles using LORETA
File Edit Datasets Help
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o Model Fitting
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Connectivity

CullepoN
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Model fitting and validation »
Connectivity
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FMRIB Tools Visualization

Locate dipoles using DIPFIT 2.x
Peak detection using EEC toolbox
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#1: Button press epochs
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Model fitting and validation »
Connectivity

Statistics

FMRIB Tools Visualization

Locate dipoles using DIPFIT 2.x
Peak detection using EEC toolbox

Locate dipoles using LORETA
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Model fitting and validation »
Connectivity

Locate dipoles using DIPFIT 2.x

Peak detection using EEC toolbox Statistics

FMRIB Tools Visualization

Locate dipoles using LORETA
File Edit @GHIEE Plot S Datasets Help
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Group Analysis —»  Vjsualization

/@" o
" 53

Newresiionie

Saturday, September 24, 2011



Preprocessing Modeling Statistics Visualization

= Source-separation and localization
(oerformed externally using EEGLAB or other toolboxes)

x Fltering/Detrending

®x Downsampling

» Differencing

= Normalization (temporal or ensemble)
= [rial balancing

® [ests for stationarity of the data (linear methods)
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Preprocessing Modeling Statistics Visualization

-processing s ™ MO Preprocessing Options
Model fitting and validation » , ,
Connectivity IZ"ZH By &)
Statistics Miscellaneous
Visualization VerbosityLevel
Data Selection
SelectComponents
ComponentsToKeep 1; 2;3:4:5:6;...
EpochTimeRange (-0.5 0]
TrialSubsetToUse (]
Filtering
NewSamplingRate
FilterData (0.01 0]
DifferenceData
DifferencingOrder
Detrend
DetrendingMethod linear
Normalization

NormalizeData VI

Method ensemble

NormalizeData
Data normalization. Normalize trials across
time, ensemble, or both

. Help | ' Cancel |

@
S o
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

Cormpmn i 57

Newrosiionie

Saturday, September 24, 2011



Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

Linear Nonlinear
MVAR Modeling Extended/Cubature Kalman Filtering
S |Sparse MVAR
“EJ Linear Kalman Filtering
@®
o
al
o |Nonparametric MVAR (minimum-  [Transfer Entropy
é phase spectral factorization)
©
< |Multivariate phase distribution
=3
®
Z
S Uy implemented B atialy-developed B coming soon 57
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

Pre-processing

J angy aatoe
Connectivity
Statistics
Visualization

\/-. -\"\
58
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

Pre-processing

- LA .I s I ] o3 . ' LA
Connectivity Validate model

Statistics
Visualization

M M O Fit AMVAR Model

1. Select MVAR algorithm

ARFIT '

2. Window length (sec) 05

Start Window Length Assistant..

3. Step size (sec) 0.03

4. Model order 10
Start Model Order Assistant...
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

Pre-processing

- LA .I s I ] o3 . ' LA
Connectivity Validate model

Statistics
Visualization
M M Fit AMVAR Model
M ™ O Plot Information Criteria
1. Select MVAR algorithm

Y Vienmasvon Select order criteria to estimate
ARFIT I

(hold Ctrl to select multiple)

2. Window length (sec) 05

Start Window Length Assistant..

3. Step size (sec) 0.03

[V Downdate model

4. Model order 10
Start Model Order Assistant... model order range:

% windows to sample

Help Cancel Ok
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

Figure 3: RespWrong - Model Order Selection Results
Edit View Insert Tools Desktop Window Help
Connectivity
Statistics
Visualization

Mean IC across sampled windows

: aic (27)
| =——lpe (27)
| =——sbe (5)
: hq{11)

M M M Fit AMVAR Model

M M O Plot Informati

Information criteria (bits)

1. Select MVAR algorithm 34 56 7 8 91011121314151617 1819 20 21 22 23 24 25 26 27 28 29 30

v Viema-Morf % Select order criteria to estin . model order
- f
ARFIT ' aic 100 pe
ﬁ — (hold Ctrl to select multiple]

—_
o
o

histogram count
o
o
histogram count

o

2. Window length (sec)
\ Start Window Length Assistant...

0.03
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=l Downdate model opt. model order opt. model order
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B — B —
c [
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o o
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4. Model order 10
\ Start Model Order Assistant... model order range:

% windows to sample

| Cancel Ok Help
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opt. model order opt. model order
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

» \\Vhiteness of Residuals
. Portmanteau tests
» Autocorrelation function

» \Model Consistency

= \Model Stability

@ . fully implemented . partially-developed . coming soon
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

.
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

_ Pre-processing
dodel fitting and validatio Fit AMVAR Model

Connectivity lidat
Statistics
Visualization

4 hue
60
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

Pre-processing
 Model fitting and validation » EZTUAZLELE S
Connectivity » DC
Statistics B
Visualization =

Haavt

M M ) Select Model Validation Methods

V| Check Whiteness of Residuals
_jung-Bo:

Box-Pierce

Li-Mcteod

significance level:
!21 check percent consistency

¥ check model stability

% windows to sample

Help Cancel
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

faNO Figure 4: RespWrong - Model Validation Results

Pre-processin
'p* —Fr g' Edit View Insert Tools Desktop Window Help

| fitting and validation » Fit AMVAR Model
Connectivity Validate mode
Statistics

Visualization

™ M O Select Model Validation Methods

V] Check Whiteness of Residuals
| | OJ-50)

Box-Pierce

C-Mcleod

0.05 |

significance level:
V] check percent consistency

W check model stability

% windows to sample

Help Cancel
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

\V/A\ Other
-Power spectrum (ERSP) - Transfer Entropy *
-Coherence (Coh), Partial Coherence (pCoh), Multiple
Coherence (mCoh) -Multivariate phase-locking value
-Partial Directed Coherence (PDC) (MmPLV) *

-Generalized PDC (GPDC)

-Partial Directed Coherence Factor (PDCF)
-Renormalized PDC (rPDC) *

-Directed Transfer Function (DTF)

-Direct Directed Transfer Function (dDTF)
-Granger-Geweke Causality (GGCO)
-Conditional GGC

-Blockwise GGC *

% o . fully implemented . partially-developed . coming soon
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

M M M Calculate Connectivity Measures

Pre-processing
Model fitting and validation »

— Covity
Statistics S
Visualization -

Select connectivity measures to calculate

(hold Ctrl to select mumple)

Durected Tranfer Function (DTF)
Normalized DTF (nDTF)

Direct DTF (dDTF)

Direct DTF (with full causal normalization)
Full ‘re uency DTF

Pamal Dlrected Cohe ence (PDC)

Normalized PDC (nPDC)

Generalized Partial Directed Coherence (GPDC)
Partial Directed Coherence Factor (PDCF)

Renormalized Partial Directed Coherence (RPDC
RANG ER-( ..7\[.‘7\. MEASLIRES

Comolex Coherence ICOh)

Imaginary Coherence (iCoh)

Partial Coherence pCoh)

MJItane Coherence (mCoh)
ECTRALDENSITYMEASURES

Complex Spectral Density

'27 return squared amplitude of complex measures

W convert spectral density to decibels

Frequencies (Hz) 1:127

s@ N
. | !
b3 . Help ~ Cancel | | ' 62
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Preprocessing Modeling Statistics Visualization
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Preprocessing Modeling Statistics Visualization

Parametric

Asymptotic analytic estimates of
confidence intervals
Applies to: PDC, nPDC, DTF,
NnDTF, rPDC
Tests: Hnul, Hoase, HaB

Confidence intervals using thin-
plate smoothing splines

Applies to: dDTF

Tests: Hpase, HaB

ases|oY eleg

Hnul @ Gj < Gl Hoase: Gij < Cbaseline Hpg: CAj = CB;

c;@ . fully implemented . partially-developed . coming soon

63

Newresiionie

Saturday, September 24, 2011



Preprocessing

S o

Compwn stionst

Newresiionie

Modeling

Parametric

Asymptotic analytic estimates of
confidence intervals
Applies to: PDC, nPDC, DTF,
NnDTF, rPDC
Tests: Hnul, Hoase, HaB

Confidence intervals using thin-
plate smoothing splines

Applies to: dDTF

Tests: Hpase, HaB

Hnui : Gij < Chul

. fully implemented

Hpase: Cij < Chpaseline

. partially-developed

Statistics Visualization

Non-parametric

Phase-randomization
Applies to: all
Tests: Hnui

Permutation Tests
Applies to: all
TeStS: HAB, Hbase

Bootstrap and Jacknife

Applies to: all
Tests: Hap, Hpase

Hag: CAj = CB;

. coming soon
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Preprocessing Modeling Statistics Visualization

Parametric Non-parametric

Analytic Statistics Surrogate Statistics

A o
(55] e Ta

scellaneous

Estimator RPDC; nPDC L N  Bootstrap
T : Confidencelnterval il NumPermutations

Alpha W P-value AutoSave
VerbosityLevel # Threshold ConnectivityMethods
W Confidencelnterval VerbosityLevel

Jacknife
InverseJacknife
Crossval

—— — PhaseRand
p Cancel > OK \

Mode
Resampling modes. Bootstrap (Efron Bootstrap resampling with
— replacement), Jacknife (leave-one-out cross-validation), Crossval
Statistic

. o (k-fold cross-validation), PhaseRand (Theiler phase
Statistical quantities to return. randomization)
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Preprocessing

Modeling

Parametric

Analytic Statistics

Miscellaneous

Estimator RPDC; nPDC

EElC - . Confidencelnterval =il
Alpha M P-value

VerbosityLevel W Threshold

WM Confidencelnterval

p Cancel > / OK \

Statistic
Statistical quantities to return.

Hnui : Gij < Chul

% o . fully implemented

eeroniienie
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Hpase: Cij < Chpaseline

. partially-developed

Statistics Visualization

Non-parametric

Surrogate Statistics

& . g
vy LA

Miscellaneous

L N Bootstrap
NumPermutations

AutoSave

ConnectivityMethods

VerbosityLevel

Jacknife
Inversejacknife
Crossval
PhaseRand

Mode

Resampling modes. Bootstrap (Efron Bootstrap resampling with
replacement), Jacknife (leave-one-out cross-validation), Crossval
(k-fold cross-validation), PhaseRand (Theiler phase
randomization)

Hag: CAj = CB;

. coming soon
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Preprocessing Modeling Statistics Visualization

S . fully implemented . partially-developed . coming soon
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Preprocessing Modeling Statistics Visualization

Interactive Time-Frequency Grid

@ . fully implemented . partially-developed . coming soon
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Preprocessing Modeling Statistics Visualization

Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

@ . fully implemented . partially-developed . coming soon
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Preprocessing Modeling Statistics Visualization

Interactive Time-Frequency Grid
Interactive 3D Causal Brainmovie

Causal Density Movie

@ . fully implemented . partially-developed . coming soon
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Preprocessing Modeling Statistics Visualization

Interactive Time-Frequency Grid
Interactive 3D Causal Brainmovie
Causal Density Movie

Directed Graphs on anatomicals (ECoG)

@ . fully implemented . partially-developed . coming soon
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Preprocessing Modeling Statistics Visualization

Interactive Time-Frequency Grid
Interactive 3D Causal Brainmovie
Causal Density Movie

Directed Graphs on anatomicals (ECoGQG)

and more...

@ . fully implemented . partially-developed . coming soon
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Preprocessing Modeling Statistics Visualization

Interactive Time-Frequency Grid
Interactive 3D Causal Brainmovie
Causal Density Movie

Directed Graphs on anatomicals (ECoGQG)

and more...

All of these currently support single-subject or (in beta version) group analysis
ROI connectivity analysis can currently be performed using dipole clustering

@ . fully implemented . partially-developed . coming soon
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Interactive Time-Frequency Grid

SNo Time Frequency Crid Options

A A ov
Ez$ = o P 2

DisplayProperties

ConnectivityMethod s DTF

ColorLimits 100

TimesToPlot [-0.75 0.98828125]

FrequenciesToPlot [1:50])

PlotContour

MatrixLayout all

PlottingOrder (]

SourceMarginPlot dipole

Nodelabels {'8', '11°, "'13%, "19°, '20°

EventMarkers {{0, 'r", ", 2]

FrequencyScale linear

Colormap jet(300)

Thresholding

Thresholding Simple

|__PercentileThreshold _J100 |
AbsoluteThreshold (]

DataProcessing

Baseline (]

Smooth2D

SubplotExpansion

SubplotExpansionProperties

FrequencyMarkers

FrequencyMarkers

FrequencyMarkerColor

TextAndFont

TitleString

TitleFontSize

AxesFontSize

TextColor (111)

BackgroundColor (0 00)

Pre-processing

Model fitting and validation »
Connectivity

Statistics >
,_ \ ,

BrainMovie3D

PercentileThreshold
Percentile threshold. If of form [percentile, dimension], percentile
is applied elementwise across the specified dimension.

Help Cancel OK

Compmrmions
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Interactive Time-Frequency Grid

SNo Time Frequency Crid Options

A A ov
Ez$ = o P 2

DisplayProperties

ConnectivityMethod s DTF

ColorLimits 100

TimesToPlot [-0.75 0.98828125]

FrequenciesToPlot [1:50])

PlotContour

MatrixLayout all

PlottingOrder (]

SourceMarginPlot dipole

Nodelabels {'8', '11°, "'13%, "19°, '20°

EventMarkers {{0, 'r", ", 2]

FrequencyScale linear

Colormap jet(300)

Thresholding

Thresholding Simple

|__PercentileThreshold _J100 |
AbsoluteThreshold (]

DataProcessing

Baseline (]

Smooth2D

SubplotExpansion

SubplotExpansionProperties

FrequencyMarkers

FrequencyMarkers

FrequencyMarkerColor

TextAndFont

TitleString

TitleFontSize

AxesFontSize

TextColor (111)

BackgroundColor (0 00)

Pre-processing

Model fitting and validation »
Connectivity

Statistics >
,_ \ ,

BrainMovie3D

PercentileThreshold
Percentile threshold. If of form [percentile, dimension], percentile
is applied elementwise across the specified dimension.

Help Cancel OK
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Causal Time-Frequency Grid

9

b

TO
Frequency (Hz)

Iy 3% o A5 30 XE E3Y an 2a iy 20
S30002P29990

‘ B
) v

Time (sec)

Sews c‘f
Compmrmions

Saturday, September 24, 2011




Causal Time-Frequency Grid
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Causal Time-Frequency Grid
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Causal Time-Frequency Grid
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INnteractive BrainMovie3D

Pre-processing

Madel fitting and validation »
Connectivity

Statistics »

Time~Frequency Grid
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INnteractive BrainMovie3D
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rre-~processing
Model fitting and valid
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BrainMovie3D Conmtrol Panel

NodeColorMapping
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INnteractive BrainMovie3D
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Causal Projection

Error > Correct (p < 0.05, N=24)
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Causal Projection

Error > Correct (p <0.05) 3-7 Hz
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Group Analysis
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Group Analysis

Disjoint Clustering

This approach adopts a 3-stage process:

1. Identify K ROI’s (clusters) by affinity
clustering of sources across subject
population using EEGLAB’s Measure-Product
clustering.

2. Average all incoming and outgoing
statistically significant connections between

each pair of ROlIs to create a [ KX K [x freq x
time | | group connectivity matrix.

3. Visualize the results using any of SIFTs
visualization routines. This method suffers from
low statistical power when subjects do not
have high agreement in terms of source
locations (missing variable problem).
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Group Analysis

Disjoint Clustering Bayesian Mixture Model

This approach adopts a 3-stage process:

1. Identify K ROI’s (clusters) by affinity
clustering of sources across subject
population using EEGLAB’s Measure-Product
clustering.

2. Average all incoming and outgoing
statistically significant connections between

A more robust approach (in development with
Wes Thompson and to be released in SIFT
1.0b) uses smoothing splines and Monte-Carlo
methods for joint estimation of posterior
probability (with confidence intervals) of cluster
centroid location and between-cluster
connectivity. This method takes into account
the “missing variable” problem inherent to the
disjoint clustering approach and provides
robust group connectivity statistics.

each pair of ROlIs to create a [ KX K [x freq x
time | | group connectivity matrix.

3. Visualize the results using any of SIFTs
visualization routines. This method suffers from
low statistical power when subjects do not
have high agreement in terms of source
locations (missing variable problem).

See Thompson and Mullen et al (2011), ICON
Xl
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Bayesian Group Inference

Error > Baseline (p < 0.01, N=24)
dDTF
3-7 Hz
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