

Forward and Inverse Source Modeling

Zeynep AKALIN ACAR 12th EEGLAB Workshop, San Diego November 19, 2010

Outline

Basic definitions
Forward model errors
Example: epilepsy source localization

Source of Brain Electrical Activity

$$\vec{d} = \vec{I} \cdot \Delta l$$

Dipole 'd' is defined by is position and direction

Dipole representation of current sources

Potentials on the scalp

Forward and inverse problem

Forward Problem

EEG/ MEG

Infinite homogeneous medium

$$\Phi(r) = \frac{1}{4\pi\varepsilon_o} \frac{\mathbf{p}\cdot\hat{\mathbf{r}}}{r^2}$$

Field lines of a point dipole

Conducting homogeneous sphere

$$V = \frac{\vec{P} \cdot}{4\pi\sigma} \left\{ 2\frac{\vec{R} - \vec{r_0}}{r_p^3} + \frac{1}{R^2 r_p} \left[\frac{\vec{R} + \frac{\vec{R}r_0 \cos\varphi - R\vec{r_0}}{R + r_p - r_0 \cos\varphi} \right] \right\}$$

Surface potentials on a conducting homogeneous sphere

Multi-layer sphere

$$\begin{split} \Phi_b &= \frac{I}{2\pi\sigma_t c} \sum_{n=1}^{\infty} A_n \left(\frac{r}{c}\right)^n [P_n(\cos\theta_A) - P_n(\cos\theta_B)] \\ \Phi_s &= \frac{I}{2\pi\sigma_t c} \sum_{n=1}^{\infty} [S_n r^n + U_n r^{-(n+1)}] \\ &\cdot [P_n(\cos\theta_A) - P_n(\cos\theta_B)] \\ \Phi_t &= \frac{I}{2\pi\sigma_t c} \sum_{n=1}^{\infty} [T_n r^n + W_n r^{-(n+1)}] \\ &\cdot [P_n(\cos\theta_A) - P_n(\cos\theta_B)]. \end{split}$$

$$A_{n} = \frac{(2n+1)^{3}/2n}{\left\{ \left[\left(\frac{\sigma_{n}}{\sigma_{n}} + 1 \right)n + 1 \right] \left[\left(\frac{\sigma_{n}}{\sigma_{n}} + 1 \right)n + 1 \right] \right] \\ + \left(\frac{\sigma_{n}}{\sigma_{n}} - 1 \right) \left(\frac{\sigma_{n}}{\sigma_{n}} - 1 \right)n(n+1) \left(\frac{a}{b} \right)^{2n+1} \\ + \left(\frac{\sigma_{n}}{\sigma_{n}} - 1 \right)(n+1) \left[\left(\frac{\sigma_{n}}{\sigma_{n}} + 1 \right)n + 1 \right] \left(\frac{b}{c} \right)^{2n+1} \\ + \left(\frac{\sigma_{n}}{\sigma_{n}} - 1 \right)(n+1) \left[\left(\frac{\sigma_{n}}{\sigma_{n}} + 1 \right)(n+1) - 1 \right] \left(\frac{a}{c} \right)^{2n+1} \right\}$$

(where σ_{i}, σ_{i} , and σ_{i} are the conductivities of the three regions)

$$\begin{split} S_n &= \frac{\frac{A_n}{c^n} \left[\left(1 - \frac{\sigma_b}{\sigma_t} \right) n + 1 \right]}{2n + 1} \\ U_n &= \frac{\frac{A_n}{c^n} n \left(1 - \frac{\sigma_b}{\sigma_t} \right) d^{2n+1}}{2n + 1} \\ T_n &= \frac{A_n}{c^n (2n + 1)^n} \left\{ \left[\left(1 + \frac{\sigma_b}{\sigma_t} \right) n + 1 \right] \left[\left(1 + \frac{\sigma_t}{\sigma_t} \right) n + 1 \right] + n(n + 1) \left(1 - \frac{\sigma_b}{\sigma_t} \right) \left(1 - \frac{\sigma_b}{\sigma_t} \right) \left(\frac{a}{b} \right)^{2n+1} \right\} \\ W_n &= \frac{nA_n}{c^n (2n + 1)^n} \left\{ \left[\left(1 - \frac{\sigma_b}{\sigma_t} \right) \left[\left(1 + \frac{\sigma_b}{\sigma_t} \right) n + 1 \right] \right] b^{2n+1} + \left(1 - \frac{\sigma_b}{\sigma_t} \right) \left[\left(1 + \frac{\sigma_b}{\sigma_t} \right) n + \frac{\sigma_b}{\sigma_t} \right] d^{2n+1} \right\} \right\} \end{split}$$

Concentric conducting spheres [Rush and Driscoll, 1969]

Analytical Head Models

Spheroid
Homogeneous Sphere
Multi-Layer Sphere

3-Layer: Scalp, Skull, Brain
4-Layer: Scalp, Skull, CSF, Brain

Human head

Numerical methods

Boundary Element Method (BEM)
Finite Element Method (FEM)
Finite Difference Method (FDM)

Formulation

Integral equation for Potential Field:

$$\phi(\vec{r}) = 2g(\vec{r}) + \frac{1}{2\pi} \sum_{k=1}^{n} \left(\frac{\sigma_{k}^{-} - \sigma_{k}^{+}}{\sigma_{i}^{-} - \sigma_{i}^{+}} \right) \int_{S_{k}} \phi(\vec{r}) \frac{\vec{R}}{R^{3}} \cdot d\vec{S}_{k}(\vec{r})$$

Formulation

Integrating the previous integral equation over all elements a set of equations are obtained.

In matrix notation for the potential field we obtain

$$\Phi_{M\times 1} = C_{M\times M} \Phi + g_{M\times 1} \qquad \Phi = [I - C]^{-1} g \qquad \Phi = \mathbf{A}^{-1} g$$

M: number of nodes

The expression for the magnetic field:

 $B_{n\times 1} = B_0 + \mathbf{H}_{n\times M} \Phi$

n: number of magnetic sensors

Numerical Head Models

BEM

Generated using Tetgen from NFT BEM mesh

FEM/BEM comparison

	BEM	FEM
Position of computational points	surface	volume
Free choice of computational points	yes	yes
System matrix	full	sparse
Solvers	direct	iterative
Number of compartments	small	large
Requires tesselation	yes	yes
Handles anisotropy	no	yes

Source models

Equivalent current dipole

Overdetermined Nonlinear optimization

Source space: Brain volume

Source models

Distributed source models

Source space: Cortical surface

Overlapping patches

Inverse Problem

Parametric Methods

- Overdetermined
- Searches for parameters of a number of dipoles
- Nonlinear optimization techniques
- May converge to local minima

Imaging Methods

- Underdetermined
- Searches for activation in given locations.
- Linear optimization techniques
- Needs additional constraints

Effects of Forward Model Errors on EEG Source Localization

MODELING ERRORS

Head Model Generation

- Reference Head Model
 - From whole head T1 weighted MR of subject
 - 4-layer realistic BEM model
- MNI Head model
 - From the MNI head
 - 3-layer and 4-layer template BEM model
- Warped MNI Head Model
 - Warp MNI template to EEG sensors
- Spherical Head model
 - 4-layer concentric spheres
 - Fitted to EEG sensor locations

The Reference Head Model

18541 nodes
 37090 elements

 6928 Scalp
 6914 Skull
 11764 CSF
 11484 Brain

The MNI Head Model

Brain

- ♦ 4-layer
 - 16856 nodes
 - 33696 elements

♦ 3-layer

- 12730 nodes
- 25448 elements

Scalp

CSF

The Warped MNI Head Model

Registered MNI template

Warped MNI mesh

The Spherical Head Model

4-Layer model Outer layer is fitted to electrode positions

Forward Problem Solution

Head Modeling Errors

- Solve FP with reference model
 - 3D grid inside the brain.
 - 3 Orthogonal dipoles at each point
 - 6,717 dipoles total

Localize using other head models
 – Single dipole search.

Plot location and orientation errors

Spherical Model Location Errors

Spherical Model Direction Errors

3-Layer MNI Location Errors

3-Layer MNI Direction Errors

Source localization errors of patch activity

Forward Problem Source : patches of cortex

Reference head model: 4-layer MR-based BEM

Inverse Problem Equivalent current dipole

Source localization errors of patch activity

Head model: 4-layer MR-based BEM model

Source localization errors of patch activity

Head model: 3-layer spheres

Patch size = 10 mm Patch size = 6 mm Patch size = 3 mm

Observations

Spherical Model

Location errors more than 4 cm.

♦ 3-Layer MNI

- Large errors where models do not agree.
- Higher around chin and the neck regions.

4-Layer MNI

- Similar to 3-Layer MNI.
- Smaller in magnitude.

Electrode co-registration errors

Solve FP with reference model

Shift all electrodes and re-register
 – 5° backwards
 – 5° left

Localize using shifted electrodes

Plot location and orientation errors

5° Backwards Location Errors

5° Left Location Errors

Observations

 Errors increase close to the surface near electrode locations.

 Changing or incorrectly registering electrodes may cause 5-10 mm localization error.

Effect of skull conductivity

In vitro

Measurement of skull conductivity

In vivo

Hoekama et al, 2003

MREIT Magnetic stimulation Current injection

He et al, 2005

Effect of skull conductivity

Brain to skull ratio				
	Rush and Driscoll	1968	80	
Cohen and Cuffin		1983	80	
	Oostendorp et al	2000	15	
	Lai et al	2005	25	
Measurement	Age	σ (mS/m)	Sd (mS/m)	
Agar-agar phant	om –	43.6	3.1	
Patient 1	11	80.1	5.5	
Patient 2	25	71.2	8.3	Skull conductivity
Patient 3	36	53.7	4.3	by age
Patient 4	46	34.4	2.3	
Patient 5	50	32.0	4.5	Hoekama et al, 2003
Post mortem sku	ıll 68	21.4	1.3	

Effect of Skull Conductivity

Solve FP with reference model
 Brain-to-Skull ratio: 80

Generate test model

- Same geometry
- Brain-to-Skull ratio: 20

Localize using test model

Plot location and orientation errors

FP ratio: 80 IP ratio: 20

Conclusion

Head shape

Most impact on source localization accuracy.

Incorrect electrode registration

- Errors near the electrodes
- Most studies investigate cortical activity close to the electrodes.
- Electrical properties
 - Number of layers
 - Relative conductivities (Brain-to-Skull ratio)

CASE STUDY

Epilepsy Head Modeling

Epilepsy Head Modeling

- Large hole in skull
- Plastic sheet
- A pre-surgery MR and postsurgery CT
- Differences in brain shape after surgery
- Co-registration of electrodes
 - Subdural from CT segmentation
 - Scalp no digitizer data

MR

Head modeling in epilepsy

Pre-surgery MRPost-surgery CT0.86 x 1.6 x 0.86 mm0.49 x 0.49 x 2.65 mm

Z. Akalin Acar - Head Modeling and Cortical Source Localization in Epilepsy

Scalp, skull and sheet models

Number of elements: Scalp: 10000 Skull: 30000 Plastic sheet : 7000

Z. Akalin Acar - Head Modeling and Cortical Source Localization in Epilepsy

BEM model

Analyzing Epilepsy Recordings

CT image of the implanted grid electrodes

Pre-Surgical Evaluation
Rest Data

- Simultaneous recordings
 78 iEEG electrodes
 - 29 scalp electrodes
- Provided by Dr. Greg Worrell, Mayo Clinic

Z. Akalin Acar - Head Modeling and Cortical Source Localization in Epilepsy

iEEG data

Independent Component Analysis

Z. Akalin Acar - Head Modeling and Cortical Source Localization in Epilepsy

Independent Components

Potentials on scalp

Potentials on plastic sheet

Independent Components on Brain Surface

Z. Akalin Acar - Head Modeling and Cortical Source Localization in Epilepsy

Source Localization Results

Radial source

Tangential source

Z. Akalin Acar - Head Modeling and Cortical Source Localization in Epilepsy

Distributed source localization

Patch - based source localization

Three Gaussian patches in different scales with radius 10mm, 6mm, and 3mm.

Cortical activity

Cortical activity of the two IC maps

The SBL algorithm managed to identify sparse mixtures of overlapping patches that describe both components.

Cortical activity of seizure components

Final Words

Accurate source localization

 Realistic head models.
 Correct electrode locations.
 Signal Processing

NFT can work with EEGLAB
 – Create realistic models

References

- Z. Akalin Acar, S. Makeig, "Neuroelectromagnetic Forward Head modeling Toolbox", J. of Neuroscience Methods, vol. 190 (2), 258-270, 2010.
- Z. Akalin Acar, N. Gencer, "An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging", vol. 49, 5011-5028, 2004.
- **3.** Z. Akalin Acar, G. Worrell, S. Makeig, "Patch-based cortical source localization in epilepsy", Proc. of IEEE EMBC 2009, Minneapolis.
- 4. Z. Akalin Acar, S. Makeig, "Effect of head models in EEG source localization", Sfn 2010, San Diego.