Forward and Inverse EEG Source Modeling

Scott Makeig Institute for Neural Computation UCSD, La Jolla CA

EEGLAB Workshop, NCTU, Taiwan – Sept. 2010

EEG volume conduction

- Potential difference between electrodes is measured. This corresponds to current flowing through skin:
 - Only tiny fraction of current passes through skull
 - Therefore the model should describe both skull and skin as accurately as possible.
- Problems with skull modeling
 - Poorly visible in anatomical MRI (T2)
 - Thickness varies
 - Conductivity is not homogeneous
 - Complex geometry at front and base of skull

$$\nabla \cdot (\sigma \nabla \Phi) = -\nabla \cdot J^P \text{ inside } V$$
$$\sigma \frac{\partial \Phi}{\partial n} = 0 \text{ on } S$$

σ(x,y,z): conductivity distribution
p: current source

WE NEED

- → Head Model
 - Conductivity values
 - Geometry
- → Sensor Locations
- \rightarrow Possible source distribution
 - Magnitudes
 - Locations
 - Directions
- \rightarrow Solver

Selected/processed EEG signal

\rightarrow Simple single-source scalp map !

- Number/positions of electrodes on the head surface
- Numerical head model
- Co-registration of EEG electrodes with head model
- A priori information/guess about the source space
- Choice of inverse model
- Choice of numerical method

Volume conductor model

- Electrical properties of tissue
- Geometrical description
 - spherical model
 - realistically shaped model

 \rightarrow Describes how the currents flow, \int from where they may originate

Errors in Simple Head Models

→ In the volume conductor model → In the electrode locations

Head Model Comparison

Simple head models

- Single sphere
- 3-4 Layer Spherical
- Spheroid

Realistic head models

Boundary Element Method Finite Element Method Finite Difference Method

Effects of Head Model

Spherical head model (3-layer standard)

Standard MNI head model (4-layer mean BEM)

Spherical volume conductor

- Advantages of the spherical head model
 - mathematically exact
 - fast to compute
 - reasonably accurate
 - easy to use
- Disadvantages of the spherical model
 - difficult to align properly
 - inaccurate in some regions

Realistic volume conductor

- Advantages of a **realistic** head model
 - a more accurate solution (especially for EEG)
- Disadvantages of a **realistic** model
 - more work to build from an MR image
 - slower to compute
 - might be numerically instable
 - harder to make between-subject comparisons
- → A pragmatic (easy, cheap) solution is to use a standard (mean) realistic head model (MNI).

- Computational methods for volume conduction problem that allow realistic geometries:
 - Boundary Element Method (BEM)
 - Finite Element Method (FEM)
- Geometrical description
 - Triangles (planar or quadratic)
 - Tetrahedra (3-D)

BEM volume conductor

Boundary Element Method

- description of geometry by compartments
- each compartment is
 - homogenous
 - isotropic
- important tissues
 - skin
 - skull
 - brain
 - (CSF)
- triangulated surfaces as boundaries
- surfaces should be closed

Zeynep Akalin Acar, '06

EEG/MEG

A Four-Layer BEM Head Model

Neuroelectromagnetic Forward head modeling Toolbox (NFT)

of elements

Scalp:	6900
Skull:	6800
CSF:	9000
Brain:	8800

Total 31500

FEM volume conductor

- Tesselate the 3-D volume into solid tetrahedra
 - Large number of elements
 - Each tetrahedron can have its own conductivity
 - Each tetrahedron can have its own anisotropy
- FEM is most accurate numerical method
 - Computationally expensive
 - Accurate conductivities are not known

Inverse problem methods

- Single and multiple dipole models
 - Minimize error between the model and the measured potential/field
- Distributed dipole models
 - Perfect fit of model to the measured potential/field
 - Minimize an additional constraint on sources
 - LORETA (assume a smooth distribution)
 - Minimum Norm (L2, minimum power at the cortex)
 - Minimum Current (L1, minimum current in the cortex)

Inverse problem methods

• Spatial source filtering

- Scan whole brain with single dipole and compute the filter output at every location (second-order covariance matrix)
 - MUSIC algorithm
 - *Beamforming* (e.g., LCMV, SAM, DICS)
- Perform ICA decomposition (higher-order statistics)
 - Of the scalp maps at individual moments
 - ICA gives the projections of the sources to the scalp surface, i.e., 'simple' maps!

→ ICA solves 'the first half' of the inverse problem ('What?')

- Physical/mathematical motivation
 - Any current distribution can be written as a multipole expansion
 - First term: monopole (must be 0)
 - Second term: dipole
 - Higher order terms: quadrupole, ...
- Convenience
 - Dipoles can be used as building blocks in distributed source models

Equivalent current dipoles

Measured Errors in Dipole Source Localization

Experimental studies

- Phantom \rightarrow 10 mm loc. error (Henderson & Butler, 1975)
- Human skull → 35 mm (Weinberg et al, 1986)

Simulation studies

- 3-layer model \rightarrow 15-25 mm (Roth et al, 1993)
- 3-layer model \rightarrow 9-14 mm (Vanrumste et al, 2002)
- Human skull \rightarrow 25 mm (Fletcher et al, 1993)
- 3-layer model \rightarrow ~8 mm (Akalin Acar, 2005)

Source Localization Errors

- For a 3-layer spherical head model
- Relative to 4-layer realistic BEM head model

Single vs. multiple dipole models

- Manipulate source parameters to **minimize error** between measured and model data
 - Position of each source
 - Orientation of each source
 - Strength of each source
- Orientation and strength together correspond to the "dipole moment" and can be estimated *linearly*
 - **Position** is estimated *non-linearly* by
 - iterative source parameter estimation

Dipole scanning: grid search

- Define grid with allowed dipole locations
- Compute optimal dipole moment for each location
- Compute value of goal-function
- Plot value of goal-function on grid
- Number of evaluations:
 - single dipole, 1 cm grid: ~4,000
 - single dipole, ½ cm grid:
 - BUT two dipoles, 1 cm grid:

~32,000

~16,000,000

- Start with an initial guess from coarse fitting

 evaluate the local derivative of goal-function
 - "walk down hill" to the most optimal solution
- Number of evaluations needed ~ 100

Effect of Number of Electrodes

- Single dipole source
- 3-layer spherical head model
- I152 solution points

Measurements of skull conductivity:

- MR-EIT
- Magnetic stimulation
- Current injection

In vivo

In vitro

He et al, 2005

Hoekama et al, 2003

Effects of Skull Conductivity Estimate

Brain to skull ratio							
	Rush and Dris	coll 1968	80				
	Cohen and Cu	uffin 1983	80				
	Oostendorp e	et al 2000	15				
	Lai e	et al 2005	25				
Measurement	Age	σ (mS/m)	Sd (mS	5/m)			
Agar-agar phar	ntom –	43.6	3.1		Skull conducti	vity	
Patient 1	11	80.1	5.5	5	by age		
Patient 2	25	71.2	8.3	3	Hoekama et al. '	2003	
Patient 3	36	53.7	4.3	3	riocrania et al, i	2003	
Patient 4	46	34.4	2.3	3			
Patient 5	50	32.0	4.5	5			
Post mortem sk	kull 68	21.4	1.3	3	Z. Akalin Aca	ır, 2010	

Effect of reference electrode

"The choice of a particular reference electrode ... does not change in any way the biophysical information contained in the potential distribution. It does not in any way change the relation between source and potential, except for an additive constant of no physical significance."

- Geselowitz, 1998

- Position of the source is not estimated as such
 - Pre-defined grid (3-D volume or cortical sheet)
 - Strength is estimated at each grid element
 - In principle, a linear problem, easy to solve, BUT...
 - More "unknowns" (parameters) than "knowns" (channels, measurements)
 - An infinite number of solutions can explain the data perfectly (not necessarily physiologically plausible!)
 - So, additional constraints are required ...

Conformal cortical patch source model

Conformal cortical patch source model

Model a source estimate as a sum of overlapping patches

Comparing source models

for an IC of an intracranial data set

Estimated IC cortical projection

Equivalent Current Dipole Model

Sparse Patch Basis Model

Summary I

• Forward modeling

is required for the interpretation of scalp topographies

- Interpretation of scalp topographies is inverse modelling "source estimation"
- Mathematical techniques are available

to aid in interpreting scalp topographies

→ These are **inverse source models**

Summary II

- Inverse modeling
 - Model assumption for volume conductor
 - Model assumption for source (i.e., dipole)
 - Additional assumptions on source
- Single point-like sources
- Multiple point-like sources
- Distributed sources
 - Different mathematical solutions
 - Dipole fitting (linear and nonlinear)
 - Linear estimation (regularized)