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Outline 

• EEG and the cocktail party problem 
• Linear superposition of EEG sources 
• Typical EEG sources 
• Back-projection of separated sources 
• Dependency and subspaces 

– ICA separates dependent subspaces from other 
activity 

– Back-projection of subspaces 
– Dynamic components 

• Non-stationarity 
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Cocktail Party Problem 
• EEG analysis as separation of multiple simultaneously active 

brain sources, similar to microphones recording and multiple 
simultaneous speakers, e.g. at a cocktail party 
 
 
 
 
 
 
 

• ICA originally proposed for separation of multiple 
independent audio signals (early ‘90s) 

• Scott Makeig proposed ICA for EEG source separation (1996), 
in collaboration with Tony Bell and Terry Sejnowski at Salk 
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• A source is essentially defined by the pattern of 
electrical potential that it projects onto the 
electrodes (by volume conduction) 

 

 

 

 

EEG Sources 
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• Stationary source activity (local and stable) 
fluctuates, or oscillates, around zero, causing 
alternation of positive and negative potentials 
at the scalp 

 

 

 

 

EEG Sources 
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• EEG electrodes record the source activity weighted by different 
values depending on electrode location relative to the source 

 

 

 

 

 

EEG of one source 
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EEG of three sources 
• EEG records multiple sources that are simultaneously active 
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EEG Data 
• Raw EEG records large number of simultaneously active sources 

• From physics, we know that EEG at one instant is simply the 
sum of all source activity at that instant 
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• Let the EEG data be represented by the vector 
of time varying electrode potentials x(t), and let 
the source activities be si(t), i = 1, …, n 

• Let the scalp maps (patterns of potential) be 
represented by vectors ai, i = 1, …, n 

• The EEG data is the sum: 

x(t)   =   s1(t) a1  +  s2(t) a2  + … +  sn(t) an 

 

Linear Superposition 

= X A S 

12th EEGLAB Workshop,  La Jolla, CA,  November 17-22,  2010 



• Given the EEG data, X, we would like to decompose it 
into source scalp maps multiplied by source activity, 
X = AS, with A and S unknown 

 

Decomposition of EEG 

= AS    X 
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Typical ICA scalp maps 
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Typical ICA sources – alpha 
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Typical ICA sources – theta 
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• Separated sources can be “back-projected” to the scalp to 
examine contribution of individual sources at electrodes 

 

 

 

 

Back-projection 
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Pairwise mutual information 

• Pairwise mutual information (PMI): 

[M]ij  =  I(xi; xj)  =  h(xi) + h(xj) – h(xi, xj) 

PMI is a measure of dependence between sources 
 

• Comparison of PMI for original data and ICA 
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• Residual dependence structure can be seen 
using Pairwise Mutual Information (PMI) plot 

• Block diagonalizing this matrix (heuristically), 
we see blocks corresponding to dependent 
subspaces of components  

Dependent subspaces 
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Alpha dependence 

• Below four alpha components are shown 

 

 

 

• This alpha activity exhibits dependence and 
coherence 

• There is actually an alpha “subspace” 

• Is alpha a “distributed dynamic” phenomenon? 
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Alpha Dynamic Component 

• Alpha component maps: 

• Subspace can be extracted 
along with dynamics and played as a movie: 
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Muscle dependence  

•  Muscle components tend  
    to be active at the same time 
 
•  Activity is uncorrelated, but 
   nevertheless dependent 
 
•  Activity is non-Gaussian, 
    marginal histograms are 
    “sparse” 
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Variance Dependence and ICA 

• We can show that minimizing the total mutual 
information will separate variance dependent 
sources 

 

• PMI can be used to 
analyze dependence 
structure after ICA 
has been performed 
 

 
12th EEGLAB Workshop,  La Jolla, CA,  November 17-22,  2010 



Non-stationarity 
• Typical EEG recordings are non-stationary—souces and distributions 

differ over course of recording. 

• We use a mixture model approach to learn multiple ICA models 
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Conclusion 

• Problem of separating EEG sources is similar to the 
“cocktail party problem” of separating simultaneous 
audio sources 

• Individual sources, e.g. contributing to ERPs, can be 
separated an back-projected to examine activity at the 
scalp electrodes, or map can be “localized” to determine 
source location in brain 

• Sources may exhibit residual dependency, but ICA 
usually separates a “subspace” from other sources 

• Data may be non-stationary, but a mixture of ICA models 
can be used to represent different time periods with 
different ICA models 

• Part 2 after lunch … 
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