Modeling and Analysis of EEG using ICA and AMICA

Jason Palmer Swartz Center for Computational Neuroscience University of California San Diego, La Jolla, CA

Outline

- Description of EEG data
- The ICA linear superposition model
 - Statistical Linear Model
 - Understanding the nature of independence
- Statistical estimation and likelihood
 - Digression on PCA and dimensionality reduction
- Performance of ICA
 - When does ICA work? Sub- and Super-Gaussianity
 - What factors effect the performance of ICA?
- Fitting source probability densities
 - Generalized Gaussian densities and mixtures
- Comparison of ICA algorithms on EEG data
 - Dipolarity/plausibility vs. Independence
- ICA Mixture model, non-stationarity and data segmentation

EEG Recordings and Sources

- EEG measures extra-cellular potential fluctuations
- Working theory: local synchronous firing of cortical patches
- In the far field looks dipolar, oriented perpendicular to the cortex

EEG Recordings and Sources

- EEG also picks up firing of muscle cells in scalp
- And heart muscle firing causing heartbeat
- Also non-biological signals, like power line noise
- Sources inside the head are fixed relative to electrodes. Sources outside head (like power line) can be more difficult to separate due to non-fixed maps

14th EEGLAB Workshop, Mallorca, Spain, September 22-25, 2011

The ICA (Linear) Model

 Each source has a an associated "scalp map", or pattern of electric potential measured at the electrodes

 $\mathbf{a}_i \in$

as well as a "source activation" signal driving the map:

• Notation: *i*th map is denoted, \mathbf{a}_i , and *i*th source activation, $s_i(t)$

$$\mathbf{A} \triangleq \begin{bmatrix} \mathbf{a}_1 \, \mathbf{a}_2 \, \cdots \, \mathbf{a}_n \end{bmatrix} \quad \mathbf{s}(t) \triangleq \begin{bmatrix} s_1(t) \\ \vdots \\ s_n(t) \end{bmatrix} \quad \mathbf{x}(t) \triangleq \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$

• EEG is linear superposition of *independent sources*:

$$\mathbf{x}(t) = \mathbf{a}_1 s_1(t) + \dots + \mathbf{a}_n s_n(t) = \mathbf{A}\mathbf{s}(t)$$

Independence

• Independence of two events A and B defined:

Events are independent if the probability of both occurring is just the product of the probabilities of each happening individually

P(A and B) = P(A)P(B)

- Random variables X and Y are independent if their events are
- Independence is a stronger property than uncorrelatedness
 Random variables are uncorrelated if the mean (average value) of the
 product is just the product of the means. Zero mean uncorrelated = orthogonal

 $E\{XY\} = E\{X\}E\{Y\} \qquad E\{(X - \mu_X)(Y - \mu_Y)\} = 0$

• Independence implies uncorrelatedness

LICSI

But two events can be uncorrelated without being independent.
 Only in the Gaussian case does uncorrelatedness imply independence.

Independence and PDFs

- A probability density function describes the distribution of a random variable, or random vector, over a space
- E.g. if X is a Gaussian, or Normal, random variable, $X \sim \mathcal{N}(x; \mu, \sigma^2)$ $p_X(x) = \mathcal{N}(x; \mu, \sigma^2) \triangleq (2\pi)^{-1/2} \sigma^{-1} \exp(-\frac{1}{2}\sigma^{-2}(x-\mu)^2)$
- In terms of pdfs, r.v.'s are independent if and only if the joint probability density factorizes: $p_{X,Y}(x, y) = p_X(x)p_Y(y)$
- Or in vector notation:

UCSE

$$p_{\mathbf{s}}(\mathbf{s}) = p_{s_1}(s_1)p_{s_2}(s_2)\cdots p_{s_n}(s_n)$$

Mutual Information can be used to measure dependence
 Only zero when variables are independent (unlike correlation)
 MI(X,Y) = I(X;Y) = D(p_{X,Y}(x,y) || p_X(x)p_Y(y)) ≥ 0

Statistical Model

• The Linear Model (no channel noise): $\mathbf{x} = \mathbf{As}$

Sources are independent: $p_{\mathbf{s}}(\mathbf{s}) = p_{s_1}(s_1)p_{s_2}(s_2)\cdots p_{s_n}(s_n)$

PDF of the EEG recording can be calculated in closed form:

$$p_{\mathbf{x}}(\mathbf{x}) = |\det \mathbf{A}^{-1}| p_{\mathbf{s}}(\mathbf{A}^{-1}\mathbf{x})$$

- Define the "unmixing matrix":
$$\mathbf{W} \triangleq \mathbf{A}^{-1}$$

 $p_{\mathbf{x}}(\mathbf{x}) = |\det \mathbf{W}| p_{\mathbf{s}}(\mathbf{W}\mathbf{x}) = |\det \mathbf{W}| \prod_{i=1}^{n} p_{s_i}(\mathbf{w}_i^T \mathbf{x})$

- Key assumption: fewer sources than sensors
 - Necessary to compute density in closed form
 - Can be relaxed to an extent using ICA mixture model, described later

PCA and Dimensionality Reduction

- If there are more channels than sources, then the data will lie in "subspace" of the full space (number of channels)
- PCA can determine a "basis" for this subspace, i.e. a set of vector <u>x</u> (that "span" the space
- "Sources" are uncorrelated

UCSI

PCA and Dimensionality Reduction

• De-correlating basis is not unique. Covariance matrix is defined:

$$[\mathbf{\Sigma}]_{ij} \triangleq E\{(x_i - \mu_{x_i})(x_j - \mu_{x_j})\}$$
$$\mathbf{\Sigma} = E\{(\mathbf{x} - \mu_{\mathbf{x}})(\mathbf{x} - \mu_{\mathbf{x}})^T\}$$

- Factorize the covariance matrix into "square roots": $\mathbf{\Sigma} = \mathbf{A}\mathbf{A}^T$
- But there is an infinite number of such roots, e.g., Cholesky: $\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^T$ Eigen-decomposition: $\mathbf{\Sigma} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^T$
- There is a unique symmetric square root: $\mathbf{Q} \mathbf{\Lambda}^{1/2} \mathbf{Q}^T$
- Decorrelating at two different time lags is unique
 - SOBI approach simultaneously approximately diagonalizes covariance matrices at multiple lags—more in comparison section

Eigenvectors and Sphering maps

- We use PCA as a preprocessing step for ICA, potentially reducing the dimension of the data if it is not full rank (e.g. when avg reference is used)
- Not unique! E.g. two decorrelating basis sets: eigenvectors (left), symmetric sphering basis (right). Sphering basis (right) more biologically realistic

UCSI

Statistical Model (again)

• The instantaneous Linear Model (no channel noise):

$$\mathbf{x}_t = \mathbf{A}\mathbf{s}_t$$

• Sources are independent:

$$p_{\mathbf{s}}(\mathbf{s}) = p_{s_1}(s_1)p_{s_2}(s_2)\cdots p_{s_n}(s_n)$$

• PDF of the EEG recording can be calculated in closed form:

$$p_{\mathbf{x}}(\mathbf{x}) = |\det \mathbf{A}^{-1}| p_{\mathbf{s}}(\mathbf{A}^{-1}\mathbf{x})$$

• Define the "unmixing matrix": $\mathbf{W} \triangleq \mathbf{A}^{-1}$

$$p_{\mathbf{x}}(\mathbf{x}_t) = |\det \mathbf{W}| p_{\mathbf{s}}(\mathbf{W}\mathbf{x}_t) = |\det \mathbf{W}| \prod_{i=1}^n p_{s_i}(\mathbf{w}_i^T \mathbf{x}_t)$$

ICA – Estimation and Optimization

• In the statistical model, the sources (and thus the data) are modeled as temporally independent. For *N* samples (time points):

$$p_{\mathbf{x}_1,\ldots,\mathbf{x}_N}(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \prod_{t=1}^N p_{\mathbf{x}}(\mathbf{x}_t) = |\det \mathbf{W}|^N \prod_{t=1}^N p_{\mathbf{s}}(\mathbf{W}\mathbf{x}_t)$$

• Define the "log likelihood" of the data:

$$L(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \log |\det \mathbf{W}| + \frac{1}{N} \sum_{t=1}^N \log p_{\mathbf{s}}(\mathbf{W}\mathbf{x}_t)$$

- We wish to maximize the function over the parameters
- The following interpretations of ICA are equivalent:
 - Maximum Likelihood
 - Minimize KL divergence (find model with the best fit to the data)
 - Minimize mutual information

Unknown Source Densities

• Likelihood involves unknown source densities:

20

10

-10

-20 \ -20

-10

$$p_{s_i}(s_i), i=1,\ldots,n$$

- It turns out, however, that we only need to the know basic form of density — sub-Gaussian or super-Gaussian
 - Gaussian: limiting distribution of sums of random variables
 - Super-Gaussian: heavier tails, sharper peak, positive kurtosis
 - Sub-Gaussian: light tails, like uniform density, negative kurtosis
- Scatter plots of two independent random variables:

Unknown Source Densities

- Fixed forms for sub- and super-Gaussian densities are sufficient to separate sources as number of samples goes to infinity
 - E.g. The Fastica (Hyvarinen) and Extended Infomax (Bell, Sejnowski, and Lee) algorithms use this approach. Ext. Infomax logistic and GMM shown:

• Sign of *kurtosis*, or normalized kurtosis, can be used to determine online what an estimated source is:

$$\kappa_4 \triangleq E\{X^4\} - 3E\{X^2\}^2 \qquad \kappa \triangleq \frac{E\{X^4\}}{\sigma^4} - 3$$

Positive = super-Gaussian, negative = sub-Gaussian

• However, asymptotic stability does not guarantee good performance for a finite number of samples (fixed *N*)

Measuring Performance of ICA

- Given a statistical model, we can calculate asymptotic lower bound on variance (error) in our parameter estimates
- Formulate as problem of estimating: $\hat{\mathbf{C}} \triangleq \hat{\mathbf{W}} \mathbf{A} \approx \mathbf{P} \mathbf{D}$
- Generally, if sub- and super-Gaussian chosen correctly, the expected value of $\hat{\mathbf{C}}$ is a permuted diagonal matrix—ICA works
- But the variance in the estimates generally differs. We have:

$$\hat{\mathbf{s}}(t) = \hat{\mathbf{W}}\mathbf{x}(t) = \hat{\mathbf{W}}\mathbf{A}\mathbf{s}(t) = \hat{\mathbf{C}}\mathbf{s}$$
$$\hat{s}_i(t) = \hat{c}_{i1}s_1(t) + \dots + \hat{c}_{in}s_n(t) \approx \hat{c}_{ij}s_j(t)$$

• Then in terms of normalized (unit variance) sources:

$$\frac{\hat{s}_i(t)}{\sigma_i} = \hat{c}_{i1} \frac{\sigma_1}{\sigma_i} \frac{s_1(t)}{\sigma_1} + \dots + \hat{c}_{in} \frac{\sigma_n}{\sigma_i} \frac{s_n(t)}{\sigma_n} \approx \hat{c}_{ik} \frac{\sigma_k}{\sigma_i} \frac{s_k(t)}{\sigma_k}$$

Measuring Performance of ICA

- The *j*th interfering (normalized) source is multiplied by: $\hat{c}_{ij} \frac{\sigma_j}{\sigma_i}$
- Define: $\phi_i \triangleq -E\left\{\frac{d^2}{ds_i^2}\log p_{s_i}(s_i)\right\}$

UCSD

- We can bound the variance of the *j*th "contaminating coefficient": $E\{\hat{c}_{ij}^2\}\frac{\sigma_j^2}{\sigma_i^2} \geq \frac{1}{N}\frac{\phi_j\sigma_j^2}{(\phi_i\sigma_i^2)(\phi_j\sigma_j^2)-1}$
- So optimal performance in ICA is characterized by: $\mathcal{L}_i \triangleq \phi_i \sigma_i^2$ Optimal Rejection Rate $= \frac{1}{N} \frac{\mathcal{L}_j}{\mathcal{L}_i \mathcal{L}_j - 1}$
- This bound gives the optimal performance achievable assuming that each source density is known. Similar but more complicated
 expression can be derived in terms of approximating densities.

Generalized Gaussian Densities

 The Generalized Gaussian density has the following basic form, where rho is the "shape parameter": 0.8

$$\mathcal{GG}(s;\rho) \triangleq \frac{1}{2\Gamma(1+1/\rho)} \exp(-|s|^{\rho})$$

$$\begin{array}{c}
0.6 \\
0.4 \\
0.2 \\
0 \\
-6 \\
-4 \\
-2 \\
0 \\
s_{i}
\end{array}$$

• Adding location and scale parameters:

UCSI

Generalized Gaussian Mixtures

• More complex densities can be constructed using a mixture model: $p_M(s_i) = \sum_{j=1}^{m} \alpha_j p_j(s_j)$

$$p_M(s_i) = \sum_{j=1}^{N} \alpha_j p_j(s_i)$$

• For example, consider, the following model: $\frac{1}{2}\mathcal{GG}(s_i; -2, 1, 1) + \frac{2}{10}\mathcal{GG}(s_i; 0, 1, 2) + \frac{3}{10}\mathcal{GG}(s_i; 2, 1, 10)$

UCSD

Generalized Gaussian Interference

 Now suppose we are trying to estimate a source with a Generalized Gaussian density with shape parameter ρ, which is mixed with a Generalized Gaussian with shape r

14th EEGLAB Workshop, Mallorca, Spain, September 22-25, 2011

α

14th EEGLAB Workshop, Mallorca, Spain, September 22-25, 2011

Neuroscience

An EEG Study

- Experiment with 14 datasets of 71 channel Sternberg data
- 22 different ICA algorithms downloaded and tested

UCSD

• Amount of MI removed from data, vs. # dipoles with < 5% residual variance

An EEG Study

• The more dependence we remove, the better our components look!

UCSD

The ICA Mixture Model

• The statistical framework can be extended to estimate multiple ICA models simultaneously – ICA mixture model (Lee et al)

$$p_{\mathbf{x}}(\mathbf{x}_t) = \sum_{h=1}^M \gamma_h \, p_h(\mathbf{x}_t \,|\, h_t = h)$$

- M models indexed by h ∈ {1,...,M}. Each model has its own maps, A_h, sources, s_h (with source models), and "centers" c_h
- Given which model is active, i.e. given h, the model is linear:

$$p_{\mathbf{x}}(\mathbf{x}_t \mid h_t = h) = |\det \mathbf{W}_h| p_{\mathbf{s}_h}(\mathbf{W}_h(\mathbf{x}_t - \mathbf{c}_h))$$

• Different models are active at different times—one model active at a time. At each time *t*, choose an "active" model index with probabilities $\gamma_1, ..., \gamma_M$.

Posterior Likelihood

• Once the model parameters have been learned, we can use Bayes' Rule to compute the posterior likelihood that $h_t = h$:

$$P(h_t = h | \mathbf{x}_t) = \frac{p(\mathbf{x}_t | h_t = h) P(h_t = h)}{\sum_{h'=1}^{M} p(\mathbf{x}_t | h_t = h') P(h_t = h')}$$

- This gives us the likelihood of each model at each time point
- Segmentation is performed by declaring the active model at time t to be the one with highest posterior likelihood

$$\hat{h}_t = \arg\max_h P(h_t = h \,|\, \mathbf{x}_t)$$

Segmentation Example: Multi-task

• 3 models learned on 1.5 hour recording with multiple tasks Continuous Performance Task (CPT), Eriksen Flanker, Fast Response, Eyes Closed (EC), Eyes Open (EO)

UCSD

Segmentation Example: Epileptic Seizure

- 15 minutes of ECoG array recording with 2 seizures
- Single model trained on seizure data shows drop in likelihood at seizures
- 5 models were estimated
- The models segmented the seizure and non-seizure data, as well as different periods within seizures
- The segmentation is the same in two seizures
- Segmentation is consistent using different number of models in the training

LICSI

Conclusions

- EEG data is well modeled using the instantaneous ICA linear model ۲
 - PCA can be used for preprocessing, decorrelation, dimensionality reduction, not unique!
- ICA basis is unique if sources are non-Gaussian. In principle we only need ٠ to match general from (sub- or super-Gaussian) of density
- However, variance in the estimate (separation quality, map quality) ۲ depends on how precisely source density is modeled.
- We presented a general framework for modeling arbitrary independent ۲ source distributions using adaptive mixtures of Generalized Gaussian mixture model – AMICA
- We extended single-model AMICA to multiple models to account for data ٠ non-stationarity using the ICA mixture model, and showed how to estimate posterior model likelihood for unsupervised data segmentation
- More detail and background, as well as code for all functions and figure ٠ generation, is available on the EEGLAB Wiki:
 - Linear_Representation_and_Basis_Vectors
 - Random Variables and Probability Density Functions
 - Amica

Acknowledgements

- The ICA comparison study was done in collaboration with Arnaud Delorme
- Much of the data used during algorithm development and testing was collected by Julie Onton at SCCN
- The Multi-task study was done in collaboration with Gráinne McLoughlin (KCL)
- Understanding and interpretation of EEG is directed by Scott Makeig (UCSD)
- Computing resources tirelessly maintained by Robert Buffington at SCCN
- To the conference organizers: Moltes gràcies!
- I gràcies als vostès per escoltant!

