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Outline 

• Decorrelation – PCA and Sphering 

• Statistical dependence 

• ICA strategies 

• Maximum likelihood and minimum mutual 
information 

– Modeling source densities 

• Multiple models and non-stationarity 

– ICA mixture model 
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EEG Data 
• Raw EEG records large number of simultaneously active sources 

• From physics, we know that EEG at one instant is simply the 
sum of all source activity at that instant 
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Decorrelation 

• Our first thought is decorrelation, i.e. find A 
and S such that the rows of S are orthogonal 

• Unfortunately decorrelation is not unique, 
there are an infinite number of such A, S pairs 

• One example is PCA, which projects onto 
eigenvectors of covariance matrix: 

XXT / N  = UDUT 

 where the columns of U are the eigenvectors 
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Linear superposition model 
• Basic linear model: 

X = AY 

• Eigen-decomposition of covariance: 

XXT /N = UDUT 

• PCA decomposition: 

X = (UD1/2
 )(D

-1/2 UTX) = APCAYPCA 

• Sphering decomposition: 

X = (UD1/2 UT)(UD-1/2 UTX) = ASPH YSPH 

• ICA  then decomposes YSPH = AICAYICA so that: 

X = (ASPH AICA) YICA ,   YICA = (WICAWSPH) X 

n x N n x N 

n x n 

icaweights icasphere icawinv 
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PCA and Sphering component maps 

•  PCA maps (left) are eigenvectors–orthogonal,unrealistic 
•  Sphering components (right) – all radial, localized 
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Independent Component Analysis 
• Rather than try to reduce (or eliminate) correlation 

between sources, try to reduce statistical dependence 
 

• Independence is defined mathematically by 
factorizability of the joint probability density: 

ps(s1(t), s1(t),…, sn(t)) = p1(s1(t)) · p2(s2(t)) ··· pn(sn(t)) 
 

• Mutual information is a measure of how much the joint 
density differs from the product of the marginal 
densities, specifically it is the Kullback-Leibler 
divergence of joint from product of marginals 
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Mutual Information and 
Maximum Likelihood Estimation 

• To estimate the sources in the model X=AS, we look for an unmixing 
matrix W = A-1 such that Y=WX where Y is a scaled rearrangement of 
the sources S 
 

• Since the model is fairly simple (linear with independent sources, 
temporally i.i.d.) we can calculate the likelihood 
 

p(X) =  ∏t px(x(t)),      log p(X) =  ∑t  log|det W| + log py(Wx(t)) 
 

• It turns out that the likelihood is related to the mutual information 

I(y1; y2; … ; yn) = - N-1 log p(X) + ∑i KL(q(yi)||p(yi)) 
 

• So we can minimize the mutual information by maximizing the 
likelihood over W and minimizing the divergence of the model source 
model densities qi(yi) from the actual densities pi(yi) 
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What is a Mixture Model? 

• A mixture model is a probabilistic combination of 
several models: 

 

 

• Each data point modeled as being generated by one 
of the models in the mixture 

mixture 

proportions 
means 

scales 
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Alpha components 
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Frontal midline   
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Power line component 

• Sub-Gaussian component represented by mixture 
model of Generalized Gaussian densities 
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Alpha components 
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• Each source density mixture component has 
unknown location, scale, and shape: 

 

 

 

• Generalized Gaussian        
mixture model is 
convenient and flexible 

Source Density Mixture Model 
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ICA Algorithms – strategies 

• Look for sources with independent activity 

• Mutual information and likelihood 
– Approx. MI via cumulant expansion of source density 

– Maximum likelihood 
• Fixed source densities – Infomax, FastICA 

• Adaptive / parametric source densities – Pearson, Amica, 
Extended Infomax 

• Multiple lag decorrelation – SOBI, AMUSE, etc. 

• Tensor diagonalization – JADE, SHIBBS, FOBI 

• Multiple lag tensor diagonalization – JADE-TD 
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Maximum Likelihood Framework 
• Probabilistic model of EEG data is a classical linear model: 

 

x(t) = As(t) 
 

 where the sources s(t) are independent (density is product of marginal 
densities): 

 ps(s(t)) = p1(s1(t)) · p2(s2(t)) ··· pn(sn(t)) 
 

• We estimate the unmixing matrix W=A-1 and estimate sources y: 
 

y(t) = Wx(t) 
 

• Then the likelihood (prob. dens.) of one time point is: 
 

px(x(t)) = |det W| ps(y(t)) 
 

• The log likelihood of the data X assuming temporal independence is: 
 

p(X) =  ∏t px(x(t)),      log p(X) =  ∑t  log|det W| + log ps(Wx(t)) 
 

• We maximize this function (optimize) with respect to W 
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Mutual Information Reduction (MIR) 

• Entropy of linear transformation, y = Wx 
 

h(y)   =   log |det W| + h(x)  
 

• Mutual information (instantaneous) for linear transformation: 
 

I(y)   =   h(y1) + … + h(yn)  –  log |det W| –  h(x) 
 

• Total mutual information reduction (MIR) due to linear 
transformation 

 MIR  =   I(x) – I(y)   =   [h(x1) + … + h(xn)]  –  h(x) 
       – [h(y1) + … + h(yn)]  + log |det W| + h(x) 
 
   =   log |det W|  +  [h(x1) + … + h(xn)]  – [h(y1) + … + h(yn)]  
 

• Similar to ML since entropy  h(y) = E{-log p(y)} 
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Dipolarity and biological plausibility 

 

• Dipolarity is measured by fitting a single dipole 
(projection) to the measured component map 
and computing residual variance 

 

• The dipolarity of a decomposition is the 
percentage of the estimated components with a 
residual variance (squared error in dipole fit) less 
than some threshold (typically 5%) 
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Comparison Dipolarity vs. MIR 
Experiment with 14 datasets of 71 channel data, 22 ICA algorithms tested 
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Artificial dipolarity of sphering 
• The Sphering decorrelating basis (not plotted in 

previous plot) scores high dipolarity because it 
consists mainly of radial dipoles (with high MI) 
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What does this tell us? 
• The EEG sources really do have some delayed dependence. By trying to 

eliminate dependence at all lags, the time domain algorithms yield 
unrealistic (non-dipolar) components. Sophisticated algorithms that are 
instantaneous only, like JADE, do better.  
 

• Algorithms that enforce decorrelation, like FastICA and JADE, seem to yeild 
less biologically plausible components. Sources actually have some 
dependence. 
 

• Algorithms that don’t enforce decorrelation, and that have adaptive 
source densities (like Ext. Infomax, Pearson, Amica) or have good density 
models to start with (Infomax) seem to do the best. There is a known 
higher variance in the component estimate when decorrelation is 
enforced, so this makes sense. 
 

• Among the ML / min mutual info type algorithms, the better the source 
density is modeled, the better the algorithm does in both MIR and 
dipolarity. There is a known penalty in asymptotic minimum variance 
(CRLB) when source density model is misspecified. 
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Pairwise mutual information 

• Pairwise mutual information (PMI): 
 

[M]ij  =  I(xi; xj)  =  h(xi) + h(xj) – h(xi, xj) 
 

• Comparison of PMI for original data, PCA (data 
projected onto eigenvectors), Sphered data, ICA 
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ICA Mixture Model 
• Want to model observations x(t), t = 1,…,N, 

different models “active” at different times 

• Bayesian linear mixture model, h = 1, . . . , M : 

 

• Conditionally linear given the model,                  : 

 
 

• Samples are modeled as independent in time: 
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Example segmentation 
• Task trials are represented by blue, green, and red models 

• Red model contains muscle activity not present in blue and green 

• Non-task periods represented by cyan and magenta models 
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Epilepsy 
• Data: 15 minutes from 1 subject containing 2 seizures 

• Single model does not represent seizure well 

• We learned 5 models – new models consistently adapt 
to portions of seizure 
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• Maps from grid of electrodes placed intercranially over 
seizure area 

• Source probability densities are fit by mixture model 

Epilepsy Grid Maps 
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 Conclusion 
• ICA is essentially an optimization problem 

• Instantaneous ICA algorithms with adaptive source densities 
yield best EEG components 

• Lagged decorrelation algorithms (SOBI, etc.) enforce 
decorrelation at all time shifts at the cost of biological 
plausibility 

• Some EEG sources may be instantaneously dependent, e.g. 
alpha, and scalp muscle 

• Strategy of minimizing mutual information nevertheless 
sound because dependent subspaces are separated from rest 
of sources 

• Multiple ICA models can be learned to deal with non-
stationarity 

12th EEGLAB Workshop,  La Jolla, CA,  November 17-22,  2010 


