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Laboratory EEG -> Real-World MoBI
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Constrained Brain/Body Activities in a
Well-Controlled Laboratory

From Makeig et al., Int’ J. of Psychophysiology, 2009.

Naturalistic Brain Activities in
Real-world Environments



Studying the Brain in the

What Technologies Do We need for =

—
Real World UCSD

What technologies do we need to translate laboratory-
oriented neuroscience research to study the human brain in

real-world environments?

Advanced sensors and sensing tec
measuring neural and behavioral ¢
unconstrained subjects in real-wor

nnologies for
ata from
d environments.

Signal-processing techniques to find statistical

relationships among the variations

in environmental,

behavioral, and functional brain dynamics.

An ability to harness continuous and ubiquitous
monitoring of the brain and behavior.



Neuroimaging modality for Neuroergonomics

e In all modalities \L
e EEG is the onIy r 4r

body to be fixed.t4 ’
e EEG might enabl “\,g, functions of

unconstrained participants performing normal tasks in the
workplace and home. However, .....



Laboratory EEG -> Real-World MoBI

Average ERP

Eisaail
f ® ERP peak
Constrained Brain/Body Activities in a Naturalistic Brain Activities in
Well-Controlled Laboratory Real-world Environments

From Makeig et al., Int’ J. of Psychophysiology, 2009.

Requirements in EEG recording in the real world:
 Non-invasive, non-intrusive

* No skin preparation

* No conductive pastes

* Non-tethered

* No head/body movement constrains



DRY AND WIRELESS EEG SENSORS AND SYSTEMS

Dry and non-prep EEG sensors Ultraportable EEG Headgears

)/\Cognionics High-density (64-chan) EEG Cap

eadset

Force
hi




Do We have Sufficient Data to
Understand the Brain?

« High-density EEG

« Simultaneous physiological
data:
— ECG
— Breath
— Blood Oxygen
- EMG

« However, the behavioral
measurement is usually
embarrassingly sparse and
low dimensional.




Mobile Brain/Body Imaging (MoBl)

To study the brain and behavior during naturally

motivated behavior, we must simultaneously record

» What the brain does (high-density EEG)

» What the brain experiences (sensory scheme
recording)

» What the brain organizes (eye & body movements,
psychophysiology).

- Makeig et al, 2009



Mobile Brain/Body Imaging (MOBI) @
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Low-Cost Mobile Brain/Body Imaging (MoBl) Platform

MINDO
Wireless B

Kinect Motion Capture

Keyboard &
Mouse

EyeTribe
Eye Tracki
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Recognition



EyeTribe Data
EyeLink Data
circle radius indicates average accuracy

®

Figure 2: EyeTribe (red) and Eye Link (blue) eye tracker accuracy depicted graphically for nine points
representing boundaries of the test monitor. For reference, EyeLink (blue) accuracy (degrees error from
fixation cross) for the central point is 0.41 and the EyeTribe (red) accuracy is 0.89. The average accuracy of
the EyeTribe tracker is 0.79 (shown in red) and the EyeLink is 0.46 (shown in blue) in our tests.

From Chukoskie et al., in preparation.



= The Low-cost MoBI Platform

N R h Studi
UCSD . 'nResearch Studies ™,

e-Learning at home

LSTREY RARire tv. Princioies & Practice : = MESGARE TRR
REPTTR Internet Security, Principles & Practics pong 201 @,i.‘
The Classes :

Lectures
% Fourteen (14) weeks of three-hour lectures
% \Wednesdays, 6:30 pm - 9:30 pm
% Possible Break in the weeks of April 47 & 11%

Three Homework Assignments

+ Cryptography, Secret-Key & Public-Key

+ Security Protocols & Authentication

+ Vulnerabilty Assessment & Security System Design
5 lab!

Mid-Term Exam
+ Approx, End of April
+ Security Services, Mechanisms & Cryptography

E :,,m.ﬂm http:/zhaosheng.onlinesjtu.com

- 021-52389900

H \'5\\';"' PPClass AR SERD RERD B

_ Online Lectures Madle Easy

A photo from National Geography. A 30-student
MoBI-powered classroom is under development.



An AR/VR-based EEG Goggle — a truly
mobile EEG laboratory

Wireless « Dry & wireless EEG

EEG/EOG EOG-based eye

Add-on tracking

« Motion capture

« Smartphone-based
interactive VR

Event-related potentials

Target responses |

L. - Non-target responses

\._\—"'
=N

Zao et al., LNAI, 2016. Courtesy of nGoggle, Inc
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Wearable sensors

A Truly Wearable Multi-modal Biosensing
Platform for Cognitive Experiments

We have developed a low-cost wearable multi-modal bio-sensing system capable of
recording (neuro)physiological signals, eye-gaze overlaid on world v~ ==~ motion
capture in real-world settings.

World camera- Subject’s visual perspective
Eye Camera: Tracking subject’s pupil

EEG: Subject’s brain attivity Wearable loT
ECG: Subject’s Heart Rate and Heart-Rate Variability ' I

PPG: Photoplm
fAIPBSdy motion cabike

Up to 18 IMU
ensoty as per need such@s GSR, etc. '

Any other bio

Record the data on itself or send the time-st2 mped data usinj



Software on a Host Computer
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What Technologies Do We need for =
Studying Neuroscience in Real World UCSD

What technologies do we need to translate laboratory-
oriented neuroscience research to study the human brain
in real-world environments?

Advanced sensors and sensing technologies for
measuring neural and behavioral data from
unconstrained subjects in ecologically valid
environments.

Signal-processing techniques to find statistical
relationships among the variations in environmental,
behavioral, and functional brain dynamics.

An ability to harness continuous and ubiquitous
monitoring of the brain.




£=—" Difficulties in Observing @
N Distributed EEG dynamics

UCSD ‘ e, o~ BB

Synchron

Local
Synchrony

sy"n"c’r?/}Z{y" |

Scalp EEG signals appear to be
noisy because they each sum a
mixture of signals generated in
many brain areas.




Independent Component Analysis

ICA is a method to recover a version, of tt S A u
original sources by multiplying the data by © 7 -
a unmixing matrix, oNA/S o \W/ o
u= Wx, » o o

& @ @

where x is our observed signals, a linear NS, NS

mixtures of sources,
X= As.
WA  after learning:

While PCA simply decorrelates the outputs

(using an orthogonal matrix W), ICA -4.09] 0.13 0.09 -0.07 -0.01

attempts to make the outputs statistically | 007 [-2.92 0.00 0.02 -0.06
0.02 -0.02 -0.06 -0.08 [-2.20

independent, while placing no constraints | ;o 003 000 (197 0.02
on the matrix W. -0.07 0.14 [-3.50] -0.01 0.04




Independent Component Analysis
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EEG Scalp Channels




Assumptions of ICA for EEG Analysis

Mixing is linear at electrodes

Propagation delays are negligible

 Number of components < number of channels.

« Component activations are temporally independent
« Independent components (sources) are spatially
fixed over the training data.
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<= Nonstationarity in EEG occurs at oy

Swartz

multiple tim I W=
ucspMultiple time scales ~ EGES

T 1~ 10 msecTemporal resolution limit Awake NREM sleep REM sleep
Staget  Stage?  Stages3and4
1sec+ <1sec Muscle activities
NL |
~ . . . [ |
+ 3~ 14sec Microsleep episodes (Harison & Horne, 1996) g VMWWM“W% ‘( oy
High
1 mint ~ in Sei isodes (Trink |., 2012 gy
mint secs ~ 5 min Seizure episodes (Trinka et al., ) mobsot O —
. . =_
T >4 min Alertness fluctuation (Makeig & Inlow, 1993) R T B
Low with periods of
Type of sleep Light  Intermediate ~ Slow-wave phasic activity
90 minute cycles throughout the night
1 howt mins /90 min Sleep stages / cycles (Carskadon et al., 2000) Bryant, Nat. Rev. Immunology, 2004
T hours / days Intra-session / inter-session nonstationarity in BCl (Arvaneh et al., 2013)

v

Time



Online Recursive ICA (ORICA) Pipeline

Two-step unmixing process: ¥y = Wv = WMx

EEG data stream

1. Online recursive least squares whitening

A
I -
1-4, 1+41 (vnvn 1)]

Zhu et al., Sci. in China Series F: Info. Sci., 2004 High-pass
Filter

2. Online recursive ICA (ORICA) ] M: whitening matrix

v: whitened signals

Mn+1

' Outputs

W: weight matrix

Yn- f r ()’n) ] W M y: source activations
- 1)

Ay
WTH']. W + 1 An [1 -

T ’
1+ 2 (fT () - ¥ o ...
V n e W .
T\=1/2 Akhtar et al. ISCAS, 2012 LA

WeWwwh 12w W Online v Skad
Recursive ICA © i~

) — )‘0 f= {_2tanh(}r),supergaussian @

LY | tanh(y) — y, subgaussian y‘

Hsu et al., IEEE EMBC, 2014.
Hsu et al., IEEE EMBC, 2015.
Hsu et al., IEEE TBME, 2016.




Real-Time EEG Source-Mapping
Toolbox (REST)
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Real-time Data Processing Pipeline

Christian K?)the Tim Mullen

Re-referencing, Filtering,
Ground Truth

Pre-processing Resampling, Artifact rejection and
imputation (BCILAB) Multivariate

Granger Causality

Xs
) Xs‘/x nPDC (1-65Hz)
cLORETA (cortically constrained:; g
Source t’ X,

. : adaptive Bayesian updates)
SEIicaon CSD integration over ROls "’ X, (PreCentR)

X5 (PreCentL) ‘$

y
=]
3

Connectivit:

Sparse Adaptive Vector
Model Fitting Autoregressive Modeling
Stability and Whiteness tests

Peak Freq (Hz)

c
X
=l
c 3
S5
© @
S5 @
DLW
> O
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Sl

X, (MedOccipL)

: Spectral and Coherence Estim.
T|me-Freqyency Multivariate Granger Causality
Dynamics Graph metrics computation

+ Dimensionality Reduction a
+ Classification Right Lat
+ Cognitive State Identification

BCILAB

Mullen et al., Best Technical Poster of International BCI Meeting, Asilomar, CA, 2013.



/\ What Technologies Do We need for Studying
- Neuroscience in Real World UCSD

What technologies do we need to translate laboratory-
oriented neuroscience research to study the human brain in
real-world environments?

Dry and non-prep sensors and mobile/wireless systems
for measuring neural and behavioral data from
unconstrained subjects in ecologically-valid
environments.

Signal-processing techniques to find statistical
relationships among the variations in environmental,
behavioral, and functional brain dynamics.

An ability to harness continuous and ubiquitous
monitoring of the brain.



Pervasive MoBl via Cloud Computing

NEAR-END FOG COMPUTING

» Real-time Prediction/Classification

* Interoperable Data Format Conversion
/ * Automatic Data Annotation

* Persistent Data Archiving

FRONT-END STIMULI
Photic/Visual Audio  Tactile/Heat Fog Server

FAR-END CLOUD COMPUTING
* Progressive Model Refinement
* BIG DATA Semantic Search

= Linked BIG DATA Repository

FEG Headset.— Motion Sensor Vital Sian Senere FRONT-END HUMAN-MACHINE INTERACTION
FRONT-END SENSORS » Sensor Data Gathering & Preprocessing
* Real-time Sensor-Actuator Feedback

* Mobile Human-Machine Interaction

Zao et al., Frontiers in Human Neuroscience,2014.



A sample study conducted In
a nearly naturalistic
environment



. EEG Correlates of Drowsiness aria
UCSD e S A /\_»v\_fv“f/\,_i\w’_,_ I N A A% /\,,_u,vJ\~~-~\n..,/\,1"- oeu:Jozciioennace

« Lapses of attention or drowsiness can lead to catastrophic
incidents for workers in many occupations.

« The US National Highway Traffic Safety Administration
(NHTSA) reported that ~25% of police-reported accidents
were related to driver inattention.

« National Sleep Foundation (NSF) reported that 60% of
adult drivers have driven a vehicle while feeling drowsy
and 37% of them have actually fallen asleep.




o, Objectives of this Study

To investigate tonic and phasic spectral changes during continuous

sustained—attBiiiaiﬂn Dlvnamlies

« To explore effective connectivity among different brain sources.

./ To build a brain-machine interface that can continuously monitor \
brain dynamics and cognitive states of participants actively

performing orgh msk in_naturgl=bod sitions and situations
within real opg Mrljrl!&éﬁfléﬁ
- /




EEG Correlates of Human Performance during Sustained Attention Tasks

Study Task(s); Measure(s) Electrode Sites or Brain Regions 3 ) a
Badia et al. (1994) Sleep onset F3,C3,01 + +/-
Baulk et al. (2001) Simulated driving task in an immobile car, secondary  C3-Al + +
auditory detection task; lane crossing incidents, RT,
Karolinska Sleepiness Scale (KSS)
Beatty et al. (1974) Radar monitoring task; target detection time O1-P3 +
Belyavin and Wright (1987) Visual vigilance and letter discrimination tasks; RT, P3-01, P4-Oz + +
error/missing rate
Campagne et al. (2004) Simulated driving on mobile platforms; running-oft- F3, C3, P3, O1 (C3, P3 shown) +

aMany stuclies, n@\(@@ demanstrated: EEG. correlates

road incidents, speed variations

«of-fluctuatiohs in. performance during sustained-

meattention “tasmﬁﬁ“ﬂﬁ‘é order ¢f:one second to.

Horne and Baulk (2004)

Huang™et eyg ra

Huang et al. (2008)
Huang et al. (2009)

Jung et al. (1997)

of lane posmon KS

Smulated Evmg task in an immobile car; KSS, lane

ry an Vlsual Vlgllance tasks; correct rate
Cornpensatory tracking task; tracking error, reaction
time
Event-related lane departure during simulated driving
(static); reaction time
Auditory oddball task; error rate

Kecklund and Akerstedt (1993) Real truck driving; KSS, self-rated performance

Lal and Craig (2002, 2005)
Lowden et al. (2009)

Makeig and Inlow (1993)
Makeig and Jung (1995, 1996)

Makeig et al. (2000)

Ogilvie and Wilkinson (1984)
Ogilvie et al. (1991)

Ota et al. (1996)

Otmani et al. (2005)

capacity
Simulated driving in a static car frame; facial features
(from video) of the driver

Simulated driving on a moving base; speed, lateral
position, steering wheel angle, KSS

Auditory oddball task; local error rate

Auditory oddball task, visual target detection; local
error rate

Compensatory tracking task; tracking error
Auditory response task; reaction time
Auditory response task; reaction time
Auditory response task; reaction time

Simulated driving on a mobile base; S.D. of lateral
position. steering wheel angle. KSS

(C3-Al)

C3,C4

70 EEG channels; occipital independent

components

256 EEG channels; occipital and
parietal independent components

Cz, Pz/Oz
Cz-Oz

19 EEG channels
Fz-Al, Cz-A2, Oz-Pz

13 EEG channels
Cz, Pz/Oz

F3, C4, P4, O1 (C4 shown)
Cz, Pz
14 EEG channels (C3, C4 shown)

18 EEG channels (F1, F2, O1, 02
shown)

F3, C3, P3, 01

+-



A Near-Naturalistic Driving Simulator at BRC of NCTU
N




Paradigm: Single Trials Embedded in Continuous Driving

Deviation

Response

(D)

cruising

Deviation
Onset

t cruising

Response
Offset

s Trajectory

Responses

Lane-Center

Cruising Speed: 100 km/hr

Linear deviation (D=c T)

Inter-Deviation-Interval: 5 ~ 10 sec

Deviation: 50% leftward, 50% rightward deviation

56

From Huang et al., 2005, 2007.
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Variability in Task Performance
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Deviation
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Modeling Event-Related Brain Dynamics

1. Remove high-amplitude artifacts using Artifact Subspace
Reconstruction

2. Separate cortical and artifact source contributions to the scalp
electrodes using ICA or ORICA.

3. Model the event-related dynamics of the IC sources using time/
frequency analysis.

4. Localize the separated |IC sources using inverse source mapping
methods.

5. Compare similarities in IC dynamics and locations across subjects
using IC cluster analysis.]

6. Examine the interactions between brain areas using component
effective connectivity.



Deviation-induced Brain Dynamics

Tonic Spectral Dynamics

Cluster Mean Map mean trial RT (s)
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From Chen et al., in preparation.



Interactions among Distinct EEG Sources

Ground Truth

Multivariate
Granger Causality
nPDC (1-65Hz)
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Network Dynamics with and without
Motion Cues
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Effective connectivity between EEG independent processes estimated under (A) K+
and (B) K~ conditions.

From Lin et al., Scientific Report, 2016.



Network Dynamics w/ and w/o Motion Cues

B
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From Lin et al., Scientific Report, 2016.



Network Dynamics with and without
Motion Cues
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RT-sorted outflow dynamics of MCC (yellow trace) and PCC
(blue trace) under (A) K+ and (B) K~ conditions.

From Lin et al., Scientific Report, 2016.



Real-time Cognitive-State
Monitoring

T.P. Jung!2, C.T. Lin!, Scott Makeig2 and
Associates

!Brain Research Center, Department of ECE
National Chiao Tung University, Hsinchu, Taiwan

’Swartz Center for Computational Neuroscience,
University of California San Diego, USA



Real-time Drowsiness Monitoring [

Computational
Neuroscience

1. Training

Pilot datg |—» Spectr_al PCA , MuItivar_iate linear
Estimation Regression or NNs
: parameters
eigenvecto
2. Estimating fatigue
_ Estimated
Real-time | __ | Spectral |__ |Matrix |___| Matrix —— Task
data acqui. Estimation multip. multiplication |  parformance
References:

1. Jung, et al., IEEE TBME, 44:60-9, 1997.

2. Lin, et al., EURASIP J Applied Signal Processing, 19:3165-74, 2005.
3. Lin, et al,, IEEE TCAS1, 52(12):2726-38, 2005.
4. Lin, et al., IEEE TCAS1, 53(11): 2469-76, 2006.
5. Lin, et al., Proc. of the IEEE, 96(7):1167-83, 2008.



Sample Results

Actual vs Estimated Performance
1F —— Actual performance
—— Estimated performance

I

1 1

O 1 1 1
0 10 20 30 40 50 60

Time on Task (min)




Arousing Feedback Rectifies

Lapse in Performance

C.T. Lini, T.P. Jung®? and Associates

IBrain Research Center, Department of ECE
National Chiao Tung University, Hsinchu, Taiwan
2Swartz Center for Computational Neuroscience,
University of California San Diego, USA



Auditory Feedback to the Drowsy Brain

Current Trial Next Trial

i Baseline RT : i Baseline

i Random 8~12 secg RT
' Pi— >

(b) Current Current

A
A
3 x Mean RT R T [P bty Threshold

' b

*f* *+ *I 4 +: |

......... | | | | °° | o

Mean RT T T} T|||+||+|| 4 || |
t1 o I B || | Time

short-RtI' (5min) 85 :nin

— w/owarning —— w/ warning — short-RT

From Lin et al, NeuroImage, 2010.



Behavioral Responses to Feedback

dkk P < 0.001
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From Wang et al, Frontiers in Neuroscience, 2014.



The mean baseline spectra of effective and ineffective trials
before and after auditory feedback.

Power (dB)
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EEG Dynamics following Feedback X

UCSD
— effective

a ineffective
=

— — w/0 warning

>

o — alertness

o

23 i i i i
0 15 30 45 60 70 90
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From Wang et al, Frontiers in Human Neuroscience, 2014,



Fatigue Monitoring & Mitigation System

START
Baseline
Collecting SETTING |
Lapse? / Warning

Lapse! / Warning

Driving
Performance
Monitoring

Warning
Efficacy
Assessment

Subject alert

Subject
alert



A Wearable and Wireless DMM System |E

In a vehicle &=
D

'IQO
D, Senr

Phoned &3
Fog Server/
Gateway 7
Cloud

Server

Wang et al., IEEE BioCAS, 2012.



* Comparing an EEG-based and a non-EEG-based
' Fatigue Detection and Mitigation Systems

= Warning by alpha-band power

¢ Warning time point (random warning) = Warning every 15-20 min (random warning)
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\CSD Summary

Neural technologies that translate laboratory-oriented
neuroscience research to study the human brain in real-
world environments?

Advanced sensors and sensing technologies for
measuring neural and behavioral data from
unconstrained subjects in ecologically valid
environments.

Signal-processing techniques to find statistical
relationships among the variations in environmental,
behavioral, and functional brain dynamics.

An ability to harness continuous and ubiquitous
monitoring of the brain.




UCSD Summary

We reported both tonic and phasic spectral dynamics of
independent components in response to lane-deviations during a
continuous lane-keeping driving task.

There are fundamental differences in EEG correlates of task
performance between K+ and K- conditions.

Arousing auditory feedback delivered to the cognitively challenged
subjects immediately agitated subject’s responses to the events.

The improved behavioral performance was accompanied by
concurrent spectral suppression in the theta- and alpha-bands of a
lateral occipital component.

It is feasible to integrate novel dry sensors, advanced signal-
processing algorithms and miniature supporting hardware into a
mobile & wireless cognitive-state monitoring and management
system.
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