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Laboratory EEG -> Real-World MoBI 

Constrained Brain/Body Activities in a 
Well-Controlled Laboratory   
 
From Makeig et al., Int’l J. of Psychophysiology, 2009.	


Naturalistic Brain Activities in 
Real-world Environments   	




What Technologies Do We need for 
Studying the Brain in the Real World 

What technologies do we need to translate laboratory-
oriented neuroscience research to study the human brain in 
real-world environments? 

  Advanced sensors and sensing technologies for 
measuring neural and behavioral data from 
unconstrained subjects in real-world environments.   

  Signal-processing techniques to find statistical 
relationships among the variations in environmental, 
behavioral, and functional brain dynamics. 

  An ability to harness continuous and ubiquitous 
monitoring of the brain and behavior. 



Neuroimaging modality for Neuroergonomics 

•  In all modalities but EEG, the sensors are heavy.  
•  EEG is the only modality that does not require the head/

body to be fixed. 
•  EEG might enable the monitoring of the brain functions of 

unconstrained participants performing normal tasks in the 
workplace and home. However, ….. 

PET MEG fMRI EEG 



Laboratory EEG -> Real-World MoBI 

Requirements in EEG recording in the real world:	

•  Non-invasive, non-intrusive	

•  No skin preparation	

•  No conductive pastes	

•  Non-tethered	

•  No head/body movement constrains 	


Constrained Brain/Body Activities in a 
Well-Controlled Laboratory   
 
From Makeig et al., Int’l J. of Psychophysiology, 2009.	


Naturalistic Brain Activities in 
Real-world Environments   	




	  
	  

DRY AND WIRELESS EEG SENSORS AND SYSTEMS 

Dry	  and	  non-‐prep	  EEG	  sensors	   Ultraportable	  EEG	  Headgears	  	  	  

High-‐density	  (64-‐chan)	  EEG	  Cap	  	  	  



•  High-density EEG 

•  Simultaneous physiological 
data: 
– ECG 
– Breath 
– Blood Oxygen 
– EMG 

•  However, the behavioral 
measurement is usually 
embarrassingly sparse and 
low dimensional. 

Do We have Sufficient Data to  
Understand the Brain? 



Mobile Brain/Body Imaging (MoBI) 

To study the brain and behavior during naturally 
motivated behavior, we must simultaneously record  
 What the brain does (high-density EEG) 
 What the brain experiences (sensory scheme 

recording) 
 What the brain organizes (eye & body movements, 

psychophysiology). 
                       - Makeig et al, 2009 



Mobile Brain/Body Imaging (MOBI) 

	

	


ERP on a Treadmill 

The Effect of DBI on EEG and EMG 

Spatial Navigation 

Gedeon Deak et al., 2011. 

Development of Shared Attention 



Low-‐Cost	  Mobile	  Brain/Body	  Imaging	  (MoBI)	  Pla;orm	  	  

Keyboard	  &	  
Mouse	  	  

LeapMoBon	  	  
Hand	  Gesture	  RecogniBon	  

MINDO	  
Wireless	  EEG	  Headset	  

Kinect	  MoBon	  Capture	  	  

EyeTribe	  	  
Eye	  Tracking	  

	  	  
	  



	  
	  
Figure 2:	  EyeTribe (red) and  Eye Link (blue) eye tracker accuracy depicted graphically for nine points 
representing boundaries of the test monitor.	  For reference, EyeLink (blue) accuracy (degrees error from 
fixation cross) for the central point is 0.41 and the EyeTribe (red) accuracy  is 0.89. The average accuracy of 
the EyeTribe tracker is 0.79 (shown in red) and the EyeLink is 0.46 (shown in blue) in our tests.	  
 
 
	   From Chukoskie et al., in preparation. 



The Low-cost MoBI Platform  
in Research Studies 

A photo from National Geography.  A 30-student 
MoBI-powered classroom is under development.   

Learning in a MoBI Classroom   

e-Learning at home 



 
 

An AR/VR-based EEG Goggle – a truly 
mobile EEG laboratory   

•  Dry & wireless EEG 
•  EOG-based eye 

tracking 
•  Motion capture 
•  Smartphone-based 

interactive VR 

Wireless  
EEG/EOG 
Add-on 

Event-related potentials	


Target responses	


Non-target responses	


Courtesy of nGoggle, Inc Zao et al., LNAI, 2016.	




A	  Truly	  Wearable	  Mul@-‐modal	  Biosensing	  
Pla;orm	  for	  Cogni@ve	  Experiments	  

We have developed a low-cost wearable multi-modal bio-sensing system capable of 
recording (neuro)physiological signals, eye-gaze overlaid on world view, and motion 
capture in real-world settings.  

Wearable sensors 
•  World	  camera-‐	  Subject’s	  visual	  perspecBve	  
•  Eye	  Camera:	  Tracking	  subject’s	  pupil	  
•  EEG:	  Subject’s	  brain	  acBvity	  
•  ECG:	  Subject’s	  Heart	  Rate	  and	  Heart-‐Rate	  Variability	  
•  PPG:	  Photoplethysmogram	  	  
•  Up	  to	  18	  IMUs	  for	  full-‐body	  moBon	  capture	  
•  Any	  other	  biosensors	  as	  per	  need	  such	  as	  GSR,	  	  etc.	  

A wearable computer 

•  Data	  acquisiBon	  from	  sensors	  
•  Control	  the	  sampling	  rate	  of	  each	  sensor	  
•  Using	  a	  digital	  filter	  on	  the	  sensor	  data	  if	  analog	  filtering	  has	  not	  been	  done.	  
•  Time-‐stamping	  the	  sensors’	  data	  for	  synchronizaBon	  
•  Record	  the	  data	  on	  itself	  or	  send	  the	  Bme-‐stamped	  data	  using	  Wi-‐Fi	  to	  a	  remote	  machine.	  



Software 
•  Synchronizing	   data	   from	   different	   sensors	   with	   the	   capability	   to	   handle	   lags,	  

disconnecBons,	  bursts	  etc.	  
•  Real-‐Bme	  esBmaBng	  of	  eye-‐gaze	  @	  30fps	  and	  pupillometry	  
•  Real-‐Bme	  processing	  on	  EEG	  and	  ECG	  data	  	  
•  Recognizing	   and	   tagging	   objects	   (e.g.	   faces,	   human	   bodies,	   chairs,	   etc.)	   in	   real-‐

Bme	  for	  more	  than	  20	  user-‐trained	  objects	  using	  deep	  learning	  methods.	  
•  Easy,	   fast	   ,	   and	   user-‐friendly	   calibraBon	   between	   world	   and	   eye	   cameras	   to	  

accurately	  map	  the	  eye-‐gaze	  on	  subject’s	  world	  view.	  

SoGware	  on	  a	  Host	  Computer	  



What Technologies Do We need for 
Studying Neuroscience in Real World 

What technologies do we need to translate  laboratory-
oriented neuroscience research to study the human brain 
in real-world environments? 

  Advanced sensors and sensing technologies for 
measuring neural and behavioral data from 
unconstrained subjects in ecologically valid 
environments.   

  Signal-processing techniques to find statistical 
relationships among the variations in environmental, 
behavioral, and functional brain dynamics. 

  An ability to harness continuous and ubiquitous 
monitoring of the brain. 



Difficulties in Observing 
Distributed EEG dynamics 

  
  

 	

Cortex 
Local 
Synchrony 

Local 
Synchrony 

Skin 

 	

Domains of 
synchrony 

Scalp EEG data 

Scalp EEG signals appear to be 
noisy because they each sum a 
mixture of signals generated in 
many brain areas. 

Scott Makeig / UCSD 05/08 
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Independent Component Analysis 

ICA is a method to recover a version, of the 
original sources by multiplying the data by 
a unmixing matrix,  
                     u= Wx,  
 
where x is our observed signals, a linear 
mixtures of sources,           
                     x= As. 
 
While PCA simply decorrelates the outputs 
(using an orthogonal matrix W), ICA 
attempts to make the outputs statistically 
independent, while placing no constraints 
on the matrix W. 

	
	

 	
	
	

 	

x u s 



Sound Separation Demonstration Independent Component Analysis 

Courtesy of SoftMax, Inc 



From Jung et al., Psychophysiology, 2000. 



 
 

•  Mixing is linear at electrodes 

•  Propagation delays are negligible 

•  Number of components ≤  number of channels. 

•  Component activations are temporally independent  

•  Independent components (sources) are spatially 

fixed over the training data. 

Assumptions of ICA for EEG Analysis 
	




Nonstationarity in EEG occurs at 
multiple time scales 

Bryant,	  Nat.	  Rev.	  Immunology,	  2004	  

Time	  

Temporal	  resoluBon	  limit	  1	  ~	  10	  msec	  

Muscle	  ac@vi@es	  <	  1	  sec	  

Microsleep	  episodes	  (Harison	  &	  Horne,	  1996)	  3	  ~	  14	  sec	  

Seizure	  episodes	  (Trinka	  et	  al.,	  2012)	  secs	  ~	  5	  min	  

Alertness	  fluctua@on	  (Makeig	  &	  Inlow,	  1993)	  >	  4	  min	  

Sleep	  stages	  /	  cycles	  (Carskadon	  et	  al.,	  2000)	  mins	  /	  90	  min	  

Intra-‐session	  /	  inter-‐session	  nonsta@onarity	  in	  BCI	  (Arvaneh	  et	  al.,	  2013)	  hours	  /	  days	  	  

1	  sec	  

1	  min	  

1	  hour	  



Hsu et al., IEEE EMBC, 2014. 
Hsu et al., IEEE EMBC, 2015. 
Hsu et al., IEEE TBME, 2016. 
 



Real-Time EEG Source-Mapping 
Toolbox (REST) 



 
 Mullen et al., Best Technical Poster of International BCI Meeting, Asilomar, CA, 2013. 

Christian Kothe Tim Mullen 

Real-time Data Processing Pipeline 



What Technologies Do We need for Studying 
Neuroscience in Real World 

What technologies do we need to translate  laboratory-
oriented neuroscience research to study the human brain in 
real-world environments? 

  Dry and non-prep sensors and mobile/wireless systems 
for measuring neural and behavioral data from 
unconstrained subjects in ecologically-valid 
environments.   

  Signal-processing techniques to find statistical 
relationships among the variations in environmental, 
behavioral, and functional brain dynamics. 

  An ability to harness continuous and ubiquitous 
monitoring of the brain. 



Pervasive MoBI via Cloud Computing 

Zao et al., Frontiers in Human Neuroscience, 2014.	




A sample study conducted in 
a nearly naturalistic 

environment 

 
 



•  Lapses of attention or drowsiness can lead to catastrophic 
incidents for workers in many occupations.  

•  The US National Highway Traffic Safety Administration 
(NHTSA) reported that ~25% of police-reported accidents 
were related to driver inattention.  

•  National Sleep Foundation (NSF) reported that 60% of 
adult drivers have driven a vehicle while feeling drowsy 
and 37% of them have actually fallen asleep. 

 

 

EEG Correlates of Drowsiness 



•  To investigate tonic and phasic spectral changes during continuous 
sustained-attention tasks in a realistic environment. 

•  To explore effective connectivity among different brain sources. 

•  To build a brain-machine interface that can continuously monitor 
brain dynamics and cognitive states of participants actively 
performing ordinary tasks in natural body positions and situations 
within real operational environments. 

Objectives of this Study 

BCI Application 



EEG Correlates of Human Performance during Sustained Attention Tasks 

Study Task(s); Measure(s) Electrode Sites or Brain Regions δ θ α β 
Badia et al. (1994) Sleep onset F3, C3, O1 + +/- 
Baulk et al. (2001) Simulated driving task in an immobile car, secondary 

auditory detection task; lane crossing incidents, RT, 
Karolinska Sleepiness Scale (KSS) 

C3-A1 + + 

Beatty et al. (1974) Radar monitoring task; target detection time O1-P3 + 
Belyavin and Wright (1987) Visual vigilance and letter discrimination tasks; RT, 

error/missing rate 
P3-O1, P4-Oz + + + - 

Campagne et al. (2004) Simulated driving on mobile platforms; running-off-
road incidents, speed variations 

F3, C3, P3, O1 (C3, P3 shown) + + 

Cantero (1999) Sleep onset 19 EEG channels * 
Eoh et al. (2005) Simulated driving task (static); number of accidents and 

lap time per cycle 
Fp1, Fp2, T3, T4, P3, P4, O1, O2 + + - 

Gillberg et al. (1996) Simulated truck driving; mean speed, S.D. of speed, 
S.D. of lane position, KSS, RT 

C3-A2, O2-P4 * * 

Harrison and Horne (1996) Multiple sleep latency test (MSLT) (C3-A2) + * 
Hasan and Broughton (1994) Sleep onset; MSLT 19 EEG channels * * 
Horne and Baulk (2004) Simulated driving task in an immobile car; KSS, lane 

drifting 
(C3-A1) + + 

Huang et al. (2001) Auditory and visual vigilance tasks; correct rate C3, C4 + + 
Huang et al. (2008) Compensatory tracking task; tracking error, reaction 

time 
70 EEG channels; occipital independent 
components 

+ + + 

Huang et al. (2009)  Event-related lane departure during simulated driving 
(static); reaction time 

256 EEG channels; occipital and 
parietal independent components 

+ + + 

Jung et al. (1997) Auditory oddball task; error rate Cz, Pz/Oz + - * 
Kecklund and Åkerstedt (1993) Real truck driving; KSS, self-rated performance 

capacity 
Cz-Oz + + 

Lal and Craig (2002, 2005) Simulated driving in a static car frame; facial features 
(from video) of the driver 

19 EEG channels + + 

Lowden et al. (2009) Simulated driving on a moving base; speed, lateral 
position, steering wheel angle, KSS 

Fz-A1, Cz-A2, Oz-Pz + + 

Makeig and Inlow (1993) Auditory oddball task; local error rate 13 EEG channels + + - 
Makeig and Jung (1995, 1996) Auditory oddball task, visual target detection; local 

error rate 
Cz, Pz/Oz + + - * 

Makeig et al. (2000) Compensatory tracking task; tracking error F3, C4, P4, O1 (C4 shown) + + 
Ogilvie and Wilkinson (1984) Auditory response task; reaction time Cz, Pz 
Ogilvie et al. (1991) Auditory response task; reaction time 14 EEG channels (C3, C4 shown) + + - - 
Ota et al. (1996) Auditory response task; reaction time 18 EEG channels (F1, F2, O1, O2 

shown) 
+ +/- 

Otmani et al. (2005) Simulated driving on a mobile base; S.D. of lateral 
position, steering wheel angle, KSS 

F3, C3, P3, O1 + + 

Papadelis et al. (2007) Real driving; severe driving errors Fp1, Fp2, C3, C4, P3, P4, O1, O2 + + + - 
Papadelis et al. (2009) Real driving; driving duration Fp1, Fp2, C3, C4 + + + - 
Paus et al. (1997) Continuous performance test (auditory); target hits, 

reaction time 
19 EEG channels (F3, F4, T3, T4, O1, 
O2 shown) 

+ 

Peiris et al. (2006) Continuous tracking task; lapse in tracking 
performance, video rating 

16 EEG channels + + + - 

Ryu et al. (2007) Simulated driving (static); driving duration, subjective 
visual analog scale 

MEG; frontal/parietal areas + 

Schier (2000) Simulated driving (static); lap and driving duration P3, P4, F3, F4 + 
Schmidt et al. (2009) Real driving; secondary auditory oddball task, reaction 

time, subject measures 
128 EEG channels (Pz shown) + 

Torsvall and Åkerstedt (1987) Real train operation; responses to stop signals O2-P4 + + + 
Wijesuriya et al. (2007) Simulated driving (static), digit monitoring task; 

deviation, reaction time, facial symptoms 
12 EEG channels (delta activity at O2 
site) 

+ 

Many studies have demonstrated EEG correlates 
of fluctuations in performance during sustained 
attention task on the order of one second to 
several minutes. 



A Near-Naturalistic Driving Simulator at BRC of NCTU 



     Trajectory 

                       Responses 

                       Lane-Center 

Deviation 
Onset 

cruising Reaction Time 
(T) 

Deviation 
(D) 

Response 
Offset 

Response 
Onset 

56 

Cruising Speed: 100 km/hr   
Linear deviation (D=c T)  
Inter-Deviation-Interval: 5 ~ 10 sec         
Deviation: 50% leftward, 50% rightward deviation 

Paradigm: Single Trials Embedded in Continuous Driving 

From Huang et al., 2005, 2007. 

cruising 
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1.  Remove high-amplitude artifacts using  Artifact Subspace 
Reconstruction 

2.  Separate cortical and artifact source contributions to the scalp 
electrodes using ICA or ORICA.  

3.  Model the event-related dynamics of the IC sources using time/
frequency analysis. 

4.  Localize the separated IC sources using inverse source mapping 
methods.  

5.  Compare similarities in IC dynamics and locations across subjects 
using IC cluster analysis.] 

6.  Examine the interactions between brain areas using component 
effective connectivity. 

Modeling Event-Related Brain Dynamics 



Deviation-induced Brain Dynamics 

Dipole Locations 

Tonic Spectral Dynamics 
Cluster Mean Map 

    Event-related Spectral Perturbation      

From Chen et al., in preparation. 



Interactions among Distinct EEG Sources 



Network	  Dynamics	  with	  and	  without	  
Mo@on	  Cues	  

Effective connectivity between EEG independent processes estimated under (A) K+ 
and (B) K− conditions. 	


From Lin et al., Scientific Report, 2016. 



Network	  Dynamics	  w/	  and	  w/o	  Mo@on	  Cues	  

From Lin et al., Scientific Report, 2016. 



Network	  Dynamics	  with	  and	  without	  
Mo@on	  Cues	  

RT-sorted outflow dynamics of MCC (yellow trace) and PCC 
(blue trace) under (A) K+ and (B) K− conditions. 	


From Lin et al., Scientific Report, 2016. 



Real-time Cognitive-State  
Monitoring 

 
 
 
 

T.P. Jung1,2, C.T. Lin1, Scott Makeig2 and 
Associates 

 
1Brain Research Center, Department of ECE 

National Chiao Tung University, Hsinchu, Taiwan 
           2Swartz Center for Computational Neuroscience, 

University of California San Diego, USA 
 
 



Pilot data Spectral 
Estimation 

PCA 

eigenvectors 

Matrix 
multip. 

Multivariate linear  
Regression or NNs 

Matrix 
multiplication 

Real-time 
data acqui. 

1. Training 

2. Estimating fatigue 

parameters 

Estimated 
Task  

Performance 

Spectral 
Estimation 

References: 
1. Jung, et al., IEEE TBME, 44:60-9, 1997. 
2. Lin, et al., EURASIP J Applied Signal Processing, 19:3165-74, 2005. 
3. Lin, et al., IEEE TCAS I, 52(12):2726-38, 2005. 
4. Lin, et al., IEEE TCAS I, 53(11): 2469-76, 2006. 
5. Lin, et al., Proc. of the IEEE,  96(7):1167-83, 2008. 
 

Real-time Drowsiness Monitoring 



Sample Results 



Arousing Feedback Rectifies 

Lapse in Performance  
 
 
 
 

C.T. Lin1, T.P. Jung1,2 and Associates 

 
1Brain Research Center, Department of ECE 

National Chiao Tung University, Hsinchu, Taiwan 
           2Swartz Center for Computational Neuroscience, 

University of California San Diego, USA 
 
 



Auditory Feedback to the Drowsy Brain 

From Lin et al, NeuroImage, 2010. 



Behavioral Responses to Feedback 

From Wang et al, Frontiers in Neuroscience, 2014. 



The mean baseline spectra of effective and ineffective trials 
before and after auditory feedback. 



EEG Dynamics following Feedback 
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From Wang et al, Frontiers in Human Neuroscience, 2014. 



Fatigue Monitoring & Mitigation System 

Driving 
Performance 
Monitoring 

Warning 
Efficacy 

Assessment  
Subject alert 

Lapse2 / Warning 

START 

Lapse1 / Warning 

Baseline 
Collecting 

Done 

Subject  
alert 

SETTING 



A Wearable and Wireless DMM System 

Wang et al.,  IEEE BioCAS, 2012. 

In a vehicle 

Fog Server/
Gateway 

Cloud 
Server 

Sensor
s 

Phone 



!

Comparing an EEG-based and a non-EEG-based 
Fatigue Detection and Mitigation Systems 

Adapted from Huang et al., Int’l Journal of Neural Systems, 2016. 



Neural technologies that translate laboratory-oriented 
neuroscience research to study the human brain in real-
world environments? 

  Advanced sensors and sensing technologies for 
measuring neural and behavioral data from 
unconstrained subjects in ecologically valid 
environments.   

  Signal-processing techniques to find statistical 
relationships among the variations in environmental, 
behavioral, and functional brain dynamics. 

  An ability to harness continuous and ubiquitous 
monitoring of the brain. 

Summary 



Summary 
  We reported both tonic and phasic spectral dynamics of 

independent components in response to lane-deviations during a 
continuous lane-keeping driving task. 

  There are fundamental differences in EEG correlates of task 
performance between K+ and K- conditions. 

  Arousing auditory feedback delivered to the cognitively challenged 
subjects immediately agitated subject’s responses to the events.  

  The improved behavioral performance was accompanied by 
concurrent spectral suppression in the theta- and alpha-bands of a 
lateral occipital component. 

  It is feasible to integrate novel dry sensors, advanced signal-
processing algorithms and miniature supporting hardware into a 
mobile & wireless cognitive-state monitoring and management 
system. 
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