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Laboratory EEG -> Real-World MoBI 

Constrained Brain/Body Activities in a 
Well-Controlled Laboratory   
 
From Makeig et al., Int’l J. of Psychophysiology, 2009.	



Naturalistic Brain Activities in 
Real-world Environments   	





What Technologies Do We need for 
Studying the Brain in the Real World 

What technologies do we need to translate laboratory-
oriented neuroscience research to study the human brain in 
real-world environments? 

  Advanced sensors and sensing technologies for 
measuring neural and behavioral data from 
unconstrained subjects in real-world environments.   

  Signal-processing techniques to find statistical 
relationships among the variations in environmental, 
behavioral, and functional brain dynamics. 

  An ability to harness continuous and ubiquitous 
monitoring of the brain and behavior. 



Neuroimaging modality for Neuroergonomics 

•  In all modalities but EEG, the sensors are heavy.  
•  EEG is the only modality that does not require the head/

body to be fixed. 
•  EEG might enable the monitoring of the brain functions of 

unconstrained participants performing normal tasks in the 
workplace and home. However, ….. 

PET MEG fMRI EEG 



Laboratory EEG -> Real-World MoBI 

Requirements in EEG recording in the real world:	


•  Non-invasive, non-intrusive	


•  No skin preparation	


•  No conductive pastes	


•  Non-tethered	


•  No head/body movement constrains 	



Constrained Brain/Body Activities in a 
Well-Controlled Laboratory   
 
From Makeig et al., Int’l J. of Psychophysiology, 2009.	



Naturalistic Brain Activities in 
Real-world Environments   	





	
  
	
  

DRY AND WIRELESS EEG SENSORS AND SYSTEMS 

Dry	
  and	
  non-­‐prep	
  EEG	
  sensors	
   Ultraportable	
  EEG	
  Headgears	
  	
  	
  

High-­‐density	
  (64-­‐chan)	
  EEG	
  Cap	
  	
  	
  



•  High-density EEG 

•  Simultaneous physiological 
data: 
– ECG 
– Breath 
– Blood Oxygen 
– EMG 

•  However, the behavioral 
measurement is usually 
embarrassingly sparse and 
low dimensional. 

Do We have Sufficient Data to  
Understand the Brain? 



Mobile Brain/Body Imaging (MoBI) 

To study the brain and behavior during naturally 
motivated behavior, we must simultaneously record  
 What the brain does (high-density EEG) 
 What the brain experiences (sensory scheme 

recording) 
 What the brain organizes (eye & body movements, 

psychophysiology). 
                       - Makeig et al, 2009 



Mobile Brain/Body Imaging (MOBI) 

	


	



ERP on a Treadmill 

The Effect of DBI on EEG and EMG 

Spatial Navigation 

Gedeon Deak et al., 2011. 

Development of Shared Attention 



Low-­‐Cost	
  Mobile	
  Brain/Body	
  Imaging	
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Figure 2:	
  EyeTribe (red) and  Eye Link (blue) eye tracker accuracy depicted graphically for nine points 
representing boundaries of the test monitor.	
  For reference, EyeLink (blue) accuracy (degrees error from 
fixation cross) for the central point is 0.41 and the EyeTribe (red) accuracy  is 0.89. The average accuracy of 
the EyeTribe tracker is 0.79 (shown in red) and the EyeLink is 0.46 (shown in blue) in our tests.	
  
 
 
	
   From Chukoskie et al., in preparation. 



The Low-cost MoBI Platform  
in Research Studies 

A photo from National Geography.  A 30-student 
MoBI-powered classroom is under development.   

Learning in a MoBI Classroom   

e-Learning at home 



 
 

An AR/VR-based EEG Goggle – a truly 
mobile EEG laboratory   

•  Dry & wireless EEG 
•  EOG-based eye 

tracking 
•  Motion capture 
•  Smartphone-based 

interactive VR 

Wireless  
EEG/EOG 
Add-on 

Event-related potentials	



Target responses	



Non-target responses	



Courtesy of nGoggle, Inc Zao et al., LNAI, 2016.	





A	
  Truly	
  Wearable	
  Mul@-­‐modal	
  Biosensing	
  
Pla;orm	
  for	
  Cogni@ve	
  Experiments	
  

We have developed a low-cost wearable multi-modal bio-sensing system capable of 
recording (neuro)physiological signals, eye-gaze overlaid on world view, and motion 
capture in real-world settings.  

Wearable sensors 
•  World	
  camera-­‐	
  Subject’s	
  visual	
  perspecBve	
  
•  Eye	
  Camera:	
  Tracking	
  subject’s	
  pupil	
  
•  EEG:	
  Subject’s	
  brain	
  acBvity	
  
•  ECG:	
  Subject’s	
  Heart	
  Rate	
  and	
  Heart-­‐Rate	
  Variability	
  
•  PPG:	
  Photoplethysmogram	
  	
  
•  Up	
  to	
  18	
  IMUs	
  for	
  full-­‐body	
  moBon	
  capture	
  
•  Any	
  other	
  biosensors	
  as	
  per	
  need	
  such	
  as	
  GSR,	
  	
  etc.	
  

A wearable computer 

•  Data	
  acquisiBon	
  from	
  sensors	
  
•  Control	
  the	
  sampling	
  rate	
  of	
  each	
  sensor	
  
•  Using	
  a	
  digital	
  filter	
  on	
  the	
  sensor	
  data	
  if	
  analog	
  filtering	
  has	
  not	
  been	
  done.	
  
•  Time-­‐stamping	
  the	
  sensors’	
  data	
  for	
  synchronizaBon	
  
•  Record	
  the	
  data	
  on	
  itself	
  or	
  send	
  the	
  Bme-­‐stamped	
  data	
  using	
  Wi-­‐Fi	
  to	
  a	
  remote	
  machine.	
  



Software 
•  Synchronizing	
   data	
   from	
   different	
   sensors	
   with	
   the	
   capability	
   to	
   handle	
   lags,	
  

disconnecBons,	
  bursts	
  etc.	
  
•  Real-­‐Bme	
  esBmaBng	
  of	
  eye-­‐gaze	
  @	
  30fps	
  and	
  pupillometry	
  
•  Real-­‐Bme	
  processing	
  on	
  EEG	
  and	
  ECG	
  data	
  	
  
•  Recognizing	
   and	
   tagging	
   objects	
   (e.g.	
   faces,	
   human	
   bodies,	
   chairs,	
   etc.)	
   in	
   real-­‐

Bme	
  for	
  more	
  than	
  20	
  user-­‐trained	
  objects	
  using	
  deep	
  learning	
  methods.	
  
•  Easy,	
   fast	
   ,	
   and	
   user-­‐friendly	
   calibraBon	
   between	
   world	
   and	
   eye	
   cameras	
   to	
  

accurately	
  map	
  the	
  eye-­‐gaze	
  on	
  subject’s	
  world	
  view.	
  

SoGware	
  on	
  a	
  Host	
  Computer	
  



What Technologies Do We need for 
Studying Neuroscience in Real World 

What technologies do we need to translate  laboratory-
oriented neuroscience research to study the human brain 
in real-world environments? 

  Advanced sensors and sensing technologies for 
measuring neural and behavioral data from 
unconstrained subjects in ecologically valid 
environments.   

  Signal-processing techniques to find statistical 
relationships among the variations in environmental, 
behavioral, and functional brain dynamics. 

  An ability to harness continuous and ubiquitous 
monitoring of the brain. 



Difficulties in Observing 
Distributed EEG dynamics 

  
  

 	


Cortex 
Local 
Synchrony 

Local 
Synchrony 

Skin 

 	


Domains of 
synchrony 

Scalp EEG data 

Scalp EEG signals appear to be 
noisy because they each sum a 
mixture of signals generated in 
many brain areas. 

Scott Makeig / UCSD 05/08 
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Independent Component Analysis 

ICA is a method to recover a version, of the 
original sources by multiplying the data by 
a unmixing matrix,  
                     u= Wx,  
 
where x is our observed signals, a linear 
mixtures of sources,           
                     x= As. 
 
While PCA simply decorrelates the outputs 
(using an orthogonal matrix W), ICA 
attempts to make the outputs statistically 
independent, while placing no constraints 
on the matrix W. 

	

	


 	

	

	


 	


x u s 



Sound Separation Demonstration Independent Component Analysis 

Courtesy of SoftMax, Inc 



From Jung et al., Psychophysiology, 2000. 



 
 

•  Mixing is linear at electrodes 

•  Propagation delays are negligible 

•  Number of components ≤  number of channels. 

•  Component activations are temporally independent  

•  Independent components (sources) are spatially 

fixed over the training data. 

Assumptions of ICA for EEG Analysis 
	





Nonstationarity in EEG occurs at 
multiple time scales 

Bryant,	
  Nat.	
  Rev.	
  Immunology,	
  2004	
  

Time	
  

Temporal	
  resoluBon	
  limit	
  1	
  ~	
  10	
  msec	
  

Muscle	
  ac@vi@es	
  <	
  1	
  sec	
  

Microsleep	
  episodes	
  (Harison	
  &	
  Horne,	
  1996)	
  3	
  ~	
  14	
  sec	
  

Seizure	
  episodes	
  (Trinka	
  et	
  al.,	
  2012)	
  secs	
  ~	
  5	
  min	
  

Alertness	
  fluctua@on	
  (Makeig	
  &	
  Inlow,	
  1993)	
  >	
  4	
  min	
  

Sleep	
  stages	
  /	
  cycles	
  (Carskadon	
  et	
  al.,	
  2000)	
  mins	
  /	
  90	
  min	
  

Intra-­‐session	
  /	
  inter-­‐session	
  nonsta@onarity	
  in	
  BCI	
  (Arvaneh	
  et	
  al.,	
  2013)	
  hours	
  /	
  days	
  	
  

1	
  sec	
  

1	
  min	
  

1	
  hour	
  



Hsu et al., IEEE EMBC, 2014. 
Hsu et al., IEEE EMBC, 2015. 
Hsu et al., IEEE TBME, 2016. 
 



Real-Time EEG Source-Mapping 
Toolbox (REST) 



 
 Mullen et al., Best Technical Poster of International BCI Meeting, Asilomar, CA, 2013. 

Christian Kothe Tim Mullen 

Real-time Data Processing Pipeline 



What Technologies Do We need for Studying 
Neuroscience in Real World 

What technologies do we need to translate  laboratory-
oriented neuroscience research to study the human brain in 
real-world environments? 

  Dry and non-prep sensors and mobile/wireless systems 
for measuring neural and behavioral data from 
unconstrained subjects in ecologically-valid 
environments.   

  Signal-processing techniques to find statistical 
relationships among the variations in environmental, 
behavioral, and functional brain dynamics. 

  An ability to harness continuous and ubiquitous 
monitoring of the brain. 



Pervasive MoBI via Cloud Computing 

Zao et al., Frontiers in Human Neuroscience, 2014.	





A sample study conducted in 
a nearly naturalistic 

environment 

 
 



•  Lapses of attention or drowsiness can lead to catastrophic 
incidents for workers in many occupations.  

•  The US National Highway Traffic Safety Administration 
(NHTSA) reported that ~25% of police-reported accidents 
were related to driver inattention.  

•  National Sleep Foundation (NSF) reported that 60% of 
adult drivers have driven a vehicle while feeling drowsy 
and 37% of them have actually fallen asleep. 

 

 

EEG Correlates of Drowsiness 



•  To investigate tonic and phasic spectral changes during continuous 
sustained-attention tasks in a realistic environment. 

•  To explore effective connectivity among different brain sources. 

•  To build a brain-machine interface that can continuously monitor 
brain dynamics and cognitive states of participants actively 
performing ordinary tasks in natural body positions and situations 
within real operational environments. 

Objectives of this Study 

BCI Application 



EEG Correlates of Human Performance during Sustained Attention Tasks 

Study Task(s); Measure(s) Electrode Sites or Brain Regions δ θ α β 
Badia et al. (1994) Sleep onset F3, C3, O1 + +/- 
Baulk et al. (2001) Simulated driving task in an immobile car, secondary 

auditory detection task; lane crossing incidents, RT, 
Karolinska Sleepiness Scale (KSS) 

C3-A1 + + 

Beatty et al. (1974) Radar monitoring task; target detection time O1-P3 + 
Belyavin and Wright (1987) Visual vigilance and letter discrimination tasks; RT, 

error/missing rate 
P3-O1, P4-Oz + + + - 

Campagne et al. (2004) Simulated driving on mobile platforms; running-off-
road incidents, speed variations 

F3, C3, P3, O1 (C3, P3 shown) + + 

Cantero (1999) Sleep onset 19 EEG channels * 
Eoh et al. (2005) Simulated driving task (static); number of accidents and 

lap time per cycle 
Fp1, Fp2, T3, T4, P3, P4, O1, O2 + + - 

Gillberg et al. (1996) Simulated truck driving; mean speed, S.D. of speed, 
S.D. of lane position, KSS, RT 

C3-A2, O2-P4 * * 

Harrison and Horne (1996) Multiple sleep latency test (MSLT) (C3-A2) + * 
Hasan and Broughton (1994) Sleep onset; MSLT 19 EEG channels * * 
Horne and Baulk (2004) Simulated driving task in an immobile car; KSS, lane 

drifting 
(C3-A1) + + 

Huang et al. (2001) Auditory and visual vigilance tasks; correct rate C3, C4 + + 
Huang et al. (2008) Compensatory tracking task; tracking error, reaction 

time 
70 EEG channels; occipital independent 
components 

+ + + 

Huang et al. (2009)  Event-related lane departure during simulated driving 
(static); reaction time 

256 EEG channels; occipital and 
parietal independent components 

+ + + 

Jung et al. (1997) Auditory oddball task; error rate Cz, Pz/Oz + - * 
Kecklund and Åkerstedt (1993) Real truck driving; KSS, self-rated performance 

capacity 
Cz-Oz + + 

Lal and Craig (2002, 2005) Simulated driving in a static car frame; facial features 
(from video) of the driver 

19 EEG channels + + 

Lowden et al. (2009) Simulated driving on a moving base; speed, lateral 
position, steering wheel angle, KSS 

Fz-A1, Cz-A2, Oz-Pz + + 

Makeig and Inlow (1993) Auditory oddball task; local error rate 13 EEG channels + + - 
Makeig and Jung (1995, 1996) Auditory oddball task, visual target detection; local 

error rate 
Cz, Pz/Oz + + - * 

Makeig et al. (2000) Compensatory tracking task; tracking error F3, C4, P4, O1 (C4 shown) + + 
Ogilvie and Wilkinson (1984) Auditory response task; reaction time Cz, Pz 
Ogilvie et al. (1991) Auditory response task; reaction time 14 EEG channels (C3, C4 shown) + + - - 
Ota et al. (1996) Auditory response task; reaction time 18 EEG channels (F1, F2, O1, O2 

shown) 
+ +/- 

Otmani et al. (2005) Simulated driving on a mobile base; S.D. of lateral 
position, steering wheel angle, KSS 

F3, C3, P3, O1 + + 

Papadelis et al. (2007) Real driving; severe driving errors Fp1, Fp2, C3, C4, P3, P4, O1, O2 + + + - 
Papadelis et al. (2009) Real driving; driving duration Fp1, Fp2, C3, C4 + + + - 
Paus et al. (1997) Continuous performance test (auditory); target hits, 

reaction time 
19 EEG channels (F3, F4, T3, T4, O1, 
O2 shown) 

+ 

Peiris et al. (2006) Continuous tracking task; lapse in tracking 
performance, video rating 

16 EEG channels + + + - 

Ryu et al. (2007) Simulated driving (static); driving duration, subjective 
visual analog scale 

MEG; frontal/parietal areas + 

Schier (2000) Simulated driving (static); lap and driving duration P3, P4, F3, F4 + 
Schmidt et al. (2009) Real driving; secondary auditory oddball task, reaction 

time, subject measures 
128 EEG channels (Pz shown) + 

Torsvall and Åkerstedt (1987) Real train operation; responses to stop signals O2-P4 + + + 
Wijesuriya et al. (2007) Simulated driving (static), digit monitoring task; 

deviation, reaction time, facial symptoms 
12 EEG channels (delta activity at O2 
site) 

+ 

Many studies have demonstrated EEG correlates 
of fluctuations in performance during sustained 
attention task on the order of one second to 
several minutes. 



A Near-Naturalistic Driving Simulator at BRC of NCTU 



     Trajectory 

                       Responses 

                       Lane-Center 

Deviation 
Onset 

cruising Reaction Time 
(T) 

Deviation 
(D) 

Response 
Offset 

Response 
Onset 

56 

Cruising Speed: 100 km/hr   
Linear deviation (D=c T)  
Inter-Deviation-Interval: 5 ~ 10 sec         
Deviation: 50% leftward, 50% rightward deviation 

Paradigm: Single Trials Embedded in Continuous Driving 

From Huang et al., 2005, 2007. 

cruising 
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1.  Remove high-amplitude artifacts using  Artifact Subspace 
Reconstruction 

2.  Separate cortical and artifact source contributions to the scalp 
electrodes using ICA or ORICA.  

3.  Model the event-related dynamics of the IC sources using time/
frequency analysis. 

4.  Localize the separated IC sources using inverse source mapping 
methods.  

5.  Compare similarities in IC dynamics and locations across subjects 
using IC cluster analysis.] 

6.  Examine the interactions between brain areas using component 
effective connectivity. 

Modeling Event-Related Brain Dynamics 



Deviation-induced Brain Dynamics 

Dipole Locations 

Tonic Spectral Dynamics 
Cluster Mean Map 

    Event-related Spectral Perturbation      

From Chen et al., in preparation. 



Interactions among Distinct EEG Sources 



Network	
  Dynamics	
  with	
  and	
  without	
  
Mo@on	
  Cues	
  

Effective connectivity between EEG independent processes estimated under (A) K+ 
and (B) K− conditions. 	



From Lin et al., Scientific Report, 2016. 



Network	
  Dynamics	
  w/	
  and	
  w/o	
  Mo@on	
  Cues	
  

From Lin et al., Scientific Report, 2016. 



Network	
  Dynamics	
  with	
  and	
  without	
  
Mo@on	
  Cues	
  

RT-sorted outflow dynamics of MCC (yellow trace) and PCC 
(blue trace) under (A) K+ and (B) K− conditions. 	



From Lin et al., Scientific Report, 2016. 



Real-time Cognitive-State  
Monitoring 

 
 
 
 

T.P. Jung1,2, C.T. Lin1, Scott Makeig2 and 
Associates 

 
1Brain Research Center, Department of ECE 

National Chiao Tung University, Hsinchu, Taiwan 
           2Swartz Center for Computational Neuroscience, 

University of California San Diego, USA 
 
 



Pilot data Spectral 
Estimation 

PCA 

eigenvectors 

Matrix 
multip. 

Multivariate linear  
Regression or NNs 

Matrix 
multiplication 

Real-time 
data acqui. 

1. Training 

2. Estimating fatigue 

parameters 

Estimated 
Task  

Performance 

Spectral 
Estimation 

References: 
1. Jung, et al., IEEE TBME, 44:60-9, 1997. 
2. Lin, et al., EURASIP J Applied Signal Processing, 19:3165-74, 2005. 
3. Lin, et al., IEEE TCAS I, 52(12):2726-38, 2005. 
4. Lin, et al., IEEE TCAS I, 53(11): 2469-76, 2006. 
5. Lin, et al., Proc. of the IEEE,  96(7):1167-83, 2008. 
 

Real-time Drowsiness Monitoring 



Sample Results 



Arousing Feedback Rectifies 

Lapse in Performance  
 
 
 
 

C.T. Lin1, T.P. Jung1,2 and Associates 

 
1Brain Research Center, Department of ECE 

National Chiao Tung University, Hsinchu, Taiwan 
           2Swartz Center for Computational Neuroscience, 

University of California San Diego, USA 
 
 



Auditory Feedback to the Drowsy Brain 

From Lin et al, NeuroImage, 2010. 



Behavioral Responses to Feedback 

From Wang et al, Frontiers in Neuroscience, 2014. 



The mean baseline spectra of effective and ineffective trials 
before and after auditory feedback. 



EEG Dynamics following Feedback 
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From Wang et al, Frontiers in Human Neuroscience, 2014. 



Fatigue Monitoring & Mitigation System 

Driving 
Performance 
Monitoring 

Warning 
Efficacy 

Assessment  
Subject alert 

Lapse2 / Warning 

START 

Lapse1 / Warning 

Baseline 
Collecting 

Done 

Subject  
alert 

SETTING 



A Wearable and Wireless DMM System 

Wang et al.,  IEEE BioCAS, 2012. 

In a vehicle 

Fog Server/
Gateway 

Cloud 
Server 

Sensor
s 

Phone 



!

Comparing an EEG-based and a non-EEG-based 
Fatigue Detection and Mitigation Systems 

Adapted from Huang et al., Int’l Journal of Neural Systems, 2016. 



Neural technologies that translate laboratory-oriented 
neuroscience research to study the human brain in real-
world environments? 

  Advanced sensors and sensing technologies for 
measuring neural and behavioral data from 
unconstrained subjects in ecologically valid 
environments.   

  Signal-processing techniques to find statistical 
relationships among the variations in environmental, 
behavioral, and functional brain dynamics. 

  An ability to harness continuous and ubiquitous 
monitoring of the brain. 

Summary 



Summary 
  We reported both tonic and phasic spectral dynamics of 

independent components in response to lane-deviations during a 
continuous lane-keeping driving task. 

  There are fundamental differences in EEG correlates of task 
performance between K+ and K- conditions. 

  Arousing auditory feedback delivered to the cognitively challenged 
subjects immediately agitated subject’s responses to the events.  

  The improved behavioral performance was accompanied by 
concurrent spectral suppression in the theta- and alpha-bands of a 
lateral occipital component. 

  It is feasible to integrate novel dry sensors, advanced signal-
processing algorithms and miniature supporting hardware into a 
mobile & wireless cognitive-state monitoring and management 
system. 
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