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INtroduction

x The problem -- Fundamental challenge in-cognitive neuroscience:
understand how: information is represented and-communicated in the
brain. In particular, modeling the rapidly-changing dynamics of
information flow in-anatomical networks.

x The goal -- find ways to-measure and visualize information flow and
causality in-human-brains; and relate this to cognitive phenomena

x Why? -- “Knowledge of human brain connectivity will transform human
neuroscience by providing not only-a gualitatively novel class of data,
but also by providing the basic framework necessary to synthesize
diverse data and, ultimately, elucidate how our brains work in health,
llness, youth, and old age.” (NIH FOA for Human Connectome Project).
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Different types of connectivity

= Structural Connectivity

® gnatomical i

= Functional Connectivity Vi=eY==¢
x symmetric, correlative MR

» Effective Connectivity MEG/EEG
® asymmetric, causal, fMRI?

iINnformation flow
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Many ways to model effective
connectivity in EEG

x Coherence, Phase-locking value
x Cross-correlation

» [ransfer Entropy

®x Dynamic Gausal Models

» Structural Equation Models

® Granger-Gausal methods
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Many ways to model effective
connectivity in EEG

®x Coherence, Phase-locking value
x Cross-correlation

» [ransfer Entropy

®x Dynamic Gausal Models

» Structural Equation Models

® (Granger-Gausalmethods
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Viany ways to estimate
coupling

Time-domain Frequency-domain

Auto- and cross-covariance Power Spectrum
(auto--and cross-spectra)

Cross-correlation Coherency and Partial Coherence
(@bsCOH, imagCOH, pCOH)
Time-delay (e.9., argmax. C(t)) Phase slope, PLV

Mutual information, Transfer Entropy

Granger Causality (Granger, 1969) Granger Causality (Geweke, PDC,
DTF, etc)
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Granger Causality

® First introduced by Wiener (1958). Later reformulated by
Granger (1969) in the context of linear stochastic

autoregressive models
x Relies on two assumptions:

1. causes should precede thelr effects in time

2. Information in-a cause's past should improve the
prediction of the effect, above and beyond the
information contained in the effect’'s own past.
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Multivariate Autoregressive
(MVAR) Modeling

x \\Ne have M variables (e.qg., EEG channels or source activations):
X(t) = [Xi(t), Xo(t), ey XnD]

model order
%: g D random noise process
S8 X()=), AX(i—k)+E@®
it
multichannel data M x M matrix of model coefficients multichannel data k
at current time t indicating variable dependencies at lag k samples in the past
( )
a. (k) ... a, (k)
A(k) = ST E(?) = N(0,V)
. a, (k) - a,/ (k) )
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Multivariate Autoregressive
(MVAR) Modeling

x Qur Goal: Find least-sguares estimate of A
e.g., find A that minimizes the variance of the residuals E

x [his Is a convex problem with a unique solution, and thus A is
completely determined by the data (and model order).

x Model order is typically: determined by minimizing information criteria
such as Akaike Information Criterion (AlC) for varying model order (p):

A|C(p) — 2|n(det(V)) 5 MZD/N Penalizes high model orders (parsimony)

entropy rate (amount of prediction error)
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Granger Causality

® First introduced by Wiener (1958). Later reformulated by
Granger (1969) in the context of linear stochastic

autoregressive models
x Relies on two assumptions:

1. causes should precede thelr effects in time

2. Information in-a cause's past should improve the
prediction of the effect, above and beyond the
information contained in the effect’'s own past.
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Granger Causality

Test: Does Xa granger-cause Xi 7
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X, (7)
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X, (1) X(8)=Y." A(K)X(t— k) +E(r)
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Granger Causality

Test: Does Xa granger-cause Xi 7
(MM

X, (1) ‘ PRAR pofe — VNS _)

X,(1)
X, (1) X(1)= Y. AF)X(t k) + E(1)
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Granger Causality

Test: Does Xa granger-cause Xi 7

r?<

X, (7) . Mkl G MVAR _)
X(1) ‘ MAA gl | ‘= A=Y

X, (1)
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Granger Causality

Test: Does Xa granger-cause Xi 7
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Granger Causality

Test: Does Xa granger-cause Xi 7

A X0 . M gl
S R eSO Ttk

X, (1)

X, (1) JWV"\’W"‘WW
X, () SANT NN PNy — (V2N —
X

X, 0= A()X (t—k)+E@)
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Granger Causality - Time Domain

Let V represent the set of all variables in our model: V-.={1, 2, ..., M}

p
X, ()= A()X, (t=k)+E(r)
Fit the full VAR model and obtain the mean-square prediction error when X:is predicted
from past values of Xy, :

var(X () | X, () = var(E(t)) =0,
Where = X () =X (i=k).keil,....p}}
Now, suppose we exclude J from the set of variables and re-fit the model
X ()= AKX (t=k)y+E()
var(X ()| X () =var(E(1)=6,

In'general, 0 >= 51'1- and 0 = 6'l.l. if and only if the best linear predictor of X{(t) based
on the full past X,/(t) does not depend on the past of X;
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Granger Causality — Time Domain

B This leads us to the following definition:

B Let|and J be two disjoint sulbsets of V. Then X;is granger non-causal
with respect to X; conditioned on Xy if the following two equivalent
conditions hold:

1. rarX @)X, Ol =par(X o 1X6)

2. A (k)=0 torall ke {1, . pj

® Cquivalently, X;granger-causes X it the RHS of (1) is significantly less
than the LHS (including past of X significantly reduces prediction error
of X)) or if any-A (k) 1s significantly greater than zero.

B Granger (1969) quantified this definition for bivariate processes in the
form of an F-ratio: ]

% :ln[var(ﬁl)]_ln( var(X (1) | X,())

Xle—X2

var(E,) var(X (1) | X (-), X, ("))
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Granger Causality Quiz

® Example: 2-channel VAR process of order: |

X0 \:( 05 0 jf K- | | B

X0 | 07 02 XD | | E@

\ \

X (1= =05X(t-1) + 0X,(t-1) + E(0)
X.(0= 07X (t-1) + 02X, (t-1) + E, (1)

Which causal structure does this model correspond to?

) QP— HOP—O0 O0—O

Thursday, June 17, 2010



Granger Causality Quiz

® Example: 2-channel VAR process of order: |

[ x \:( 05 j" Xe=n | [ E@

X0 | 07 02 XD | | E@

\ \

X (1= =05X(t-1) + 0X,(t-1) + E(0)
X.(0= 07X (t-1) + 02X, (t-1) + E, (1)

Which causal structure does this model correspond to?

) P—

Thursday, June 17, 2010



Granger Causality Quiz
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Granger Causality — Frequency
Domain

B Granger-causal relationships can also e established in
the frequency domain

X(1) =), AB)X(t = k) +E(D)
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Granger Causality — Frequency
Domain

B Granger-causal relationships can also e established in
the frequency domain

X(1) =), AB)X(t = k) +E(D)

Rearranging terms we find that

Zizo A(k)X(t—=k)=E(t) where A(0)=-I
Likewise, X(f) and E(f)

correspond to the fourier

A(HX()=E(f)  where A(f)==> " A(k)e """ transforms of the data and
residuals, respectively

Fourier-transforming both sides yeilds
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Granger Causality — Frequency
Domain

B Granger-causal relationships can also e established in
the frequency domain

X(1) =), AB)X(t = k) +E(D)

Rearranging terms we find that

D A()X(t=k)=E(t)  where A(0)=-I
Fourier-transforming both sides yeilds iz, S0 e E(f.)
correspond to the fourier

A(HX()=E(f)  where A(f)==> " A(k)e """ transforms of the data and
; idual tivel
Multiplying on the left by A(f)1 yeilds residuals, respectively

X(f)= A E(f)=H(E(f)

Where H(7) is the transfer matrix of the system.
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Granger Causality — Frequency
Domain

B [he power spectral density matrix Is given by
S(N= XOXD) =RV (1) where: V= coV(E).

B From S(f), H(7), and A(f)=H(f)-! we can obtain several useful
estimates of coherence and causality/information flow.

® Definition: Aj(f) = O for:all frequencies 7 it and only if X;is
granger non-causal for:X;

® |0 other words, if Aj(f) IS significantly non-zero, then X;
granger-cauises X;(at frequency f)
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Granger Causality — Frequency
Domain Estimators

B Coherence measures
S.(f)

C,(f)=
IS, (D8, () Coherence
S(f) :
R L Partial coherence
\/Sii(f)Sjj(f) S =S dltial C

det(S(1)) -
G(f)= 1=
() \/ S UM () Multiple coherence
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Granger Causality — Frequency
Domain Estimators

B (some) Causal measures . .
( ) (non-normalized) Directed

2

0.(f)={H,(f) Transfer Function (DTF)
2 H ()] ,
Yl 3 Normalized DTF
2 )

2

H (1)
2 ZM ‘H (f)|2 Direct DTF
f k=11""ik

6. (f)=n,(HP(f) where n.(f)=

#DTF partial
coherence

4.(f) Normalized
i f)‘z Partial Directed
i Coherence (PDC)

()=
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Time-varying GG

® [f we have multiple trials, we can make use of adaptive
autoregressive models to allow: time-varying estimates of
granger-causality (useful-for globally non-stationary
processes exhibiting local stationarity)

® Fach trial IS treated as a realization of the same
underlying stochastic process. Ve can average short-
window: estimates of the covariance matrices and model

COeffic

% \\e ap
fit a se

ients over multiple trials to reduce bias.

oly-a (short) sliding window with high overlap and

parate model for each window.
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Time-Varying GG

>

Analogous to short-
time fourier transform

%
S

BNy
channels

From

B A S e e

time
i
i o

time | @
X(H)= ),  A()X(t=k)+E() \ -

ACHX()=E(S)
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Issue1: Which Measure to
Use?




Ground Truth Coherence Partial Coherence

......... Spurious

—e— {ndirect true flow
— (irect true flow

* non-normalized
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PDC versus DTF methods
(spectral considerations)

AL A

Y DU L ‘e A

? N "] el A

‘L _ | A ‘e A

° H.L — . e LA
H A - s

BN

PDC dDTF




ISsue 2: Scalp or Source’?




Scalp or Source?

Scalp
electrodes

Volume Conduction Makeig, 2007




Volume Conduction (VO)

B Assumption: VC only affects instantaneous correlations and, since
Granger Causality ignores instantaneous correlations, it should be
Immune to spurious correlations induced by VC. Therefore GG on channel
data is sensible.

| False! VVC affects all correlations

Noise covariance
(instantaneous
correlation) is
transformed by M...

S(1) =Y. AU)S(t=k)y+ E) T

X ()= MS() TN — -1
A(k) b3 MA(k)M ...but so is every
coefficient matrix

X (@)= MS(t) = i MAY M= X(t = k) + ME(t)

k=1
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Volume Conduction (VO)

| Solutions?

B Apply BSS (e.g., ICA) 10 approximate mixing matrnx, M, and recover
sources, S. Then fit VAR models to source activations.

B Problem? It is not sufficient to-identify-just any: mixing matrix. The “true”
mixing matrix, M, must be identified to recover the “true” sources, S.
This constitutes solving the inverse problem (provably intractable).

B ICA involves additional-assumptions (global temporal independence of
the sources)

Thursday, June 17, 2010



Estimating Dependency of
Independent Components'?

® [SN’t It a contradiction to examine dependence petween
Independent Components?

® |nstantaneous (e.g.; Infomax) ICA only explicitly enforces
Instantaneous independence.: Time-delayed dependencies
may. be preserved (note this is-not the case for temporal
decorrelation methods like SOBI or complex ICA)

x |CA seeks to maximize global independence, transient
dependencies are often preserved
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Estimating Dependency of
Independent Components'?

SCSA_EM
SCSA
o CSA o
Z CICAAR Connectivity Error
MVARICA | + +
ICA X+ — — — v
01 02 03 04
SCSA EM—+ — — — =++H+ + +

SCSA_EM
SCSA

oy CSA

< CICAAR

on CSA

< CICAAR
MVARICA
ICA

0.3

SCSA_EM
SCSA

1o CSA

< CICAAR

SCSA

o CSA

< CICAAR
MVARICA
ICA

1-AUC

Haufe et al, 2008



TUTORIAL




Information Flow anad
Causality Toolbox (IFAGCT)

x A new (alpha) toollbox for source-space electrophysiological information
flow and causality analysis (single-subject or group analysis) integrated
into the EEGLAB software environment

» Modular architecture intended to-support multiple modeling approaches

» Standardized data format and flexible access to sophisticated EEGLAB
routines

x Emphasis on time-frequency domain approaches

» Novel interactive visualization methods for exploratory analysis of
connectivity across time, frequency, and spatial location

» Group statistics via the EEGLAB STUDY routines (in development)

32
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Preprocessing
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Preprocessing

Modeling

33

Thursday, June 17, 2010



Preprocessing

Modeling

Statistics
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Preprocessing

Modeling

Statistics

Visualization
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Preprocessing Modeling Statistics Visualization

= Source-separation and localization
(oerformed externally using EEGLEAB or other toolboxes)

= Fltering/Detrending

® Downsampling

» Differencing

» Normalization (temporal or ensemble)
= [rial balancing

® [ests for stationarity of the data (linear methods)

34
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

Linear Nonlinear
MIVAR-Modeling Dual Extended Kalman Filtering
O
hé’ Sparse MVAR
M®
& |Bayesian MVAR
o |Nonparametric MVAR (spectral Transfer Entropy
+ |factorization)
-
% Multivariate phase-distribution
3
Z
- fully 1mplemented - partially-developed - coming soon o
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

n\\hitenesstorResiduals
x:Portmanteadstests
wAutocorrelationidnction

x-S PDUrbin=YVatson:test
= \VOdeECOnSIStENCY

= \Vodel:Stability

. fully implemented . partially-developed . coming soon
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Preprocessing Modeling Statistics Visualization

Model Fitting Validation Connectivity

WAV/ANR Other
-Power spectrum (ERSP) - Transfer Entropy *
-Coherence(GCoh);-PartialiGoherence{pGoh)AVdltiple
Coherence (mGoh) -Multivariate phase-locking
-Partial Directed Goherence (PDC) value (MPLV) *

-Generalized PDCH(GPDG)

-Partial Directed Goherence factor{FPDGH)
-Renormalized PRGCH{rPRE) T

-Directed Transter-Function {DTF)

-Direct Directed Transter-Function (dDTF)
-Granger-Geweke Causality {(GGC)
-Conditional GGC

-Blockwise GGC *

. fully implemented . partially-developed . coming soon

38

Thursday, June 17, 2010



Preprocessing Modeling Statistics Visualization
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Preprocessing Modeling Statistics Visualization

Parametric

Asymptotic analytic estimates of
confidence intervals
Applies to: PDC, nPDG, DTF,
nDTF, rPDC
Tests: Haui, Hbase, Hag

Confidence intervals using - thin-
plate smoothing splines

Applies to: dDTE

Tests: Hoase, HaB

Hnui @ Gij < Ghul Hpoase: Cjj < Cpaseline Hpg: C% = C5

. fully implemented . partially-developed . coming soon
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Preprocessing

Modeling

Parametric

Asymptotic analytic estimates of
confidence intervals
Applies to: PDC, nPDG, DTF,
nDTF, rPDC
Tests: Haui, Hbase, Hag

Confidence intervals using - thin-
plate smoothing splines

Applies to: dDTE

Tests: Hoase, HaB

Hnui : Gij < Gl

. fully implemented

Hpase: Cij < Chpaseline

. partially-developed

Statistics Visualization

Non-parametric

Phase=randomization
Applies to: all
Tests: Hnu

Permutation-lests
Applies to: all
TeStS: HAB, Hbase

Bootstrap-and-Jacknife

Applies to: all
Tests: HAB, Hoase

Hag: C% = CB;

. coming soon

39
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Preprocessing Modeling Statistics Visualization

Interactive- lime=Freguency:Gna
Interactive Brainmovie3D

Interactive Causal Projection

Directed Graphs on anatomicals (ECoG)

and more...

All of these currently support single-subject or (beta) group analysis
ROI connectivity analysis can currently be performed using dipole clustering

. fully - 1implemented . partially-developed . coming soon

40
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Demonstration of (basic) data processing pipeline

41
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Darasets

#1: Button press epochs

Filename: SewmTwoback/eb75R¢5pCorr 501
Channels per frame 152

Frames per epoch

Epochs 742 Select MVAR algorithm

s 650 erra-Morf (recommended)

Sampling rate H2) 256

Epoch stan (e -2.000 start Windc
fr’('-h ead (se0) l 996 ~ '.,TJ_-: iz (sac :|

. Model order

Beference waknown
Channe! locatiens
1ICA weghts

Dataser size D42)

model order range:

B windows 1o sample
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Datasets

#1: Button press epochs

Deskiop
O W o | U lad \» . Select MVAR algorithm

Average info. criteria across sampled windows fieora=Moif (recommended)

~
o
O =
L0
&
—
9
L=
—_
Q
| =
o
=
l'g.'.
=
—
E

15
model order
310111213141516171818

model order
s0C

model order
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Datasets Help
#1: Button press epochs

Filename: . RewTwoback/eb7iRespCorr 501
Channels per frame 2
Frames per epoch

Epochs 742
Events £290
Sampling rate H2) 55
Epoch stan (sec) -2.000
Epoch ead (sed 1 996
Reference waknown
Channel locatiens fes

1CA weghts

Daraset size D)

fmng VAR[1Z] model mode=vierra-mord (window 19/51)

New 10 MATLAB? Warch this Video, see Demos, or read |
This 15 > 0.1. Re nd a




Tools Pl Darasets Help

#1: Button press epochs

Filesame: . RewTwoback/eb7iRespCoer 5ot

Channels per frame 152
Frames per epoch 1024 ¥ Check Whiteness of Resid...
Epochs

Eon V18w nsen Tools Deskrop Window Melp
. v . : b
D * T -~ .- u "

percent consistency

% windows to sample

ver is betts

CUrain-

Help

Significance of whiteness (lov

shend

Percert Cons

Winaow Center (s




SEECT CoNnectivity measures 10 Galc

Darasets -
(hold Crtrl to select multiple)

#1: Button press epochs

Filesame: . RewTwoback/eb75RespCoer 5ot

Channels per frame 152

Frames per epoch
Epochs
Events £290

ng rate M2
Ep stan (sec) -2.000
Epoch ead (sed 1 996
Reference waknown
Channel locatiens
ICA wesghts

Daraser size D42)

[-'l-[Alu
New 10 MATLAB?

checking cond1

checking cond




Edn Tools ol Daras

#1: Button press epochs

Filesame: . RewTwoback/eb75Re3p

Chann per frame

Frames per epoch

Epochs

Events

Sampling rate §

Epoch stan -2.000
1996

waknown

C 0 ) '

New 10 MATLAB? Warch this Vide
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Two-back task with teedback

Match

Two-back @ Response
with feedback |_|
R R
continuous B F
performance L |

Non-match

One trial

Letter Response Letter
presentation (360+ 50 ms) presentation

&— 600+ 100 ms —@—— 80 ms————® Onton and Makeig
¢——— 1450+ 100 ms ——o 2007

48
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Interactive Time-Frequency Grid
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Interactive Time-Freguency Grid

- - -
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-
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Frequency (Hz)
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Interactive Time-Freguency Grid

From
o ®
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Causal Interactive Brainmovie
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Causal Density Movie
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Future VWork

® |mprovement of architecture, GUI, and EEGLAB integration
(in collaboration with EEGLAB developer Arnaud Delorme)

x Ongoing iImplementation/incorporation of state-of-the-art
methods for causal-analysis

® |mproved development of group statistics (in collaboration
with Dr. Wesley Thompson)

x Further validation of effective connectivity measures using
ECoG, CCEPR, and DTl (in collaboration with Dr. Nitin
Tandon, UT Houston)
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-200 ms i 100 ms 365 ms 700 ms Hz

(b)

(c) (d)

Figure 4. Stuctural and effective commectivity between
five localized ICs during oddball task of one subject.
Panels (a)-(d) show significant (p<0.01) dvnamic
Granger-causal mfluences between source-localized ICs
Arrow colors denote freguency; thickmess, strength of commectivity. Features include (b) early post-stim ulus
visual cortex (green node) outflow, (c) ter-hemispheric par*ez‘a‘ Stemporal theta band info flow, (d)
emergence of nter-hemispheric beta band flows near 700 ms. Closely spaced dorsocentral ICs 24 (ved) and
28 (blue) show a consistent pattern of mostly bi-directional commectivity throughout the trial; (e) DWi-derived
fibers commecting locations of these two ICs (using DST fiber tracking seeded at 6-mm RQIs centered on IC
equiv. dipoles). (f) SDIF time-freguency display shows transient beta-freguency mformation flows from
(superior) IC24 (ved) to IC28 (blue), with a 10-or-more cycle peak 300-1000 ms following target onset
(dashed red line). Marginal traces show marginal maxima.
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Transient Theta Coherence Event
Two-back with Feedback Task

Tim Mullen, S. Makeig, unpublished
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SADTF representation of a Two-back Task Theta Event
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SADTF representation of a Two-back Task Theta Event

ERP envelope (backprojected components)
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Tim Mullen, S. Makeig, unpublished
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SADTF representation of a Two-back Task Theta Event
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