Cognition On The Run Testing a New Mobile Brain Imaging Modality

Klaus Gramann

Swartz Center for Computational Neuroscience University of California, San Diego

Why Imaging The Brain During 'Active Cognition'

Background	Developments	First Results	Future Directions	Discussion

- Brains have evolved to control behavior in an ever changing 3-D environment.
 - Cognition evolved in organisms with specific physical attributes and is therefore shaped by and to take advantage of these features for cognitive ends.
 - Cognition developed in the context of reliable environmental features.
 - Cognition is for action and must be understood in its ultimate contribution to situation-appropriate behavior (Wilson, 2002),
- The development of mobile brain imaging is therefore essential for understanding natural human cognition.

The Traditional Approach to measure Active Cognition - Caveats (1)

Background	Developments	First Results	Future Directions	Discussion

- We record brain dynamics with millions of bits of information per second.
 - However, standard analysis of data reduces this information to single channels,
 - and further averages across trials, and
- finally compares the brain dynamics to ~1 bit of information from human behavior (usually button press).
- The ultimate goal is to analyze the full bandwidth of brain dynamics together with the full range of complex human behavior on single-trial level.

The Traditional Approach to measure Active Cognition - Caveats (2)

The ultimate goal is to analyze active cognition and the accompanying distributed brain dynamics.

The Traditional Approach to Active Cognition -Caveats (3)

Background	Developments	First Results	Future Directions	Discussion

- Sensors are too heavy (MEG, PET, MRI) to follow movements of the subjects.
- Rigidly static positions (sitting or lying) are required to avoid movements.
 - Movement is not allowed and considered as source of artifacts.
 - Even eye-movement is considered as an artefact in EEG experiments.
- New technologies have to be developed and integrated to allow for recordings of active cognition.

How to Image The Mobile Brain -Technology

How to Image The Mobile Body -Technology

How to Image Mobile Cognition -Technology

How to Image Mobile Cognition -Data Analyses

How to Image Mobile Cognition -Data Analyses

Akalın-Acar & Gencer, (2004) *Physics in Medicine and Biology* Ataseven et al (2008) *Med. & Biol. Eng. & Comp.*

A First Experiment Using MoBI

Background	Developments	First Results	Future Directions	Discussion

A First Experiment Using MoBI

What Kind Of 'Artifactual Activity' is Measured With EEG?

Background	Developments	First Results	Future Directions	Discussion
		Flexion/Extension		
		Neck Extension		
	 Tra Se Sp Re Re 	apezius mispinalis Capitis (bilate lenius Capitis (bilateral) ectus Posterior (Minor & I ectus Oblique Superior	ral) Vajor)	
		Neck Flexion		
	Lor	ngus Capitis ngus Colli		

'Artefacts' (?) During Natural Movements

Muscles Attached To The Occipital Bone

Neck Muscles Activity During Looking and Pointing Movements

Neck Muscles Activity During Looking and Pointing Movements

Neck Muscles Activity During Looking and Pointing Movements

Cognition on the Run

Which Electrodes are Likely to Make Trouble?

Which Electrodes are Likely to Make Trouble?

Power Increase of Step Frequency

Cognition on the Run?

Cognition on the Run

P300 while Standing, Walking and Running

P300 Contribution of Non-Brain Activity to the Surface Potential

Contribution of Non-Brain Activity to the Surface Potential

P300 while Standing

P300 while Slow Walking (0.8 m/s)

P300 while Fast Walking (1.2 m/s)

Reliable Reconstruction of a Late Positive Complex

Reliable Reconstruction of a Late Positive Complex

Reliable Reconstruction of a Late Positive Complex

Discussion

Background	Deve
Baokground	

lopments

First Results

Future Directions

Discussion

- First (pilot) studies clearly demonstrate that we are able to record and analyze cognitive processes during active motor behavior of subjects.
 - Restrictions apply to excessive movements that are associated with cable sway.
 - Future wireless technology is likely to overcome these restrictions.
- MoBI demonstrates that the timing of movements and/or different phases of spatially extended movement is essential and reflected in brain dynamics.

Discussion

- Future studies need to:
 - extend data analysis including head models that integrate muscles in source space,
 - add recordings of eye movements for integrated analysis,
 - make use of developments in data-driven signal analyses to gain insights into the relation of
 - active motor behavior and brain dynamics,
 - identify levels of comparison for different data models.

MOBILE E IMAGING

Existing brain-image they work only when still. Now University tive neuroscientist Si system using electro isolate and record br the body while the w The EEG cap bea electrical activity pro brain. Chips on the bodysuit infr movements. Infrare these points of light Software integra Software integrat reveal which parts c Until now, "no one to dynamics underlying ordinary activities, because no one has had the technology and the analysis soft-ware," Makeig says. Early experiments have already shown that a surprisingly large portion of the cerebral cortex is engaged in even the simplest actions, such as reaching out to touch an object. **Eliza Strickland**

12 11 1.1

CMP

- 18 A

