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LiInear Modelling

Framework: Linear mixed effects through a hierarchical model
(data within subjects, subjects within groups)

Statistics: At the subject level, GLM (OLS) for each electrode
and time frames separately (=inter trials variance). At the
group level, bootstrapped robust tests (=inter subject
variance, assumption free).

Multiple comparisons correction: bootstrap used to evaluate
the clustering of statistical tests.



Mixed effect Model

Model the data with fixed effects (the experimental conditions)
and a random effect (subjects are allowed to have different
overall values — considering subjects as a random variable)

Example: present stimuli from
intensity -5 units to +5 units
around the subject perceptual
threshold and measure RT

— Plot the data per intensity




Mixed effect Model
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Mixed effect Model
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General Linear Model

Linear: the output is a function of the input satisfying rules of

scaling and additivity (e.g RT = 3*acuity + 2*vigilance + 4 + e)

Model: assign to the data different effects / conditions ... All
we have to do is find the parameters of this model

General: applies to any known linear statistics (ttest, ANOVA,

Regression, MANCOVA), can be adapted to be robust
(ordinary least squares vs. weighted least squres), and can
even be extended to non Gaussian data (Generalized Linear
Model using link functions)

For those who like maths: Y = BX+e and thus B = inv(X'X)X’Y = pinv(X)Y
R =I- (X*pinv(X)) and thus var = RY**RY / dfe

The weighted least square proceeds with B = inv(X"WX)X"WY



15t level model in practice



General Linear Model: Practice 1

* Processing of subject 1.




General Linear Model: Practice 1

* Design matrix: accept if you think it looks like what the model
should be
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General Linear Model: Practice 1

e Results (non corrected for multiple comparisons)
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General Linear Model

Gauss-Markov theorem: OLS estimates are the best linear
unbiased estimator (BLUE) of the population parameters,
providing

A. regressors in the design matrix X are independent from the
error, non-stochastic and known

B. regressors are independent from each other.

C. errors are independently and identically distributed
~N(0,s?l)

Your job as users to create experiments satisfying conditions A
and B, our job as programmers to ‘ensure’ C



General Linear Model

 Errors should be i.i.d.

— C1. Errors from different observations are not correlated
(Cov(ei,ej)=0)

— C2. The expected value of the error term is zero (E(e)=0)

= if C1 and C2 not satisfied, beta estimates are not BLUE

- C3. The variance of the error is s? at all observations.
That is the off-diag element of the covariance matrix are
Oi.e. errors are homoscedastic.

= if C3 not satisfied, t/F values do not follow known
distributions



2Md |evel model



29 |evel analysis

e Usually assumes 15t level variances are homoscedastic (impact
statistics), but taken care of by the bootstrap.

* Almost all designs available:

T-tests (robust)

Regression, ANOVA, ANCOVA

Repeated Measures ANOVA (Hotelling T2)



General Linear Model: Practice 2

One-sample t-test Regression
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Multiple Comparisons Correction



Multiple comparisons correction

When we do a statistical test, we set alpha, the probability to
reject HO (under HO) — this is also known as type | error rate

* The famillywise error rate has to do with the number of tests

performed, and assuming tests are independents from each
other, the FWER =1 - (1 - alpha)”n

eg. so for alpha =5/100, if we do 2 tests we should get about
1-(1-5/100)72 ~ 9% false positives, if we do 126 electrodes *
150 time frames tests, we should get about 1-(1-
5/100)718900 ~ 100% false positives! i.e. you can’t be certain
of any of the statistical results you observe



Multiple comparisons correction

 |llustration with 5 independent variables from N(O,1)
 Repeat 1000 times and measures type 1 error rate

type one eror r per vanable

9%




correlation between tosts

Multiple comparisons correction

Illustration with 2 variables with Pearson‘s r=0:1

correlation between t-ests for variable X and Y s a function of the corm(XY)

| —N=50 cOm=0.59799

— | ===N=500 corr=0.9949%6

= N=10 com=0.58512

—N=100 cor=0.99723

As we observed one test,
we know something about

—  the outcome of the other
test when variables are corr.



Multiple comparisons correction

* Bonferroni correction allows to keep the FWER at 5% by
simply dividing alpha by the number of tests

0.0476% significant cells 0% significant cells
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Multiple comparisons correction

 Wait, it is well known that Bonferroni is too conservative,
i.e. the FWER < alpha. In EEG we instead consider cluster
because is much less likely that statistics are significant in

electrodes

groups
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Multiple comparisons correction

 Wait, it is well known that Bonferroni is too conservative,
i.e. the FWER < alpha. In EEG we instead consider cluster
because is much less likely that statistics are significant in
groups — but data are smooth in space and time!

0.0466% significant cells cluster size distribution
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Multiple comparisons correction

* Clustering is a good option because it accounts for topological
features in the data. Techniques like Bonferroni, FDR,
max(stats) control the FWER but independently of the
correlation between tests.

* To use clustering we need to consider cluster statistics rather
than individual statistics

* Cluster statistics depend on (i) the cluster size, which depends
on the data at hand (how correlated data are in space in
time), and (ii) the strength of the signal (how strong are the t,
F values in a cluster) or (iii) a combination of both.



Multiple comparisons correction

In LIMO EEG, we bootstrap the data under HO: e.g. if you have
2 conditions, center the data for each condition (HO is true)
and then resample and test — by chance some significant

results are obtained.

Observed F values > F values under HO




Multiple comparisons correction

Max(stat): for each bootstrap record the max(t) or max(F) to
build the distribution of max under HO. Then threshold the
observed results using this distribution. Because the max
value is obtained across all electrodes and time frames, it
corrects to thresholding data trough this whole space.
Max(stat) doesn’t account for clusters.
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Multiple comparisons correction

* Spatial-Temporal clustering: for each bootstrap, threshold at
alpha and record the max(cluster mass), i.e. sum of F values
within a cluster. Then threshold the observed clusters based
on there mass using this distribution > accounts for
correlations in space and time.

spatial-temporal cluster

Max cluster mass |
Under HO '

Electrodes
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:‘.Ag
i =00 0 100 200 300
u Timeinms

Loss of resolution: inference is about the cluster, not max in time or specific electrode !



Smith & Nichols 2009 Neurolmage 44

Threshold Free Cluster Enhancement

Threshold Free Cluster Enhancement (TFCE): Integrate the
cluster mass at multiple thresholds. A TFCE score is thus
obtain per cell but the value is a weighted function of the
statistics by it’s belonging to a cluster.

original

+ signal

__TFCE
enhancemen

’ / ;\\

e

Figure 1: Illustration of the TFCE approach. Left: The TFCE score at voxel p 1s given by the sum of the scores of all incremental
supporting sections (one such is shown as the dark grey band) within the area of “support™ of p (light grey). The score for each
section 1s a simple function of its height /» and extent ¢. Right: Example input image and TFCE-enhanced output. The input contains
a focal. high signal. a much more spatially extended. lower. signal and a pair of overlapping signals of intermediate extent and height.
The TFCE output has the same maximal values for all three cases, and preserves the distinct local maxima in the third case



Multiple comparisons correction

 Threshold Free Cluster Enhancement (TFCE): Integrate the
cluster mass at multiple thresholds. A TFCE score is thus
obtain per cell but the value is a weighted function of the
statistics by it’s belonging to a cluster. As before, bootstrap
under HO and get max(tfce).
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Excellent resolution: inference is about cells, but we accounted for space/time dependence



The future of your analyses



What’s next

e 15t |evel analysis revised with WLS

* Multivariate analyses: MANCOVA (X—2Y) and
discriminant analyses (Y2 X) both linear gnd
guadratic

e 2nd|evel robust for all tests

* Andrew —> All Components *time frames
- All Components/Channels *time frames * freq



LIMO Support

* Software use - EEGLAB mailing list (Arno has
lots of time to manage it)

e Software / data issues 2 email me
(cyril.pernet@ed.ac.uk GLM / stats related
guestions) or Guillaume
(guillaume.rousselet@gla.ac.uk MCC and data
handling issues)

» Software bugs / changes = use tracker on the
website, remember to assign the bug to me or
Guillaume
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