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. Why cluster independent components
~ across subjects or sessions?
« |CA transforms the data from a channel basis

(activity recorded at each channel)

« to a component basis (activity computed at each IC).

ormally, EEG researchers assume that, for example,
electrode channel F7 == F7 == F7 ... in each subject —
and then ‘cluster’ their data assuming channel
equivalence.

« This amounts to the simple assumption

“Your Cz is My Cz!*

« But this is only roughly correct !

Makeig, 2007
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9 Clustering ICA components by eye
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So how to cluster components?

The same problems hold for clustering independent components

Across Ss, components don’ t even have “the same” scalp maps!

- Are “the same” components found across subjects?

« What should define “the same” (i.e., “component equivalence”)?

Similar scalp maps?

Similar cortical or 3-D equivalent dipole locations?
Similar activity power spectra?

Similar ERPs?

Similar ERSPs?

Similar ITCs?

Or similar combinations of the above?? ...

Makeig, 2007



EEG IC Source Locations
(135,794 IC equivalent dipoles!)
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... Some caveats

In this dipoledensity() assay ...

MR head images were not available = brain co-registration crude.
Single versus dual-dipole model selection was subjective.
Different electrode montages - mis-localization effects.

Electrode locations were not all digitized — some ‘guestimated’ !

Brain geometries differ!

Graphics: Julie Onton, 2005



MR + EEG EEG

Onton & Makeig, 2004



Arthur Tsai -
Topological

source clustering

Why should IC clusters
have breadth?

Equivalent cortical areas
Have different scalp maps

And dipole locations!

Arthur Tsai et al., Neurolmage, 2014



.
>
(4‘
v 1 ’
y
W
Y

Does the spatial distribution of IC
equivalent dipole source locations
depend on the task the subject
performs?

i.e.

Do “the same” ICs (and IC clusters)
appear for every task?

Makeig, 2007



" Equivalent dipole density D

Sternberg
letter
memory
task

>> dipoledensity()

Onton et al., 2 Onton et al., ‘05
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The same problems hold for clustering independent components
Across Ss, components don’ t even have “the same” scalp maps!
- Are “the same” components found across subjects?
« What should define “the same” (i.e., “component equivalence”)?
« Similar scalp maps?
« Similar cortical or 3-D equivalent dipole locations?
« Similar activity power spectra?
« Similar ERPs?
« Similar ERSPs?
« Similar ITCs?

e Or similar combinations of the above?? ...

EEGLAB clustering supports all these possibilities.
Makeig, 2007
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Neurascrence

Study IC Clustering: Assumptions

Assumes there are functionally equivalent ICs across
most subjects.

Assumes these ICs have similar responses to
experimental conditions across a set of measures

(ERP, ERSP, ITC...)

Creates non-overlapping IC partitions making each IC
belong to only one cluster.

Makeig, 2007



EEGLAB Study Clustering strategy

Cluster on multiple measures (dipole locations, scalp maps,
spectra, ERPs, ITCs, ERSPs, ...) in one or more conditions.

Reduce the dimension of each measure to a principal component

subspace.
Compose a PCA-reduced position vector for each component.
Cluster the composed component vectors using k-means or other.

Use the computed component measures (not PCA-reduced) to
visualize the activities and spatial properties of the clustered
components.

Compute and visualize the cluster-mean measures.

Use clustered Study set data as input into ‘std_??7?’ functions.

Makeig, 2007



- Study IC Clustering
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EEGLAB Study Clustering procedure

|dentify a set of datasets as an EEGLAB Study.

Specify the subject code, subject group, condition and/or session
for each dataset in the Study.

|dentify components to cluster in each Study dataset.

Decide on component measures to use in clustering the Study
and/or to evaluate the obtained component clusters.

Compute the component measures for each Study dataset.
Cluster the components on these component measures.

Review the obtained clusters (e.g., their scalp maps, dipoles, and
activity measures).

Edit the clusters (manually remove/shift components, make sub-
clusters, merge clusters, re-cluster).

Statistically test differences within or between selected clusters.

Makeig, 2007
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Neurascience
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The deepest mental trap in electrophysiology
lies in the word “THE” 1]



Nonpsychiatric Comparison Subjects (NCS)
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] Should every subject
be included in every cluster?

Not all subjects contribute components to each cluster.
Why not?
* Different numbers of artifact components

« Subject differences!?

* Does my subject group really exhibit a Gaussian cloud
of individual differences around 'a mean subject’ in
‘subject space’ ??

Makeig, 2007



» Why aren’t all participants in every IC _
cluster? ;.
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Neuroscience

STUDY IC Clustering: Practical Problems

Large parameter space problem: many different clustering
solutions can be produced by changing parameters and measure
subsets. Which one should we choose?

Select and compute component measures for later clustering — pop_preclust() - X

has ~12 parameters

Pre-compute measures on which to cluster components from study 'N400STUDY"
EEGLAB Clusterlng Select the cluster to refine during sub-clustering (any existing sub-hierarchy will be overwtritten)

ParentCluster 1 (151 ICs)

Pre-compute or Load
spectra
ERPs
dipoles
ERSPs

d

d

d

,v| scalp maps
d

" | ITCs

El Final dimensions

3

Dims.
10
10

10
10
10

10

Norm. Rel

J| Save STUDY to file

Cancel

Wt
Freguency range [Hz] 3 25
Latency range in ms [lo hi] -2100 1395
Use channel values — | Absolute values |
Timeffreq. parameters 2', [3 25], 'cycles’, [3 0.5], 'pe
Help Ok |

N. Bigdely-Shamlo, 2010
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Problems with multi-measure clustering
In a uniform density distribution,

where are the clusters by location?

N. Bigdely-Shamilo, 2010
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Problems with multi-measure clustering

What are the clusters according to location?

/
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Problems with multi-measure clustering

N'Ulo\(“’

What are the clusters according to size ?
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Problems with multi-measure clustering

What are the clusters according to location and size?

Well, it depends on how much weight we give each
measure...
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With either clustering method, we basically mix
together distances for a subset of EEG measures
(ERP, ERSP, ITC, mean spectrum, dipole location).

This may make clustering distance less interpretable.

ERP Dipole ER’Sp

N. Bigdely-Shamlo, 2010
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Computational
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Neurascrence

\Study IC Clustering by Measure Projection

* Instead, we can directly work on pair-wise similarity
matrices and prevent ICs with similarities less than certain
threshold (e.g., ERSP corr. < 0.5) to be clustered together.

 The most important measure is equivalent dipole location.

« Assuming a certain variability estimate for dipole location
(due to error in localization and subject variability), one can
also estimate an optimum number of clusters.

Measure Projection asks:

1. Where in ‘template brain space’ does our data have evidence that
our measure of interest is consistent across nearby ICs?

2. Which such brain space voxel domains show consistent differences?
N. Bigdely-Shamlo, 2010



Project Target ERSPs on Equivalent Dipole Locations

Measure Projection: RSVP Task Example

KAuepunssig dsy3

N. Bigdely-Shamlo, 2011
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. Equivalent dipole density £

Letter
twoback
with
feedback

>> dipoledensity()

Onton et al., 2 Onton et al., ‘05



Equivalent dipole density £

Auditory
oddball
plus
novel
sounds

>> dipoledensity()

Onton et al., 2 Onton et al., ‘05



Equivalent dipole density Exp | D

Computational

Neuroscience

Word
memory
(old/new)
task

>> dipoledensity()

Onton et al., 2 Onton et al., ‘05



Equivalent dipole density Exp I D

Computational

Neuroscience

Visually
cued
button
press
task

>> dipoledensity()

Onton et al., 2 Onton et al., ‘05



Rapid Serial Visual
Presentation Experiment

8 subjects
*15 Sessions

*Visual target detection

+257 components with equiv.
dipoles inside the brain

41s
F|xat|on I Burst of 49 clips at 12 Hz I Subjec | Time

screen t input

T edll




‘ Project Target ERSPs on Equivalent Dipole Locations
.. Measure Projection: RSVP Task Example

(p <.0002)

ERP

N. Bigdely-Shamlo, 2011
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An FM-theta IC cluster
In a working memory task

FMO Cluster
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‘ Cluster ERP contrlbutlons std _envtopo()
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IC clustering of LPC data

e Clustered components from 15 Ss using a IC
distance metric incorporating differences between
their (weighted) scalp maps, dipole locations,
spectra, ERP, ERSP, and ITC patterns.

e Hand-adjusted clusters to remove outliers.

e Determined time/frequency regions of significant
ERSP and ITC for each component using
permutation-based statistics.

e Used binomial statistics to highlight time/
frequency regions significantly active within
clusters.

Makeig, 2007



Visual Selective Attention Task
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Makeig et al., PLPS 2004
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% Simulate 25

Assume 80
1 RLS,s-4
| RLS;5-4
Simulate 25
Assume 80 Figure 13: Equivalent dipole source localization error directions (arrows) and magnitudes (colors) for model dipoles

head model when the brain-to-skull conductivity ratio was mis-estimated as 80:1 (top row) or as 15:1 (bottom 1
forward-model value (25:1). The middle row shows errors when source localization was performed using a warped fc
the forward model brain-to-skull ratio was again mis-estimated as 80:1. Note that, maximum error shown was 20 m
as to use the same scaling while retaining some contrast for the lower-error plots. Maximum localization errors were
as in gure 3.
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Effects of Mis-Estimating Skull Conductivity

Akalin Acar & Makeig, 2013



