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Independent component analysis (ICA) is an useful solution for EEG analysis to transform scalp chan-
nel signals into e�ective EEG source activities. It is particularly useful to perform multivariate causality 
analysis because ICA addresses issues of volume conductance and scalp mixing that make scalp 
channel signals highly correlated and spatially blurred. However, one of drawbacks of the use of ICA 
is that it complicates the group-level statistics because ICA reveals individual di�erences and the re-
sults are inconsistent in number of components as well as their locations. Here, we demonstrate how 
to address this inconsistency issue that raises in the group-level analysis. The basic concept of this so-
lution, called Network Projection, can be found in Nima Bigdely-Shamlo’s PhD dissertation.
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Subjects Participants were 45 children (26 patients with Chronic Tic Disorder, 19 healthy controls) between 
the ages of 8-12 years old recruited for an project ran by Dr. Sandra Loo (UCLA).

Task The subject’s task was to perform an eye blink to an visual cue for every 3 seconds.

Preprocessing After cleaning using ASR [1], about 55 trails were left across all the subjects. Data were ep-
oched to -4 to 4 second windows relative to blink cue onset. Adaptive mixture ICA (AMICA) was performed for 
decomposition, and only brain EEG components were selected manually (Figure 1).

Source Information Flow Analysis EEGLAB [2] Source Information Flow Toolbox (SIFT) [3] was 
used. Only top 10 ICs sorted by variance were used. Sliding window with1.5 s width was stepped every 0.1 s. 
Vieira-Morf was used to compute multivariate autoregressive modeling. The model order was estimated to be 9 
i.e. the time lag of 90 ms. Renormalized partial directed coherence (rPDC) was computed to estimate causal in-
formation �ow. 30 frequency bins were generated which was logarithmically scaled from 2 to 45 Hz.

Group-level analysis Dipole locations of all subjects were smoothed with 3-D Gaussian kernel with 
FWHM 14.2 mm. The cloud of dipole density was segmented into 76 anatomical AAL-de�ned regions [4]. The 
pairwise dipole density was weighted with rPDC (Figure 2). This provides 76x76 connectivity matrix for each sub-
ject, thus eliminates the inconsistency problem at the group-level statistics. The �nal data was 5-D matrix of 76 
x 76 x 30 x 65 x 40, which is 76 x 76 = 5776 connectivity edges, each of which has 30 frequency bins x 65 time 
points, and for 40 subjects. The data were pre-selected: 1) Connectivity edges that has at least 60% of subjects 
contributes more than 0.00001 % dipole pair density. This selected 993 and 1515  edges (17% and 26%), 57% 
and 68% of total dipole pair density for Control and Patients, respectively; 2) The time-frequency rPDC values 
across subjects for the selected edges were submitted to bootstrap statistics with 10,000 iteration. For multiple 
comparison correction, Generalized Family-Wise Error Rate (GFWER) was used. During the bootstrap statistics, 
two-tailed 1-, 5-, and 10-percentile t-scores of the time-frequency map of the edge were stored for later correc-
tion across edges. For example, if 100/5776 edges were pre-selected, 10,000 surrogate values of 1-, 5-, and 10-
percentile t-scores were combined into each of 10,000 x 100 distributions, and their 1-, 5-, and 10-percentile t-
scores were used for global correction across all time-frequency points of all edges (Figure 3).
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Figure 1 (above). Preprocessing pipeline for the scalp channel 
signal. 
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Figure 2 (above). How a graph edge ROI_1 
-> ROI_2 is de�ned. Pairwise dipole density 
is weighted with connectivity measure i.e. 
rPDC. An equivalent curent dipole source, 
which is a point in the space, is smoothed 
with 3-D Gaussian kernel so that they over-
lap across subjects and can be segmented 
into pre-de�ned anatomical ROIs.

Figure 3 (left). Schematics 
of generalized family-wise 
error rate (GFWER) correc-
tion. Near-maximum sta-
tistics of bootstrap surro-
gate data is saved for 
every iteration to generate 
a distribution, whose criti-
cal values can be used to 
correct multiple tests.

We demonstrated that a collection of individualized information �ows across ICA-decomposed e�ec-
tive EEG sources can be integrated into a 5-D structure which allows straightforward group-level statis-
tics. It has been a common practice that after some processing, IC activations are projected to scalp 
channels again to ensure consistency across subjects. However, mixing ICs contradicts the purpose of 
ICA to address issues of volume condactance and scalp mixing. The merit of the proposed solution is 
that it does not need, in any way, to project ICs to channels while addressing individual di�erences.

The data used here was presented as a separate poster with a focus on clinical signi�cance. Abstract 
Title: Neural connectivity and cortical activation in chronic tic disorders. Session Title: Movement Disor-
ders. Session Number: 311. Session Time: 11/14/2016 8:00-9:00 AM. Posterboard Number: M12.  Con-
tact: ktung117@gmail.com

For both left and right �gures, the top left panel shows 76-by-76 connectivity matrix with statistically 
signi�cant results (GFWER p<0.05,  u=10, minimum cluster size k=5);  the top right panel shows a frame 
from a movie pointing to a latency where statistically signi�cant information �ows are maximal in the 
healthy subjects; the bottom paneles shows representative edges (rows) for patients (left column), con-
trols (second from left), their di�erence (third from left), and signi�cance mask (right column). The re-
sults showed that the envelopes of information �ows in control subjects showed typical time course, 
while that in patients was less structured and disturbed. 
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