EEG spectral modulations during emotional imagery

Julie Onton, PhD

Naval Health Research Center, San Diego, CA University of California, San Diego Swartz Center for Computational Neuroscience

Outline

Emotional imagery experiment

Unmixing power modulations with ICA

Broadband high frequency modulations

Power modulations during emotional imagery

Emotion classification using power modulations

Outline

Emotional imagery experiment

Unmixing power modulations with ICA

Broadband high frequency modulations

Power modulations during emotional imagery

Emotion classification using power modulations

Experimental procedure

- Pre-session eyes closed baseline
- Guided relaxation (~5 min)
- > 15 emotions
 - balanced positive and negative valence
 - introduced verbally via headphones
 - self-paced emotional experience
- Subject pressed a button when feeling became intense
- Instructed to image for ~4 min
- Post-session eyes closed baseline

Outline

Emotional imagery experiment

Unmixing power modulations with ICA

Broadband high frequency modulations

Power modulations during emotional imagery

Emotion classification using power modulations

Separate mixed source activities

Independent component analysis (ICA)

x = scalp EEG	
have been and the second secon	w
he was a second wa	w
	w
have a second and the second and the second se	w
monor and a second a sec	w
and a solution and a solution and a solution of the solution o	

Channels

W = unmixing matrix

 $W^*x = u$ ICA

u = sources

 $\mathbf{x} = \mathbf{W}^{-1} \mathbf{u}$

mmmmmm

u = sources

*

ICA Components

Dynamic changes in frequency power over time

Frequency (Hz)

Complexity of on-going EEG spectral power

Independent (Co-)Modulators of EEG Source Activities

Log-spectral decomposition

Example IM templates + mean power spectrum

Clusters of spectral modulators (33 Ss)

Outline

M Emotional imagery experiment

Unmixing power modulations with ICA

Broadband high frequency modulations

Power modulations during emotional imagery

Emotion classification using power modulations

Broadband gamma modulator clusters

Muscle is not co-modulated with brain

Muscle is not co-modulated with brain

Gamma power up to 250 Hz

Sorted broadband IM weights

Outline

M Emotional imagery experiment

Unmixing power modulations with ICA

Broadband high frequency modulations

Power modulations during emotional imagery

Emotion classification using power modulations

IM weights for different emotions

Excitement

IM weights for different emotions

Momentary and mean IM weights

IM weights during emotional imagery

Broadband gamma modulator clusters

Valence-correlation-weighted dipole density of γ IMs

Outline

Emotional imagery experiment

Unmixing power modulations with ICA

Broadband high frequency modulations

Power modulations during emotional imagery

Emotion classification using power modulations

Emotion classification procedure

IMs

Inv Wt

Matrix

windows

- 1) ANOVA across columns of W⁻¹ (IMs)
- 2) Sort IMs by ANOVA F-score
- 3) Select IMs with highest F-scores for classification (bet. 3-17)
- 4) Remove 10% of each emotion period as 'test' data
- 5) Classify each non-overlapping 1-sec of 'test' data with SVM
- 6) Calculate % correct classification across all 1-sec 'test' epochs
- 7) Separate classification IMs into theta, alpha, beta, gamma categories

Classification accuracy (1-sec, non-overlapping epochs)

Brain sources with emotion-related IMs

F-score standard deviation-weighted dipoles

Summary

- ☑ ICA isolates independent brain activity from scalp EEG
 - Separates high frequency brain from scalp muscle
- ☑ IC power is affected by independent modulator processes
 - possibly neuromodulatory influences
- If High frequency IM strength is related to emotional valence
- IM strengths can differentiate between subjective states
 - > high freq. IMs are more likely to differentiate between emotions

Thank you to Jerry Swartz, Scott Makeig, and thank you for your attention