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Abstract- Detecting artifacts produced in EEG data by muscle 
activity, eye blinks and electrical noise is a common and 
important problem in EEG research. It is now widely accepted 
that independent component analysis (ICA) may be a useful tool 
for isolating artifacts and/or cortical processes from 
electroencephalographic (EEG) data. We present results of 
simulations demonstrating that ICA decomposition, here tested 
using three popular ICA algorithms Infomax, SOBI, and 
FastICA, can allow more sensitive automated detection of small 
non-brain artifacts than applying the same detection methods 
directly to the scalp channel data. We tested the upper bound 
performance of five methods for detecting various types of 
artifacts by separately optimizing and then applying them to 
artifact-free EEG data into which we had added simulated 
artifacts of several types, ranging in size from thirty times 
smaller (-50 dB) to the size of the EEG data themselves (0 dB). Of 
the methods tested, those involving spectral thresholding were 
most sensitive. Except for muscle artifact detection where we 
found no gain of using ICA, all methods proved more sensitive 
when applied to the ICA-decomposed data than applied to the 
raw scalp data: the mean performance for ICA was higher and 
situated at about two standard deviations away from the 
performance distribution obtained on raw data. We note that 
ICA decomposition also allows simple subtraction of artifacts 
accounted for by single independent components, and/or separate 
and direct examination of the decomposed non-artifact processes 
themselves. 
 

I. INTRODUCTION 

 In event-related experiments, each data epoch normally 
represents one or more experimental trials time locked to one 
or more experimental events of interest. Typically, software 
for ERP analysis first subtracts a baseline – e.g., the average 
pre-stimulus potential– from each trial, then finds and 
eliminates ‘bad’ electrodes at which the resulting potential 
values exceed some pre-defined bound or some level of noise. 
The remaining ‘good’ electrodes usually include central scalp 
sites containing mainly brain activity, temporo-parietal sites 
that may contain temporal muscle artifacts, and frontal sites 
that may contain prominent blinks, eye movement and other 
muscle artifacts. It is critical to detect such artifacts 
contaminating event-related EEG data for several reasons. 
First, artifactual signals often have high amplitudes relative to 

brain signals. Thus, even if their appearance in the recorded 
EEG is infrequent, they can bias average evoked potential or 
other measures computed from the data and, as a consequence, 
bias or dilute the results of an experiment. In clinical research, 
however, artifacts may be abundant, limiting the usability of 
the data altogether. 
 In most current EEG analysis, single data trials that contain 
out-of-bounds potential values at single electrodes are selected 
for rejection from analysis. A problem with the simple 
thresholding criterion is that it only takes into account low-
order signal statistics (minimum and maximum). This 
rejection method may fail to detect e.g. muscle activity, which 
typically involves rapid electromyographic (EMG) signals of 
small to moderate size, nor will it detect artifacts generated by 
small eye blinks. Statistical measures of EEG signals may 
contain more relevant information about these and other types 
of artifacts. For instance, linear trend detection may help in 
isolating current drift. Computing the probability of each data 
epoch, given the probability distribution of potential values 
over all epochs, may help in detecting trials with improbable 
artifacts. A 4th order moment of the data distribution, its 
kurtosis, may detect activity distribution indicative of some 
artifacts. Finally standard threshold detection methods applied 
to the single trial data spectra may help in detecting artifacts 
with specific spectral signatures. 

 Independent Component Analysis (ICA) (Bell and 
Sejnowski, 1995; Jung et al., 2001; Makeig et al., 1996) 
applied to concatenated collections of single-trial EEG data 
has also proven to be an efficient method for separating 
distinct artifactual processes including eye blink, muscle, and 
electrical artifacts (Barbati et al., 2004; Delorme et al., 2001; 
Iriarte et al., 2003; James and Gibson, 2003; Joyce et al., 
2004; Jung et al., 2000b; Tran et al., 2004; Urrestarazu et al., 
2004; Zhukov et al., 2000). Although several ICA algorithms 
in different implementations have been used to separate 
artifacts from EEG and MEG data, they all can be derived 
from related mathematical principles (Lee et al., 2000). While 
ICA is now considered an important technique for detecting 
artifacts, there are still few quantitative measures of the 



advantage for artifact detection that is gained from ICA 
decomposition. 
 Here we develop a framework for comparing artifact 
detection methods and use it to determine whether 
preprocessing EEG data using ICA can help in detecting brief 
data epochs that contain artifacts. We first apply a set of 
statistical and spectral analysis methods to detect artifacts in 
the raw data, optimizing a free parameter for each method so 
as to optimally detect known artifactual data epochs. Then, we 
apply the same procedure to the data decomposed using ICA. 
Finally, we quantitatively compare results of these artifact 
detection methods applied either to raw or to ICA-
preprocessed data. 

II. METHODS FOR ARTIFACT REJECTION 

 We compared five different methods for detecting 
trials containing artifacts (Barbati et al., 2004; Delorme et al., 
2001): 

1. Extreme values. First, we used standard thresholding of 
potential values. Here, data trials were labeled as artifactual if 
the absolute value of any data point in the trial exceeded a 
fixed threshold. This method is currently the most widely used 
artifact detection method in the EEG community. It is most 
effective for detecting gross eye blinks or eye movement 
artifacts. 

2. Linear trends. Marked linear trends at one electrode 
typically indicate transient recording-induced current drifts. 
To detect such events, we measured the goodness of fit of 
EEG activity to an oblique straight line within a sliding time 
window. We then either marked or not the data trial 
depending on the minimum slope of this straight line and its 
goodness to fit (in terms of r2).  

3. Data Improbability. Most artifacts have “unusual” time 
courses, e.g., they appear as transient, ‘odd’, or unexpected 
events, and may be so identified by the outlying values of 
their statistics relative to normal brain activity. We tested the 
use of the joint-probability of the observed distribution of data 
values and the kurtosis of the data value distribution for 
detecting such artifacts. To estimate the relative probability of 
each trial from the data, we first computed the observed 
probability density function (De) of data values over all trials 
for each electrode e (over 4165 equally spaced bins, giving a 
total of 20285 values per channel or component activity). 
Each data sample point was thus associated with a probability. 
Then, we computed the joint log probability Je(i) of the 
activity values (Ai) in each data trial i and electrode e by 
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the probability distribution De of activity at electrode e. We 
used the joint log probability for more effective graphic 

presentation of very low joint probability values. The joint 
probability was computed for every data trial at each electrode 
or independent component. 

4. Kurtosis. We used a second measure to detect unusually 
‘peaked’ distributions of potential values -- the kurtosis (K) of 
the activity values in each trial. 
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where mn are the nth central moments of all activity values in 
the trial (m1 their mean), and E an expectation function (here, 
the average). If all activity values are similar, or the values 
alternate between two or more extremes, the kurtosis will be 
highly negative. Again, this type of activity is not typical of 
brain EEG signals. Strong negative kurtosis values usually 
reflect AC (alternating current) or DC (direct current) 
artifacts, for example those induced by screen currents, strong 
induced line noise from electrical machinery, lighting fixtures, 
or loose electrode contacts. If the kurtosis is highly positive, 
the activity distribution is highly peaked (usually around zero) 
with infrequent appearance of extreme values, and the 
identified data is likely to contain an artifact. For example, 
starting with a signal (random time series) having low 
negative kurtosis and adding a transient 10-fold increase in 
signal amplitude lasting for only a total of 0.001% of the data 
length (modeling for example the presence of an electrical 
artifact) may be sufficient to invert the sign of the kurtosis and 
produce a positive kurtosis value. Eye blink artifacts, as for 
example extracted from scalp EEG data by ICA, also have 
relatively high kurtosis. 

 Before defining detection thresholds for joint 
probability and for kurtosis, we first normalized these 
measures to have zero mean and unit standard deviation. We 
were thus able to define (z) thresholds in terms of standard 
deviations from expected mean values.  

5. Spectral pattern. Finally, some EEG artifacts have specific 
activity and scalp topographies that are more easily 
identifiable in the frequency domain. For instance, temporal 
muscle activations typically induce relatively strong 20-60 Hz 
activity at temporal electrodes, while saccadic eye blinks 
produce unusually strong (1-3 Hz) low frequency activity at 
frontal electrodes. To detect these artifacts, we computed the 
Slepian multitaper spectrum (Thomson, 1982) for each single 
trial and each single channel, using Matlab pmtm function 
defaults (4 orthogonal tapers; FFT length of 256 data points 
for each data epoch). The main advantage of using multi-taper 
over standard spectral methods is that, for rhythmic activity in 
the data, the signal/noise ratio may be lower (Thomson, 1982). 
To reveal deviations from baseline, we then subtracted the 
epoch mean spectrum for each channel, and finally applied 
maximum thresholding to the resulting trial spectral estimate. 



 Software routines for performing the artifact 
detection methods described above are available within the 
EEGLAB toolbox (Delorme and Makeig, 2004). 

III. DATA SIMULATION 

 To test and optimize the artifact detection process, 
we used event-related EEG data from a ‘Go/Nogo’ visual 
categorization task (Delorme et al., 2004). EEG was recorded 
at a 1000 Hz sampling rate using a 32-electrode scalp montage 
with all channels referenced to the vertex electrode (Cz). The 
montage did not include specific eye artifact channels, but did 
include channels for electrodes located above the eyes (FPz; 
FP1, FP2). Responses to target and non-target stimuli 
presented about every 2 seconds were recorded for each 
subject. Data epochs were extracted surrounding each 
stimulus, extending from 100 before to 600 ms after stimulus 
onsets. The mean value in the pre-stimulus baseline (-100 to 0 
ms) was subtracted from each individual epoch. Data were 
then pruned of noticeable eye and muscle artifacts by careful 
visual inspection (AD), resulting in 119 “clean” data epochs.  

 We then simulated five types of artifacts (Fig. 1):  

(1) We modeled eye blink time courses using random noise 
band-pass filtered (FIR) between 1 and 3 Hz. Eye blinks have 
stereotyped scalp topographies that can be isolated using ICA 
(Jung et al., 2000b). To obtain topographical maps for these 
simulated eye blinks, we applied ICA decomposition to data 
from another subject and visually identified an eye blink 
component by its time course and scalp topography (high 
gains on the most frontal electrodes; small gains everywhere 
else). We used a blink scalp topography from another subject 
to ensure that the simulated data and the real data were 
separable and independent of each other. 

(2) We modeled temporal muscle artifacts using random noise 
band-pass filtered (FIR) between 20 and 60 Hz and multiplied 
by a typical muscle scalp map, again isolated by ICA from 

another subject (high gains at a few temporal electrodes and 
near zero gains for other electrodes).  

(3) We then modeled electrical shift artifacts by implementing 
discontinuities at one randomly selected data channel.  

(4) We also modeled unfiltered white noise at another 
randomly selected data channel.  

(5) Finally, we modeled linear trends (with randomly selected 
slopes from 100 to 300 �V per epoch at the lowest level of 
noise) at another randomly selected data channel. 

 In the test data depicted above, each data channel could 
only have one type of artifact, excepting the first two artifact 
types (eye and muscles), which projected with varying 
strengths to all the electrodes. We took care that the randomly 
selected channels for each artifact type differed from each 
other and did not coincide with channels where the two first 
topographical artifacts had maximum amplitude. 
 Since our goal was to test the sensitivity of each method for 
detecting artifacts, we varied simulated artifact amplitude to 
find the smallest artifacts that each method in Section II could 
detect. Artifacts at the smallest amplitude level (-50 dB) were 
so small that none of the methods were able to detect them. 
For each artifact type, amplitude was gradually increased from 
-50 dB to 0 dB. To compute signal to noise ratio (SNR; i.e., 
artifact to background brain EEG signal ratio), we divided the 
spectrum of each type of artifact (not mixed yet with data) at 
each frequency by the data spectrum at the same frequency. 
We then found the frequency with the largest SNR and 
converted it to dB scale (10*log10(SNR)). Prior to computing 
SNR for the first two (topographic) artifacts, we scaled their 
amplitudes by the highest channel gain in the applied scalp 
map. 

IV. AUTOMATIC ARTIFACT REJECTION 

 Since we knew which data trials contained simulated 

Figure 1. A. Types of simulated artifacts (top panels) introduced into actual EEG data epochs (bottom panel ordinate, ± 50 µV). Ticks indicate 
700-ms epoch boundaries. B. Simulated data obtained by adding the simulated artifacts (A) to the EEG data. Artifacts shown here were the 
largest simulated (0 dB); the smallest were more than 100,000 times smaller (-50 dB). 



artifacts, for each type of artifact we could determine the most 
efficient artifact detection method. For each method, we chose 
one free threshold parameter(s) which we optimized to 
estimate an upper bound on the ability of the method to detect 
artifacts of the given type.  
 We assumed voltage thresholds to be symmetrical, so only 
one parameter had to be optimized in the standard 
thresholding method. Linear trend detection had two 
parameters (minimum slope and goodness of fit). We set the 
slope to be equal or higher than the minimal artifactual slope 
at the maximum level of noise (0.5 �V/700 ms) and then 
optimized the goodness-of-fit parameter. Since this was time 
consuming and was specifically aimed at detecting trends, we 
applied this method only to detecting linear trend artifacts. For 
the probability and kurtosis methods, we optimized the z 
threshold. Finally, for the spectral measure, we optimized the 
dB limits independently for three frequency bands (0 to 3 Hz, 
20 to 60 Hz, and 60 to 125 Hz) and then used the frequency 
band that returned the best results.  

 For each parameter, the optimization procedure minimized 
the total number of trials misclassified (misses plus false 
alarms). To reduce the computational load, we used a 
procedure that recursively divided its value range until a 
minimum was reached. More powerful non-linear 
optimization methods we considered, using Matlab Nelder-
Mead multidimensional unconstrained nonlinear 
minimization, proved computationally infeasible. We 
attempted to design an algorithm requiring the least number of 
iterations while minimizing the risk of falling into local 
minima. To perform the optimization, we thus divided the 
parameter interval range into 10 equally spaced intervals, and 
evaluated the number of correctly classified trials at these 
points. We located the two values surrounding local minima 
and created a new interval. Then, we ran the procedure 
recursively three times, repetitively dividing the newly created 
value range into 10 intervals and counting correctly classified 
trials, thus obtaining the ‘optimal’ parameters for each 
detection algorithm. 

ICA-based artifact detection. ICA separates EEG processes 
whose time waveforms are maximally independent of each 
other. The separated processes may be generated either within 
the brain or outside it. For instance, eye blinks and muscle 
activities produce ICA components with specific activity 
patterns and component maps (Jung et al., 2000b; Makeig et 
al., 1997). However, scalp EEG activity as recorded at 
different electrodes is highly correlated and thus contains 
much redundant information. Also, several artifacts might 
project to overlapping sets of electrodes. Thus it would be 
useful to isolate and measure the overlapping projections of 
the artifacts to all the electrodes and this is what ICA does 
(Jung et al., 2000a; Makeig et al., 1996).  

 To build intuition about how ICA works, one might imagine 
an n-electrode recording array as an n-dimensional space. The 
recorded signals can be projected into a more relevant 
coordinate frame than the single-electrode space: e.g. the 

independent component space. In this new coordinate frame, 
the projections of the data on each basis vector – i.e. the 
independent components – are maximally independent of each 
other. Intuitively, by assessing the statistical properties of the 
data in this space, we might be able to isolate and remove the 
artifacts more easily and efficiently. 

 Multiplication of the scalp data, X, by the unmixing matrix, 
W, found for example by infomax ICA represents a linear 
change of coordinates from the electrode space to the 
independent component space, or 

 

*S W X=      (4) 
 

where S is the ‘activation’ matrix of the components across 
time. Each component is a linear weighted sum of the activity 
of an independent source process projecting to all of the 
electrodes. Each row of the unmixing matrix W that extracts 
each component activity time course may be seen as a spatial 
filter for a distinctive activity pattern in the data. Each 
independent component comprises an activation time course 
plus an associated scalp map (the corresponding column of W-

1) that gives the relative projection strengths (and polarities) of 
the component to each of the electrodes.  

 All the artifact detection methods described in the previous 
section were also applied to raw potential values decomposed 
using different ICA algorithms. In this study we used three 
ICA algorithms most often used to date to process EEG data: 
Infomax ICA, SOBI, and FastICA. These ICA algorithms 
have the same overall goal (Lee et al., 2000) and generally 
produce near-identical results when applied to idealized 
source mixtures. The approach of each algorithm to estimating 
independence is different: Infomax employs a parametric 
approach to estimate the component probability distributions 
(Bell and Sejnowski, 1995), whereas FastICA maximizes the 
neg-entropy of the component distributions (Hyvarinen and 
Oja, 2000). SOBI is a second-order method that requires and 
takes advantage of temporal correlations in the source 
activities (Belouchrani and Cichocki, 2000). Results produced 
by these algorithms may differ when the component activities 
are not far from Gaussian or are not independent. 

 For infomax, we used default parameters as implemented in 
the runica function of the EEGLAB toolbox (Delorme and 
Makeig, 2004). These involved pre-sphering of the data, and 
stopping training when weight change was less than 10-6. 
Since extended infomax ICA decompositions revealed that the 
EEG data did not contain any sub-Gaussian component, we 
here used the non-extended version of infomax for somewhat 
faster computation (sub-Gaussian components of EEG data 
include single-frequency line noise, not simulated here). Since 
we were processing data epochs rather than continuous data, 
we slightly modified the SOBI algorithm (Belouchrani and 
Cichocki, 2000) so that data covariance matrices for different 
time delays were computed for each epoch, then averaged 



over data epochs. This modified version of the SOBI 
algorithm is currently been made available for testing in the 
EEGLAB toolbox (Delorme and Makeig, 2004). When 
running SOBI, we set to 100 the number of correlation 
matrices at different time delays (Akaysha Tang, personal 
communication). For the FastICA algorithm (Hyvarinen and 
Oja, 2000), we forced the decomposition to estimate all 
components in parallel (“symmetric” approach for version 2.1 
of the FastICA algorithm available on the Internet), setting 
believed to be suitable for EEG data analysis (Aapo 
Hyvärinen, personal communication). Since we could not 
determine which component contained relevant artifacts, for 
each artifact type each detection method was applied to all 
components and the single component returning the best 
results was used in the detection process.  

 Altogether, we generated a total of 20 datasets with 

different artifact and noise instantiations, and then used a 
Linux cluster of 36 processors (1.4 GHz or faster) to optimize 
parameters for each detection method and each dataset. The 
results presented here required about 24 hours of computation 
on this cluster. 

V. RESULTS 

 Results for each detection method and each artifact type are 
presented in Fig. 2, which shows results for one artifact type 
in each row and one detection method in each column. 
Applied either to the raw data or to ICA component activities, 
the frequency thresholding method performed the best overall; 
the joint probability method was second best, and standard 
thresholding third. Kurtosis thresholding performed the 
poorest, though it was partly successful in detecting large 
discontinuity and trend artifacts. Finally, the trend detection 

 

 
 
Figure 2. Artifact detection performance (artifacts detected minus non-detected artifacts, divided by the total number of artifacts) by five 
methods (columns) applied to detection of the five types of simulated artifacts (rows, cf. Fig. 1) at a range of amplitudes (0 to -50 dB relative 
to the EEG). Linear trend detection (far right) was only used to detect trend artifacts. (Black traces): The five methods were first applied 
optimally to the best single-channel data for each artifact type. (Grey traces): The same methods were then applied to the best single 
independent components computed from the data by infomax ICA. Vertical error bars show ± 1 standard deviation in performance across 20 
replications. Overall, for artifacts less than 40 dB below the EEG in strength spectral thresholding methods (right) performed best, and all 
detection methods performed better when applied to the independent component data. 



method was the most efficient for detecting linear trends in the 
data, although nearly equal performance was achieved using 
the frequency thresholding method (1-3 Hz band). 
 However, one has to balance the performance advantage 
against the speed of computation. Here, simple thresholding 
was fastest, while the joint probability was 4 times slower, 
kurtosis rejection was 8 times slower, trend rejection was 
about 25 times slower, and spectral rejection was about 120 
times slower. However, for all detection methods, the measure 
of interest (joint probability, kurtosis, slope, or spectrum) does 
not need to be computed several times. Once a measure has 
been computed, simple thresholding may be applied 
repeatedly to obtain optimal results (see Methods). The 
EEGLAB routines that implement these detection methods use 
this strategy (Delorme and Makeig, 2004). 
 We then attempted to compare the performance of artifact 
detection applied to the raw data and to the same data 
preprocessed using ICA. To do so, we only considered the 
frequency thresholding method since it outperformed most 
methods for all types of artifacts. Since the performance trend, 
as artifact size decreased, was different for each artifact type, 
we normalized each performance curve to the logistic function 
before averaging. To do so, we fitted each performance curve 
obtained from simulated data with a sigmoid function by 
optimizing its slope and horizontal offset. We then normalized 
the observed data points on each curve so they would lie on a 
sigmoid curve centered on 0 with slope 1. We applied the 
same transformation to the ICA results using the 
normalization parameters obtained from the simulated data 
(this explains why standard deviations were larger for the ICA 
results than for raw data results). In Fig. 3, we plot the mean 
normalized performance curves for the raw and ICA-separated 
data for all three ICA algorithms we tested - Infomax, SOBI 
and FastICA (see Methods). We expected that frequency 

thresholding would be more efficient when applied to data 
preprocessed by any of the tested ICA algorithms than when 
applied to raw data. This is indeed what we observed (Fig. 3). 
Data preprocessing by ICA led to a 10-20% increase in 
artifact detection performance for all the three ICA algorithms 
tested. Detection performance was best using infomax ICA, 
approaching two standard deviations above raw data mean 
detection performance (shaded area in Fig. 3). 

VI. DISCUSSION 

We have shown that optimally applying spectral methods to 
identify artifacts in 32-channel EEG data epochs allowed 
more reliable detection of smaller artifacts than optimally 
applying the same thresholding methods to the scalp channel 
data itself. Preprocessing the data using ICA allows more 
effective artifact detection. However, it should be noted that 
the frequency thresholding methods are as efficient at 
detecting muscle artifact in either the raw or ICA decomposed 
data.  For this type of artifact, ICA decomposition does not 
seem to improve artifact detection.  

In our simulated data, mixing of artifacts with data was 
perfectly linear. Might this not be the case for real data? In 
fact, instantaneous mixing via EEG volume conduction of 
artifacts and EEG processes is linear. By Ohm’s law, 
externally imposed electrical artifacts (DC trends, 
discontinuities, white noise) also mix linearly with EEG data 
at scalp electrodes. On this basis, at least, linear ICA 
decomposition algorithms are not inappropriate for separating 
artifacts from other data processes. On the other hand, these 
simulations may have disadvantaged the ICA approach since, 
for example, the simulated muscle artifacts may have been 
mixed with some actual low-level muscle activity in the 
‘clean’ EEG. This might explain why muscle artifact detection 
applied to the ICA decompositions did not strongly 

 

 
 
Figure 3. Comparison of artifact detection performance by spectral thresholding methods applied first to the raw channel data 
(grey band) and then to the same data after decomposition by three ICA algorithms (solid and dashed traces). Detection 
performance for each artifact type across a 50-dB amplitude range was fitted to a logistic function; these functions were then fit 
to each other and averaged across the six artifact types. The artifact strength unit (abscissa) thus indicates a 1-dB to 3-dB 
amplitude step, depending on artifact type. (Shaded areas): Performance range (boundaries, ± 1 std. dev.) for the scalp channel 
data. (Solid and dashed traces): Performance range for the independent component decomposition of the same data. For all but 
the largest artifacts (left), detection performance using the ICA components was 10-20% better than using the scalp channel 
data



outperform artifact detection applied to the raw data.  

Here we optimized each measure threshold based on our 
‘ground-truth’ knowledge of the simulated data. The results 
showed that threshold optimization might be of most benefit 
when applied to the raw channel data, where frequency 
domain thresholds must be finely tuned to best separate 
artifacts from the background noise. Optimal tuning of 
frequency-domain thresholds for ICA component activities 
might be less important in the (typical) case in which ICA 
largely isolates stereotyped eye blink, muscle, heart and line 
noise artifacts to a single ICA component.  

ICA assumptions. First, several major assumptions of ICA 
seem to be fulfilled in the case of EEG recordings. As 
mentioned previously, a first assumption is that the ICA 
component projections are summed linearly at scalp 
electrodes. A second assumption is that sources are 
independent. This is not strictly realistic but even if the 
appearance of artifacts might be related to brain activity – 
muscle contractions, for example, triggered by activity in the 
motor cortex – the time courses of the resulting artifacts and 
the triggering brain events should typically be different across 
all or some trials. Thus, they may be accounted for by 
different independent components (Jung et al., 2000b). A third 
assumption concerns the non-Gaussianity of the source 
activity distributions. This last condition is quite plausible for 
artifacts, which are usually sparsely active and thus far from 
Gaussian in value distribution. Finally, the spatial stationarity 
assumption for the component projections is compatible with 
many, though not all observations (for more detailed 
discussion, see Jung et al., 2000a; Zhukov et al., 2000). In our 
results, we noticed that the Infomax algorithm seems to 
perform better than the two other ICA algorithms, SOBI and 
FastICA. Conceivably, this advantage may have resulted from 
using a more fortunate set of training parameters For example, 
the FastICA algorithm has more than a dozen tunable 
parameters. Since, running the whole analysis using each 
algorithm required about 8 hours on a cluster of 36 
workstations, optimizing each algorithm’s parameters was not 
feasible. 

Stereotyped vs. non-stereotyped artifacts. It is also important 
to note the difference between stereotyped biological and line 
noise artifacts considered here and non-stereotyped artifacts 
such as may be induced by generalized head and electrode 
movements. Such non-stereotyped artifacts may quickly 
introduce a variety of unique scalp patterns into the EEG data, 
which may in turn confound and compromise ICA 
decompositions. Therefore it is important to identify and 
discard such noise periods from the data before running ICA, 
as was done, by visual inspection, for the EEG data used in 
this study. Some types of artifacts (e.g., line noise or muscle 
artifact) may also be partially removed using frequency-band 
filtering methods. We did not explore such methods for 
removing of artifacts from data epochs, but instead focused 
here on methods for detecting artifactual data epochs. 

In practice. To perform artifact detection in practice, we 
generally recommend (1) setting detection thresholds such that 
roughly 10% of data trials are detected using a specified 
method, (2) visually inspecting data trials marked as 
artifactual, and (3) optimizing the thresholds manually. For 
instance, for the joint data probability measure (which in our 
tests here performed better than standard thresholding yet was 
much faster to compute than spectral thresholding), we usually 
use thresholds outside of 5 standard deviations above the 
mean. (For a Gaussian distribution, the probability that a 
tagged artifact trial belongs to the ‘ordinary’ trial distribution 
would then be less than 10-11). After finally rejecting the 
marked and checked data artifacts, the cleaned data may be 
decomposed again by ICA to study the recovered brain source 
dynamics and/or processed by other analysis methods. 

Artifact detection or rejection? It is important to consider 
whether outright rejection of epochs containing artifacts is 
necessary. Beyond advantages for the detection of artifacts, 
there may be several other advantages to using ICA in EEG 
analysis. Using ICA allows direct examination of information 
sources in the data (in a particular sense), rather than their 
summed effects at the scalp electrodes. By removing or 
minimizing the effects of volume conduction, ICA allows 
detailed examination of the separate dynamics and dynamic 
inter-relationships of different cortical areas (Delorme & 
Makeig, 2003; Makeig et al., 2002). Stereotyped artifacts 
separated into one or more components by ICA may be 
literally subtracted from the data by subtracting their summed 
back-projections from the raw data. Independent components 
analysis, by its nature, separates both artifactual and non-
artifactual processes, many of which have distinct dynamics 
relative to experimental event and scalp maps consistent with 
their generation in single (or sometimes dual bilateral) patches 
of cortex. Analysis of the dynamics of such components may 
include epochs in which artifact component activities also 
occur, if ICA has already separated the ongoing brain EEG 
and artifact processes (Makeig et al., 2004). 
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