

High-resolution EEG source imaging

Zeynep AKALIN ACAR

Swartz Center for Computational Neuroscience Tokyo institute of Technology, September, 2016

Source localization is ill-posed

$$X = LS + n$$

X: scalp recorded potentials

- S: current density vector
- L: transfer matrix 'the head volume conductor model'

The inverse problem refers to finding S given known X.

$$O(S) = \min ||X - LS||^2$$
 Infinite solutions!

Apply electrophysiological neuroanatomical constraints

- 1. The electrical head model used,
- 2. The inverse solution itself

Components of EEG source imaging

- Forward model (geometry and conductivity distribution)
- Forward solver (FEM, BEM)
- Electrode co-registration
- EEG source separation
- Brain source space

LEZ

NIST

Source localization

NIST

Forward Problem Modeling Errors

- Head modeling errors
- Electrode co-registration
 errors
- Omitting white matter layer
- Effect of skull conductivity
 Number and distribution of electrodes

Akalin Acar & Makeig, 2013

3-Layer MNI Location Errors

3-Layer MNI

3-Layer Warped MNI

4-Layer MNI Location Errors

4-Layer MNI

4-Layer Warped MNI

Akalin Acar and Makeig, 2013

Electrode co-registration errors

- Solve FP with reference model
- Shift all electrodes and re-register
 - 5° backwards
 - 5° left
- Localize using shifted electrodes
- Plot location and orientation errors

Location Errors with 5° electrode shift

10 ↑ RLS-4 ↓ RLS-4 5 0 mm 8 ↑ RLS-4 ↓ RLS-4 4 $0 \, \text{mm}$

Akalin Acar and Makeig, 2013

Head tissue conductivities

Scalp: 0.33 S/m

Skull: 0.0042 S/m (0.08-0.0073 S/m)

CSF: 1.79 S/m Brain: 0.33 S/m

Skull conductivity measurement

Measurement of skull conductivity

In vivo

Hoekama et al, 2003

In vitro

MREIT Magnetic stimulation Current injection

He et al, 2005

Skull conductivity

Brain to skull ratio					
Rush and Driscoll	1968	80			
Cohen and Cuffin	1983	80			
Oostendorp et al	2000	15			
Lai et al	2005	25			

Measurement	Age	σ (mS/m)	ratio
Agar-agar phantom	-	43.6	7.5
Patient 1	11	80.1	4
Patient 2	25	71.2	4.6
Patient 3	36	53.7	6.2
Patient 4	46	34.4	9.7
Patient 5	50	32.0	10.3 ^{ekama}
Post mortem skull	68	21.4	15.7

Effect of Skull Conductivity

- Solve FP with reference model
 - Brain-to-Skull ratio: 25
- Generate test models
 - Same geometry
 - Brain-to-Skull ratio: 80 and 15
- Localize using test model
- Plot location and orientation errors

Skull conductivity mis-estimation

Akalin Acar and Makeig, 2013

Skull conductivity estimation

- We propose a skull conductivity estimation method using independent EEG brain sources.
- Patch-based source localization measures:
 - Source compactness
 - Source projection goodness of fit

 Linearize the forward problem around a conductivity distribution.

Linearization of the potentials around a conductivity distribution

If we perturb the conductivity values by $\Delta\sigma$

$$\sigma = \sigma_0 + \Delta \sigma \quad \Rightarrow \quad \Phi = \Phi_0 + \Delta \Phi$$

For a discretization with N nodes and M elements:

$$A(\sigma)\Phi = b$$

- Φ : Nx1 vector of unknown node potentials
- σ : Mx1 vector of layer conductivities
- A: sparse, symmetric NxN matrix containing geometry and conductivity information
- b: Nx1 primary current density

Linearization of the potentials around a conductivity distribution

Changes in the potentials at the electrode locations:

$$\Delta \Phi_{s} = -DA(\sigma_{0})^{-1} \frac{\delta A(\sigma)}{\delta \sigma} \bigg|_{(\sigma = \sigma_{0})} \Phi_{0} \Delta \sigma$$
$$\Delta \Phi_{s} = S_{\Phi} \Delta \sigma$$

S: mxM sensitivity matrix

Gencer and Acar, 2004

Iterative procedure

- 1. Generate a head model NFT
- 2. Calculate the forward model using initial conductivity distribution **NFT**
- 3. Estimate source distribution (for P number of near-dipolar ICA sources) **NIST**
- 4. Calculate the sensitivity matrix.
- 5. Estimate the change in the conductivity values
- 6. Update the conductivity, repeat 2, 3, 4, and 5.

Conductivity estimation

Estimate the conductivity change by minimizing the topologica difference between EEG and calculated potential:

$$\Delta \hat{\sigma}_i = \min_{\Delta \sigma} RDM(\Phi_{EEG}, \Phi_i)$$

Since:
$$\Phi_i = S_i \Delta \sigma_i + \Phi_{i-1}$$

 $\Delta \hat{\sigma}_i = \min_{\Delta \sigma} RDM(\Phi_{EEG}, S_i \Delta \sigma_i + \Phi_i)$

Weights

٨

 $\Delta \sigma = \Delta \sigma w$ Px1, P: number of sources

- 1. M1: Weight every source equally: $w_i = 1/P$, i = 1...P
- 2. M2: Weight the estimate source according to the compactness of its estimated source distribution

$$w_{i} = \frac{compactness(i)}{\sum_{j=1}^{P} compactness(j)}, i = 1...P$$

3. M3: Incorporate both the compactness and the RDM in computing the source weight:

$$w_{i} = \frac{compactness(i) \times RDM(\Phi_{IC_{i}}, \Phi_{i})}{\sum_{j=1}^{P} compactness(j) \times RDM(\Phi_{IC_{j}}, \Phi_{j})}, i = 1...P$$

Simulation study

20 cortical Gaussian patch sources used in the simulations.

10 mm radius, 3.33 mm std., 128 electrode locations

Simulated EEG: BSCR=25 SCALE initialized at BSCR=80.

Simulation results

Real EEG study

Head modeling: NFT is used to generate 4-layer FEM head models. Freesurfer is used to generate cortical source spaces. Subjects: 2 male subjects, ages: 20, 23

MRI data: GE 3T whole head MRI with 1 mm³ resolution.

EEG data: 128 scalp EEG, (256-Hz sampling rate) collected using a Biosemi Active Two system during an arrow flanker task.

Independent Components

1-model Amica is applied, 13 near-dipolar Ics are selected.

S1 (13 ICs) EEG pre-processing: high-pass filter the continuous EEG data above 1 Hz, remove artifacts by initial likelihood-based rejection of time points (5%- 10% of data)

Source Compactness

- Generate 9 electrical forward models with BSCR=5, 10, 20, 30, 40, 50, 60, 70, 80
- Estimate source distributions for the 13 ICs for each subject.
- Compute compactness.

Maximum compactness occurred at BCSR = 30 for S1 and BSCR = 60 for S2.

SCALE BSCR convergence

Akalin Acar and Makeig, 2016

13 component activity on the subject's cortical surface

SCALE results

Effect of # of ICs

13 ICs	8 ICs	8 ICs	7 ICs	18 ICs	22 Cs
34	33	21	41	34	34

We need at least 10 ICs with good brain coverage!

	BD	FR	AaV	RB	LH	GV	AS	JH	SE
Strum	28	43	30	68		31	63		31
Darts		45			20				
Arrow Flanker								54	34

SCALE converged to similar BSCR values for the same subjects with different experiments!

Individual baby head models

NFT (sccn.ucsd.edu/nft/) was used to generate fourlayer Finite Element (FEM) head models.

6 months

12 months

1,441,777 tetrahedral volume elements

1,025,643 tetrahedral volume elements April Benasich data

SCALE results of 1-year-old infants

Subjects	Age	# of brain ICs	# of selected ICs	SCALE Ratio
S1	1 year	35	16	9.8
S2	1 year	39	15	10.3
\$3	1 year	30	15	12.1
S4	1 year	28	15	10.0

Source localization results

Source localization results estimated using SCALE, from infants during an auditory experiment.

EEG

Child electrical head modeling challenges

Computational complexity

- **N**: number of nodes in the FEM mesh (~250,000);
- L: number of conductivity compartments (1-20);
- S: number of brain sources (10–30);
- **K**: number of source dictionary patches (~80,000);
- *E*: the number of scalp electrodes (~128–256).

Steps	Tasks	Computation time
Forward problem setup	Generate FEM matrix (<i>N x N</i> <i>sparse matrix</i>)	100-200 MB (20 min)
Forward problem solution	Generate Lead Field Matrix (LFM) (<i>KxE full matrix</i>)	80-160 MB (3.7 hours)
Inverse problem	Solve Ax=b (<i>A: LFM, b: scalp potential Ex1</i>)	1 hour
Sensitivity matrix	Generate N x L x S full matrix	20-1200 MB (6 hours)
Conductivity estimation	Iteratively solve forward, inverse, and sensitivity matrix	10 iterations (4 days)

with N=240,000, K=80,000, E=154, S=13, L=1.

Future work

- Validation of SCALE using simultaneous EEG/MEG data.
- Near real-time implementation of EEG brain activity imaging.
- Generation of template head models based on age and gender when MR images are not available.

Thank you...

Swartz Center for Computational Neuroscience

The 3-layer skull

Skull anisotropy -> Skull inhomogeneity (3-layer skull) (Sadleir 2007, Dannhauer 2011)