Forward and Inverse EEG Source Modeling using NFT – The Neuroelectromagnetic Forward Head Modeling Toolbox

Scott Makeig & Zeynep Akalin Acar Institute for Neural Computation UCSD, La Jolla CA

EEGLAB Workshop, Aspet, France – June, 2013

Zeynep Akalin Acar, '06

EEG/MEG

sccn.ucsd.edu/nft

NEUROSCIENCE METHODS

Contents lists available at ScienceDirect

Journal of Neuroscience Methods

journal homepage: www.elsevier.com/locate/jneumeth

Neuroelectromagnetic Forward Head Modeling Toolbox*

Zeynep Akalin Acar*, Scott Makeig

Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego 0961, La Jolla, CA 92093-0961, United States

ARTICLE INFO

Article history: Received 10 September 2009 Received in revised form 28 April 2010 Accepted 29 April 2010

Keyword:

ABSTRACT

This paper introduces a Neuroelectromagnetic Forward Head Modeling Toolbox (NFT) running under MATLAB (The Mathworks, Inc.) for generating realistic head models from available data (MRI and/or electrode locations) and for computing numerical solutions for the forward problem of electromagnetic source imaging. The NFT includes tools for segmenting scalp, skull, cerebrospinal fluid (CSF) and brain tissues from T1-weighted magnetic resonance (MR) images. The Boundary Element Method (BEM) is used for the numerical solution of the forward problem. After extracting segmented tissue volumes, surface

NFT: Introduction

 A MATLAB toolbox for realistic head modeling and forward problem solving.

- Can use available subject information:
 - T1-weighted 3-D MR images and/or
 - Digitized sensor (electrode) locations
- Implements all head modeling steps:
 - Segmentation of MR images
 - Mesh generation
 - Warping a template head model to the sensor positions
 - Sensor/head image co-registration
 - Lead field matrix: Source space → Sensors

NFT Main Menu

Neuroelectromagnetic Forward Modeling Toolbox								
	Subject Folder Subject Name	Session Name						
		,						
	Head	Modeling						
	From a magnetic Resonance Image	From electrode Position Data						
	Image Segmentation							
	Mesh Generation							
	Source Space Generation	Template Warping						
	Electrode Co-Registration							
Forward Model Generation								

Subject Selection

Head Modeling

Forward Modeling

Subject Selection

Select subject folder name

- Specify subject code
- Specify session name

Head modeling from an MR head image

Preparing the MR image for segmentation

Image Segmentation

Interface for Segmenting the MR image

Mesh Generation

Generate a mesh for a 3- or 4-layer BEM head model
 – (triangulation, correction, coarsening, refinement)

Source Space Generation

Here, generate a simple source space:

- A regular grid within the brain space
 - with a given spacing & min. dist. to the mesh

Electrode Co-Registration

Electrode Position-Based Template Head Warping

Forward Model Generation

Generates the Forward Model from meshes
 BEM or FEM

Generates three structures:

- Mesh
- Model (Mesh + Electrical Properties)
- Session (Model + Sensors)

Forward Problem Solution

Forward Problem Solution

BEM Mesh Info	BEM Model	Session
Mesh Name Show Mesh Number of Layers	Model Name Enter conductivity values: 0.33 Scalp 0.0042 Skull	Load Sensors Image: Construction of the sensors Image: Consensors <t< th=""></t<>
Number of Nodes Number of Elements Number of Nodes/Element	Modified (Isolated Problem Approach) Create Model No Model	Generate transfer matrix No Session
	Forward Problem Solution	
Load Source Space	Compute Lead Field Matrix	Plot Potential Distribution For Dipole

Solving inverse problems \rightarrow NIST

A Four-Layer BEM Head Model

Neuroelectromagnetic Forward head modeling Toolbox (NFT)

of elements

Scalp:	6,900		
Skull:	6,800		
CSF:	9,000		
Brain:	8,800		
Total	31 500		

Source localization error comparisons

BEM Head Models:

- 4-layer MR-based realistic BEM head model
- 3-layer MR-based realistic BEM head model
- MNI template head model
- Electrode-warped MNI template head model
- Spherical BEM head model

Brain Topogr DOI 10.1007/s10548-012-0274-6

ORIGINAL PAPER

Effects of Forward Model Errors on EEG Source Localization

Zeynep Akalin Acar · Scott Makeig

Source Localization Error

- Using a simple 3-layer spherical head model
- Instead of a good 4-layer realistic BEM head model...

Fig. 4 Subject S1

Effect of Number of Electrodes

- Single dipole source
- 3-layer spherical head model
- 1152 solution points

Z. Akalin Acar, 2010

Effect of Number of Electrodes

Fig. 16 Channel number

Measurements of skull conductivity:

- MR-EIT
- Magnetic stimulation
- Current injection

In vivo

In vitro

Hoekama et al, 2003

He et al, 2005

Z. Akalin Acar, 2010

Skull Conductivity Measurements

	Brain (to skull ra	tio	
Ru	ish and Driscoll	1968	80	
Co	hen and Cuffin	1983	80	
0	ostendorp et al	2000	15	
	Lai et al	2005	25	
Measurement	Age	σ (mS/m)	Sd (mS/m)	
Agar-agar phantor	n –	43.6	3.1	Skull conductivity
Patient 1	11	80.1	5.5	by age
Patient 2	25	71.2	8.3	Hoekama et al. 2003
Patient 3	36	53.7	4.3	
Patient 4	46	34.4	2.3	
Patient 5	50	32.0	4.5	
Post mortem skull	68	21.4	1.3	Z. Akalin Acar, 2010

Source Localization Errors

- (individual BEM) brain/skull cond. 25 Forward model (individual BEM) - brain/skull cond. 80
- Inverse model

 Forward model (individual BEM) – brain/skull cond. 25 (individual BEM) - brain/skull cond. 15 Inverse model

Z. Akalin Acar, 2010

Z. Akalin Acar, 2010

Conformal cortical patch source dictionary

Zeynep Akalin Acar,, S. Makeig, G. Worrell, '09

Conformal cortical patch basis model

Sparse Compact Smooth

- Cheng Cao 2011

→ Model a source as a sum of overlapping patches

Z. Akalin Acar, 2010

Source models

of an IC from an intracranial data set

Equivalent Current Dipole Model

Sparse Patch Basis Model

Z. Akalin Acar, 2010

Summary I

- Forward modeling
 - is required to interpret the scalp topographies
- Interpreting scalp topographies means inverse modelling or "source estimation"
- Mathematical techniques are available to aid in interpreting scalp topographies

→ These are **inverse source models**

Summary II

- Inverse modeling
 - Model assumptions for the (volume conductor) head
 - Model assumptions for source (equiv. dipole source)
 - Additional assumptions on source location/orientation
- Single point-like sources
- Multiple point-like sources
- Distributed sources
 - Different mathematical solutions
 - Dipole fitting (linear and nonlinear)
 - Linear estimation (regularized)
- For EEG inverse modeling, conductivity is key!

Source modeling

forward problem

Selected/processed EEG signal

\rightarrow Simple single-source scalp map !

- Number/positions of electrodes on the head surface
- Numerical head model
- Co-registration of EEG electrodes with head model
- Evidence/assumptions about the source space
- Choice of inverse model
- Choice of numerical method

NFT

Neuroelectromagnetic Forward Head Modeling Toolbox

Zeynep Akalin Acar

May 25, 2010

3- and 4-layer MR-based realistic head model

Scalp maps of 2 components

Sources of 2 components green dipoles - 4-layer

MNI template head model

Scalp maps of 2 components Sources of 2 components

Electrode-position warped MNI template head model

Scalp maps of 2 components Sources of 2 components

Four-layer MNI template BEM head model

Fig. 9 Mean of 4 Ss

Fig. 11 5 → 4-layer

↑ RLS-4 ↓ RLS-4

↑ RLS-4 ↓ RLS-4

> Fig. 12 Cap shifts

Fig. 15 Montage

Effect of reference electrode

"The choice of a particular reference electrode ... does not change in any way the biophysical information contained in the potential distribution. It does not in any way change the relation between source and potential, except for an additive constant of no physical significance."

- Geselowitz, 1998

Fig. 13 Skull conductivity

NFT External Program Code Incorporated

- 3rd Party Tools and Libraries:
 - ASC: High quality triangulation
 - Qslim: Mesh Coarsening
 - MATITK
 - MATLAB interface to ITK image processing toolkit
 - METU-BEM
 - •Boundary Element Method (BEM) Solver
- Source code is available for all these components.

NFT: Operation

T1 MR Images

- Choose subject
- Generate subject head model
- Segmentation
 - Mesh generation
- Register sensors to mesh
 Sensor set = session
- Generate forward model
- Generate Lead Field Matrix

Template Mesh

- Choose subject
- Select sensors
- Warp Template to sensors
- Generate forward model
- Generate LFM for sensors

Image Segmentation Flowchart

Classifies four tissues from T1-weighted images – (Scalp, Skull, CSF and Brain)

Forward Problem Solver

- MATLAB interface to numerical solvers
- Boundary Element Method
 - No MEG (yet)
 - Supports IPA and Accelerated BEM
 - Interfaces to the Matrix generator written in C++
- Other computations in MATLAB
- Generated matrices are stored on disk for future use.
- Other solvers:

Finite Element Method (FEM)