

Estimating transient phase-amplitude coupling using local mutual information

Ramon Martinez-Cancino

University of California San Diego Swartz Center for Computational Neurosciences

> EEGLAB Workshop San Diego, November 2018

Outline

Intro to theory

- Intro to Phase-Amplitude Coupling (PAC)
- Local (pointwise) Information Theory Measures
- Estimating PAC with Local Mutual Information

Results

- Simulations
- ECoG data analysis

Demo

Brain oscillations

gamma 32 - 100 Hz

beta 13 - 32 Hz

theta 4 - 8 Hz

delta 0.5 - 4 Hz M

UC San Diego

Cross-Frequency Coupling

Jirsa and Muller, 2013

Amplitude Modulation Fundamentals

AM Signal

 $V_{AM} = V_{carr} \sin\left(2\pi f_{carr} t\right) + \left[V_{mod} \sin\left(2\pi f_{mod} t\right)\right] \sin\left(2\pi f_{carr} t\right)$

Instantaneous Phase and Amplitude

$$S_t = s_{m_t} e^{i\phi_t}$$

 $s_{m_t} = |S_t|$

 $\phi_t = arg[S_t]$

By mean of the *Hilbert transform* a signal can be expressed as its **analytic signal**

UC San Diego Jacobs School of Engineering

Instantaneous amplitude (or the envelope)

Instantaneous phase.

$$\begin{array}{c} AM Signal \\ Amplitude \\ Phase \\ Phase \\ mathcal{Phase} \end{array} \qquad abs(hilbert(S_t)) \\ angle(hilbert(S_t)) \end{array}$$

Computing PAC

Electrophysiological signal

High frequency band f_{Amp} (e.g: 30-50Hz) S_A Band-pass Filter $A_t = abs(hilbert(S_A))$ A_t www.www.www.hall.

Low frequency band f_{phase} (e.g: 5-12Hz)

 S_{ϕ} $A_t = angle(hilbert(S_{\phi}))$ ϕ_t

Mean Vector Length

Canolty et al. 2006

- Composite vectors $z_t = A_t e^{i\phi_t}$ •
- Mean vector length

$$MVLmi = \left| \frac{1}{N} \sum_{t=1}^{T} z_t \right|$$

No Coupling

Coupling

 $P(j) = \frac{\left\langle A_{f_{A}} \right\rangle \phi_{f_{p}}(j)}{\sum_{k=1}^{N} \left\langle A_{f_{A}} \right\rangle \phi_{f_{p}}(k)}$

 $MI = \frac{D_{KL}(P,U)}{\log N}$

Compute the Kullback-Leibler with a

Phase

No Coupling

Amplitu

uniform distribution

Phase

Coupling

GLM Measure

Penny et al. 2008

$$A_{t} = X\beta + e$$

$$X = \begin{vmatrix} \cos\phi_{1} & \sin\phi_{1} & i \\ \vdots & \vdots \\ \cos\phi_{max} & \cos\phi_{max} & i \end{vmatrix}$$

Use the explained variance as an index of PAC

UC San Diego Jacobs School of Engineering

ERPAC

Voytek et al. 2013

Time resolved PAC by applying **GLM Measure** for each latency in event related data

Given the measurements x and y of the RV X and Y

Mutual Information: average reduction in uncertainty about X given the knowledge of the value of Y

Figure from Goncalvez and Macrini 2011

The mutual information is a measure of dependency (**both linear and nonlinear**) between the two random variables *X* and *Y*

KSG Mutual Information Estimator

(Ksrakov, Stogbauer and Grassberger)

- Extension of Kozachenko-Leonenko estimator of Entropy
- Non-parametric estimator
- Data efficient
- Minimal bias

Assume the joint space Z = (X, Y)

Determining k-nearest neighbors for each z_i

 $||z - z'|| = max\{||x - x'||, ||y - y'||\}$

- Find K-nearest neighbor of z_i (a distance $\frac{\varepsilon}{2}$)
- Count the number of points $n_x(i)$ and $n_y(i)$ in the marginal space within a row (and column) of width ε

Estimate Mutual Information

$$I(X,Y) = \psi(k) - \langle \psi(n_x+1) + \psi(n_y+1) \rangle + \psi(N)$$

Estimating mutual informatio

Kraskov et al. 2004

Estimating local Mutual Information

Lizier et al. 2008, considered the estimation of Local MI from the KSG estimator

Estimate Mutual Information

Kraskov et al. 2004

Unrolling expectation

UC San Diego

Estimating Local Mutual Information

$$i(x,y) = \psi(k) - \psi(n_x + 1) - \psi(n_y + 1) + \psi(N)$$

 $I(X,Y) = \psi(k) - \langle \psi(n_x+1) + \psi(n_y+1) \rangle + \psi(N)$

Lizier, J. T. Directed Information Measures in Neuroscience. Springer, 2014

Goal:

Estimating PAC using local Mutual Information

Instantaneous MIPAC

Data model: Continuous data $(1 \times N_{lat})$

High frequency band f_{Amp} (e.g: 30-50Hz)

 S_A $A_t = abs(hilbert(S_A))$ A_{t}

Assume the joint space
$$Z = (A_t, \phi_t \check{\mathsf{P}})$$

$$||z - z'|| = max\{||\phi - \phi'||, ||A - A'||\}$$

Circular norm (Berens, 2009) Euclidean norm

$$i(x,y) = \psi(k) - \psi(n_x + 1) - \psi(n_y + 1) + \psi(N)$$

Martinez-Cancino et al 2018 (under review in Neuroimage)

Low frequency band f_{phase} (e.g: 5-12Hz)

$$A_{t} = angle (hilbert(S_{\phi})) \qquad \phi_{t}$$

Inst. MIPAC

% Single trials or continuous

 $\Delta_{var} = Inf$; % Initialize Percentage variance reduction c = 1;

while $\Delta_{var_threshold} < \Delta_{var}$ Estimate $i(A_t, \phi_t)$ for k=c; Compute Δ_{var} ; c = c+1; End

MIPAC = Low-pass filter $i(A_t, \phi_t)$ at f_{phase} ;

Event-related MIPAC

Band-pass Filter

Martinez-Cancino et al 2018 (under review in Neuroimage)

Inst. MIPAC and Event-related MIPAC

MIPAC Simulations

Simulation 1.1: Instantaneous MIPAC

- (A) Block-shaped waveform modulation strength.
- (B) Simulated signal
- (C) Estimated MIPAC (red), and local MI (light red)

Simulation 1.2: Instantaneous MIPAC

(A) Saw-tooth shape waveform modulation strength.

- (B) Simulated signal
- (C) Estimated MIPAC (red), and local MI (light red)

Simulation 1.3: Instantaneous MIPAC

(A) Absolute value of a sinusoid used as modulation strength.

- (B) Simulated signal
- (C) Estimated MIPAC (red), and local MI (light red)

UC San Diego

Simulation 2: Instantaneous MIPAC Noise Added

MIPAC from a simulated Phase-Amplitude-Modulated signal with noise added. MIPAC was estimated from the same signals generated the previous simulations, but with a SNR= 10. Estimated MIPAC (red), and local MI (light red).

MIPAC convergence

Simulation 3: Event-related MIPAC

Each trial was shifted 1-100 pts

Event related MIPAC and ERPAC (*Voytek et al, 2013*) were used to estimate PAC

Martinez-Cancino et al 2018 (under review in Neuroimage)

Simulation 4: MIPAC & MImi

MIPAC application to real data

UC San Diego Jacobs School of Engineering

ECoG Data

Subject

- Clinical monitoring and localization of seizure foci
- 1 subject (mv)
- ECoG channels in: Inf. Temp. Gyrus Lingual Gyrus Fusiform Gyrus

Experimental design

- Images of Houses and Faces were presented randomly
- 3 runs 100 presentations each (50 H / 50F)

400 ms

400 ms

Preprocessing

Performed in EEGLAB (Delorme and Makeig, 2004)

- 1. Artifact removal
- 2. CAR
- 3. Resampling to 512Hz
- 4. Line noise removal ~(60, 120) Hz Hamming-windowed FIR notch filter
- 5. Extract epochs time-locked to stimulus presentations [-400,800] *ms*

Original publication: **The physiology of perception in human temporal llobe is specialized for contextual novelty** Kai J. Miller, Dora Hermes, Nathan Witthoft, Rajesh P. N. Rao, Jeffrey G. Ojemann

ECoG Data: MImi in action

Martinez-Cancino et al 2018 (under review in Neuroimage)

ECoG Data: Event Related Potential Image

Channel 16

Martinez-Cancino et al 2018 (under review in Neuroimage)

ECoG Data: Time-Frequency Decomposition

[2, 120]Hz FFTs and Hanning window tapering Generated using EEGLAB function *newtimef.m*

ECoG Data: MIPAC vs ERPAC

Event-related MIPAC and ERPAC (Voytek et al. 2014) were computed

 $f_{phase} = 16 Hz$ $f_{amp} = 95Hz$

ECoG Data: MIPAC Image

ER-MIPAC computed for *Faces* presentation

 $f_{phase} = 16 \, Hz$ $f_{amp} = 95 Hz$

Conclusions

- An approach to estimating dynamical PAC in electrophysiological signals was proposed
- The method was validated on simulated PAC signals
- Application to human ECoG data showed positive results

DEMO

Acknowledgments

Coauthors

Joseph Heng

Ken Kreutz Delgado

UC San Diego

Arnaud Delorme Roberto Sotero

Scott Makeig

This work was supported by National Institutes of Health grant 5R01-NS047293-12 and by a gift from The Swartz Foundation (Old Field NY)