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Single subjects or group
analysis



What is the question?

* If the question pertains to dynamic analyses (when things happen)
and/or quantitative aspects (how much this variable explains of the
data), then single subjects analyses make more sense given the
idiosyncratic nature of EEG.

* Yet some group stats are needed for inference — e.g. average cluster

onset, average number of subject showing an effect, etc .. + derive group
level effect sizes

* If the question is general in nature (is there a measurable difference
between these conditions) or pertains to group differences and/or
attributes, then group analyses makes sense.



How task constraints modulate the ERP response?

ERP amplitude
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How task constraints modulate the ERP response?

Group defined best electrode

Subjects
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At the group level, ERP sensitivity to
phase noise was reduced between
about 140 and 300 ms when stimulus
phase information was  task
irrelevant.

we observed a significant task effect
in only 60% of subjects, and at any
time point only 31% of subjects
showed results consistent with group
analyses

Rousselet et al. Front Psy 2011



MEG of acoustic properties in affective vocalizations
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MEG of acoustic properties in affective vocalizations

AROUSAL

N100

‘simple’ model

‘combined’ model

P200

‘simple’model  ‘combined’ model

‘simple’ model

LPP

‘combined’ model

X

S.2

S.3

Early effects are largely driven by acoustical variations
Once the variance explained by acoustic properties is
accounted for, the remaining effects of emotionalv
variables (especially valence) are mostly observed at

late stages (~400—600 ms).
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Application to a
continuous design



Let’s analyse one subject

* Design: 2 faces (cond1/cond2) + a continuous variable related to the
phase information in the stimulus space (~noise)

* LIMO EEG — 15t level analysis

= with ERP/means you are limited to ‘categories’, here we have betal =
facel, beta2 = face2, beta3=local phase coherence, beta4 = constant



9 MATLAB R2013a
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FILE VARIABLE CODE ENVIRONMENT RE:

e EE » E: v My _Documents * MATLAB * limo_eeg_to_do * Continuous_design *» 51 »

Command Window

loading EEGLAB dataset. Please wait ...
pop loadset () : loading file E:\My Documents\MATLAB\lim
Reading float file 'E:\My Documents\MATLAB\limo eeg to
Scaling components to RMS microvolt

eeg checkset: recomputing the ICA activation matrix ..
Data set limo dataset Sl.set loaded

Categorical data loaded

Continuous data loaded

bootstrap is on

Jx >>

Workspace | Current Folder
Name

E2 GLM_IRLS_Time_Channels

+ GLM_OLS_Time_Channels

+ GLM_WLS_Time_Channels

+ GLM_WLS_Time_Components

[ Betas.mat

= categorical_variable.txt
% continuous_variables.txt

i Covariate_effect_1.mat
o LIMO.mat

limo_dataset_S1.fdt
limo_dataset_S1.set
limo_dataset_S1.set_single_trials.daterp

LINEAR MODELING TOOLBOX: data import

— Import ERP

Import data set

Use Indepedent Components

I |

Specify the categorical variable

full factorial
Start to analyze at (msec) 50 m
End the analysis at (msec) 400
Specify continuous variables
— Analysis
Mass-univariate -  WLS - o e e T
add TFCE

iallows testing significance usiung clustering - only useful for single subject analysesi

Help

Waorking Directory Done Quit

limn datacet S1 cat cinnle trials Aatener

Copyright (C) LIMO Team 2015 - GNU GPL

The new STUDY allows any type of regressors — sometimes it’s difficult to have it all encoded in the .set
Here we use txt file, 1 row per trials encoding faces (1/2) and the actual phase coherence value




Let’s have a look at txt files and edit paths

* edit ‘set_list.txt’, ‘cat_list.txt” and ‘cont_list.txt’ with the path on your
hard drive (find/replace)

e Categorical and Continuous files are nothing but a description of
single trials (in the same order as in the .set)

Categorical variable Continuous variable

1 1.2
You can use as many 2.5 You can use as many

/ conditions as you like — 1 variable as you like,
and code them with any 0.9 / simply add columns
number you like 1.2
1.5
1.9

1.6
2.1

N R RPRNRRNN



Use LIMO batch to do all subjects

Specify the categorical variables

s is the engine behind ‘STUDY’

oct the set_list, cat_list, cont_list that
| have edited

e limit [-50 450]



What have we done: results

* Image all (R2, condition, covariate)

* Course plots — for continuous variables, make 3D plots |
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Group level analysis

* One sample t-test on ‘noise’ regressor

- From the GUI, choose ‘Random Effect’
—Load expected chanlocs
—Run the one sample t-test with bootstrap

—>Because we used the batch, we have the list of parameters already
there for all subjects (Beta_files GLM_WLS Time_Channels.txt) —
pick this up or load Beta files one by one !

—>Select parameter 3



Review gp level results
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EEG signals are idiosyncratic

Gaspar et al. 2011 Reliability of ERP and single-trial analyses Neurolmage 58



Test-retest of ERPs
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Test-retest for parameter estimates
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Grand averages do not reflect ERP dynamics
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Because ERPs are highly reliable
within subjects, grand averages are
also highly reliable.

However, this ‘within-subject’
reliability also means that grand
averages ERPs are significantly
different from individual subjects’
ERPs.

Plots of grand average can be
misleading



Grand averages do not reflect ERP dynamics

Amplitude




Grand averages do not reflect ERP dynamics
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Grand averages do not reflect ERP dynamics

Harrell-Davis
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Grand averages do not reflect ERP dynamics




Always good to check distributions !

* LIMO RANDOM EFFECTS

* Central tendency and Cl also gives you data for all subjects

* Parameter Plots = a set of tool to visually explore how ‘things’ are
distributed



Going further with parametric analyses

* Group level regression on the phase regression parameter !

e So far we looked at how much phase coherence explains of the ERP
(R2 values and semi-partial coefficients per subjects)

* At the group level we looked at when phase coherence influence the
ERP

* Now we can test if the phase coherence influence on the ERP is a
function of age



Group level regression
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Going further with parametric analyses

* Alternative analyses to quantify effects are possible. For instance, use the R2,
cumulate, normalize across subjects and regress age

- tells you how fast one accumulates
face information in noise and this
changes as we get older (with a big
shift around 45 y.0.)

0.5,

Normalised R?

Age
quantiles
in years

Tlme 'n mS DAaiimmml~ader ~+ 1 IODNAT1N Fomnd D,



Almost the end



The maths behind the GUI

* If you want to go now, it’s fine
* Review bootstrap and application to Cl

* Details further application to multiple comparisons correction



Introduction to
Efron (1979) Bootstrap Methods:
Another Look at the Jackknife

Rudolf J. Beran
University of California at Berkeley

It is not unusual, in the history of statistics, that an important paper goes
scarcely noticed for a decade or longer. Examples from the past half-century
include von Miscs' (1937, 1947) papers on statistical functionals, Quenouilie's
(1949) paper, Tukey's (1956) abstract on the jackknife, and Wald's (1943)
paper on the asymptotic optimality of likelihood ratio tests. Each of these
pioneering works was well ahcad of its time. Brad Efron’s (1979) paper on the
bootstrap sparked immediatc intcrest among his peers. A decade after its
publication, the bootstrap litcrature is large and still growing, with no imme-
diate end in sight. Surely, the timing and formulation of Efron’s paper were
just right. But what were the yearnings in the statistical world of 1979 that
the paper touched so well? Why did development of the bootstrap idea follow
so swiftly?

T would suggest that statistical perceptions in 1979 were influenced by four
histarical developments. First, by the late 1970s, the revolution in computing,
and subsequently in data analysis, had put theoretical statistics on the defen-
sive. It was becoming increasingly clear that the classical formulations of
statistical theory, whether frequentist or Bayesian, did not provide a realistic
paradigm for the analysis of large data scts. One response was growing
theoretical interest in the jackknife, cross-validation, and certain other re-
sampling schemes [see references in Efron (1982)). These were all methods
that seemed to rély on direct internal examination of the data, rather than on
fitting an externally conceived statistical model.

Second, some data analysts, not all professional statisticians, had been
experimenting in the 19605 and 1970s with Monte Carlo simulations from
fitted models as a means of generating plausible critical values for confidence
statements or tests. Examples include Williams (1970) and two astrophysical
‘papers from 1976 cited in Press et al. (1986, Sec. 14.5). Such direct simulation
approaches were a natural response to the increased availability of inexpen-

Monographs
on istics and
Applied Probability 57

An
Introduction
to the
Bootstrap

Bradley Efron
Robert J. Tibshirani

m SPRINGER-SCIENCE + BUSINESS MEDIA, B.V

Efron, B. ( 1979). Bootstrap methods; another
look at the jackknife . Ann. Statist .7 ,1 - 26
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EXPLORING
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| BOOTSTRAP

Raoul LePage & Lynne Billard

Wikey Series in Probability and Mathematical Statistics:
20 Statiatics Section

Vi Barmatt, falgh A. Bradiey, Nichotas L Fisher, J. Stusrt Muster,
2. . Kadane. David G. Kendall, Adrian F. M. Seith, Stephen M.
Stigler Teuges aad Gootirey 5. Watson, Advivery Eitors

Efron, B., and Tibshirani, R. (1993 ). An Introduction
to the Bootstrap . Chapman & Hall , New York

LePage, R & Billard L (Ed)
Exploring the Limits of Bootstrap, 1992



Bootstrap: central idea

e Statistics rely on estimators (e.g. the mean) and measures of accuracy
for those estimators (standard error and confidence intervals)

* “The bootstrap is a computer-based method for assigning measures of
accuracy to statistical estimates.” Efron & Tibshirani, 1993

 The bootstrap is a type of resampling procedure along with jack-knife
and permutations.

* Bootstrap is particularly effective at estimating accuracy (bias, SE, Cl)
but it can also be applied to many other problems — in particular to
estimate distributions.



General recipe

(1) sample WITH replacement n

original data

3

p

b

observations (under H1 for CI

of an estimate, under HO for
the null distribution)

bootstrapped data

1

1

B b

b

F 1 B0 BN

(2) compute estimate
e.g. sum, trimmed mean

(3) repeat (1) & (2) b times

(4) get bias, std, confidence interval, p-value
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Percentile boot Confidence Interval

e Let O be an estimator, and we want the 1-alpha CI(3)

* Bootstrap the data computing 8 to obtain a distribution of this
parameter and take the 1-alpha/2 upper and lower percentile

observed sample

bootstrapped means

bootstrapped means

14

i i I 1
200 400 GO0 800 1000

upper and lower percentiles



The Annals of Staustics
1981, Vol. 9, No. 1, 130-134

THE BAYESIAN BOOTSTRAP

By DoNALD B. RUBIN

Educational Testing Service

The Bayesian bootstrap is the Bayesian analogue of the bootstrap. Instead of
[simulating the sampling distribution of a statistic estimating a parameter, the]
| Bayesian bootstrap simulates the posterior distribution of the parameter; opera-

tionally and inferentially the methods are quite similar. Because both methods of
drawing inferences are based on somewhat peculiar model assumptions and the
resulting inferences are generally sensitive to these assumptions, neither method
should be applied without some consideration of the reasonableness of these
model assumptions. In this sense, neither method is a true bootstrap procedure
yielding inferences unaided by external assumptions.




Bayesian bootstrap

* In the bootstrap, we sample each x i with replacement, with a
probability 1/ n — the assumption is that only the observed value are

possible values in the parent population

* In the Bayesian bootstrap, we use a posterior probability distribution
forthe X i’ s.

e Rubin’s algorithm: (1) draw u=1:n-1 from uniform
} Substitute by a

(2) sort u u(0) =0 and u(n) = 1 Dirichlet

(3) gap = u(i)-u(i-1)
(4) resample X using prob of xi = gap(i)
- repeat B times



High Density Intervals

* Having the posterior density of means — we can compute the most
dense intervals = credible intervals

- compute the centile distances between bootstrap estimates and
take the smallest (i.e. densest)

observed sample bootstraped means High Density Interval of the mean

1.85 1:9 1.95 2 205 21 215




Correction for multiple testing using
Maximum Statistics

 Since the FWER is the prob that any stats > u, then the FWER is also the
prob. that the max stats > u

e Estimate the distribution of max under HO (bootstrap) and simply

threshold the observed results a threshold u -- Still assumes all tests are
independent

correction by F max
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The clustering solution

 Clustering is a good option because it accounts for topological features in
the data. Techniques like Bonferroni, FDR, max(stats) control the FWER but
independently of the correlation between tests.

* To use clustering we need to consider cluster statistics rather than
individual statistics

 Cluster statistics depend on (i) the cluster size, which depends on the data
at hand (how correlated data are in space and in time/frequency), and (ii)
the strength of the signal (how strong are the t, F values in a cluster) or (iii)
a combination of both.
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The clustering solution

* In LIMO EEG, we bootstrap the data under HO: center the data or break the link
between the design matrix and the data and then resample and test. This way we
can find u for a single bin, the the whole space, or for clusters.

Observed F values F values under HO



The clustering solution

* Spatial-Temporal clustering: for each bootstrap, threshold at
alpha and record the max(cluster mass), i.e. sum of F values
within a cluster. Then threshold the observed clusters based on
there mass using this distribution = accounts for correlations

in space and time.
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Loss of resolution: inference is about the cluster, not max in time or a specific electrode !



Threshold Free Cluster Enhancement

* Threshold Free Cluster Enhancement (TFCE): Integrate the
cluster mass at multiple thresholds. A TFCE score is thus obtain
per cell but the value is a weighted function of the statistics by
it’s belonging to a cluster.

original
h signal
__TFCE
enhancement

0 //. '\\ N/ \ ll,

e

Figure 1: Ilustration of the TFCE approach. Left: The TFCE score at voxel p is given by the sum of the scores of all incremental
supporting sections (one such is shown as the dark grey band) within the area of “support” of p (light grey). The score for each
section is a simple function of its height /» and extent ¢. Right: Example input image and TFCE-enhanced output. The input contains
a focal, high signal, a much more spatially extended, lower, signal and a pair of overlapping signals of intermediate extent and height.
The TFCE output has the same maximal values for all three cases, and preserves the distinct local maxima in the third case.
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Threshold Free Cluster Enhancement

* Threshold Free Cluster Enhancement (TFCE): Integrate the
cluster mass at multiple thresholds. A TFCE score is thus obtain
per cell but the value is a weighted function of the statistics by

it’s belonging to a cluster. As before, bootstrap under HO and
get max(tfce).

correction using TFCE
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Excellent resolution: inference is about cells, but we accounted for space/time dependence



Review of techniques

 All techniques (including permutation not shown here) control well
the FWER under HO with some limitations for small sample sizes
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Review of techniques

 All techniques (including permutation not shown here) control well
the FWER under HO with some limitations for small sample sizes
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MCC summary

 Simulation work show that overall permutation / bootstrap / cluster-
mass / TFCE control well the type 1 FWER.

* a minimum of 800 iterations are necessary to obtain stable results
e for low critical family-wise error rates (e.g. p = 1%), permutations can
be too liberal;

* For within subject bootstrap, a min of 50 trials per condition is
requested at the risk to be too conservative



