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Context

• Data collection consists in recording electromagnetic events over the
whole brain and for a relatively long period of time, with regards to neural
spiking.

• In the majority of cases, data analysis consists in looking where we have
signal and restrict our analysis to these channels and components.

 Are we missing the forest by choosing working on a single, or a few trees?

 By analysing where we see an effect, we increase the type 1 FWER
because the effect is partly driven by random noise (solved if chosen based
on prior results or split the data)

Rousselet & Pernet – It’s time to up the Game Front. Psychol., 2011, 2, 107



Context
• Most often, we compute averages per condition and do statistics on peak

latencies and amplitudes

• Several lines of evidence suggest that peaks mark the end of a process and
therefore it is likely that most of the interesting effects lie in a component before
a peak

• Neurophysiology: whether ERPs are due to additional signal or to phase
resetting effects a peak will mark a transition such as neurons returning to
baseline, a new population of neurons increasing their firing rate, a population of
neurons getting on / off synchrony.

• Neurocognition: reverse correlation techniques showed that e.g. the N170
component reflects the integration of visual facial features relevant to a task at
hand (Schyns and Smith) and that the peak marks the end of this process.

Rousselet & Pernet – It’s time to up the Game Front. Psychol., 2011, 2, 107



Context

• Most often, we compute averages per condition and do statistics on peak
latencies and amplitudes

Univariate methods extract information among trials in time and/or 
frequency across space

Multivariate methods extract information across space, time, or both, in 
individual trials  

Averages don’t account for trial variability, fixed effect can be biased –
these methods allow to get around these problems

Pernet, Sajda & Rousselet – Single trial analyses, why bother? Front. Psychol., 2011, 2, 322



Overview

• Fixed, Random, Mixed and Hierarchical 

• Modelling subjects using a HLM

• Application to MEEG data

• Multiple Comparison correction for MEEG



Fixed, Random, Mixed and Hierarchical

Fixed effect: Something the experimenter directly manipulates  

y=XB+e data = beta * effects + error
y=XB+u+e data = beta * effects + constant subject effect + error

Random effect: Source of random variation e.g., individuals drawn (at random) from a 
population. Mixed effect: Includes both, the fixed effect (estimating the population level 
coefficients) and random effects to  account for individual differences in response to an 
effect

Y=XB+Zu+e data = beta * effects + zeta * subject variable effect + error

Hierarchical models are a mean to look at mixed effects.



Fixed effects:

Intra-subjects variation

suggests all these subjects 

different from zero

Random effects:

Inter-subjects variation

suggests population 

not different from zero
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Hierarchical model = 2-stage LM

For a given effect, the whole group is modelled
Parameter estimates apply to group effect/s 

Each subject’s EEG trials are modelled
Single subject parameter estimates

Single 
subject

Group/s of 
subjects

1st

level

2nd

level

Single subject parameter estimates or 
combinations taken to 2nd level 

Group level of 2nd level parameter estimates are 
used to form statistics



Fixed effects

Only source of variation (over trials)

is measurement error

True response magnitude is fixed



Random effects

• Two sources of variation

• measurement errors

• response magnitude (over subjects)

• Response magnitude is random

• each subject has random magnitude



Random effects

• Two sources of variation

• measurement errors

• response magnitude (over subjects)

• Response magnitude is random

• each subject has random magnitude

• but note, population mean magnitude is fixed



An example

Example: present stimuli from
intensity -5 units to +5 units
around the subject perceptual
threshold and measure RT

 There is a strong positive
effect of intensity on responses



Fixed Effect Model 1: average subjects

Fixed effect without subject effect  negative effect



Fixed Effect Model 2: constant over subjects

Fixed effect with a constant (fixed) subject effect  positive effect but biased result



HLM: random subject effect

Mixed effect with a random subject effect  positive effect with good estimate of the truth



MLE: random subject effect

Mixed effect with a random subject effect  positive effect with good estimate of the truth



Hierarchical Linear Model for MEEG



• Model: assign to the data different effects / conditions ... All we have
to do is find the parameters of this model

• Linear: the output is a function of the input satisfying rules of scaling
and additivity (e.g RT = 3*acuity + 2*vigilance + 4 + e)

• General: applies to any known linear statistics (ttest, ANOVA,
Regression, MANCOVA), can be adapted to be robust (ordinary least
squares vs. weighted least squares), and can even be extended to non
Gaussian data (Generalized Linear Model using link functions)

General Linear model (reminder?)
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Model is specified by

1. Design matrix X

2. Assumptions about e

N: number of trials

p: number of regressors
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Model is specified by

1. Design matrix X

2. Assumptions about 

Estimate with Ordinary or 

Weighted Least Squares

General Linear model (reminder?)



The LIMO EEG data set

• 18 subjects

• Simple discrimination task face 1 vs face 2

• Variable level of noise for each stimulus – noise here is in fact a given 
amount of phase coherence in the stimulus

Rousselet, Pernet, Bennet, Sekuler (2008).  Face phase processing. BMC Neuroscience 9:98



EEG 1st level = GLM (any designs !)



EEG 2nd level (usual tests but robust)

• We have 18 subjects of various ages -> how is the processing of phase 
information (beta 3) influenced by age.

• 2nd level analysis GUI
• Use the same channel location file across 

subjects (no channel interpolation)
• Regress the effect of age (2nd level variable) 

on the effect of phase on the EEG (1st level 
variable) 

• Use multiple comparison correction using 
bootstrap



EEG 2nd level
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Bootstrap: central idea

• “The central idea is that it may sometimes be better to draw 
conclusions about the characteristics of a population strictly 
from the sample at hand, rather than by making perhaps 
unrealistic assumptions about the population.” 

Mooney & Duval, 1993 

Sample

given that we have no other information 
about the population, the sample is our 
best single estimate of the population

Population



Bootstrap: central idea

• Statistics rely on estimators (e.g. the mean) and measures of accuracy
for those estimators (standard error and confidence intervals)

• “The bootstrap is a computer-based method for assigning measures of
accuracy to statistical estimates.” Efron & Tibshirani, 1993

• The bootstrap is a type of resampling procedure along with jack-knife
and permutations.

• Bootstrap is particularly effective at estimating accuracy (bias, SE, CI)
but it can also be applied to many other problems – in particular to
estimate distributions.



original data

(3) repeat (1) & (2) b times

(4) get bias, std, confidence interval, p-value

5 632 71 4 8

(2) compute estimate
e.g. sum, trimmed mean

∑

General recipe

(1) sample WITH replacement n
observations (under H1 for CI
of an estimate, under H0 for
the null distribution)

bootstrapped data

5 632 71 4 82 82

∑1 ∑2 ∑3 ∑4 ∑5 ∑6 ... ∑b

1 1 2 4 5 5 6 8
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Application to a 2 samples t-test: Bootstrap under H0



a1-A

a2-A
a2-A

a5-A
a4-A

a1-A
a6-A Mean An

Std An

Mean Bn

Std Bn

T test

Application to a 2 samples t-test: Bootstrap under H0

T boot n

b7-B

b2-B

B7-B

b4-B
b4-B

b1-B

b6-B

Resample from centred data  H0 is true

t – distribution under H0



Application to a 2 samples t-test: Bootstrap under H0

What is the p value of the sample

p(Obs≥t|H0)  cumulative probability

area under the curve for T obs = p value
Significance = point of T critical

What is the p value of the sample

p(Obs≥t|H0)  cumulative probability

area under the curve for T obs = p value
Significance = percentile of the empirical t distribution
 Theoretical T assumes data normality, we don’t



Multiple Comparison Correction for MEEG

• Assuming tests are independents from each other, the
family-wise error rate FWER = 1 - (1 - alpha)^n

• for alpha =5/100, if we do 2 tests we should get about
1-(1-5/100)^2 ~ 9% false positives, if we do 126
electrodes * 150 time frames tests, we should get
about 1-(1-5/100)^18900 ~ 100% false positives! i.e.
you can’t be certain of any of the statistical results
you observe



What is the problem?

• Illustration with 5 independent variables from N(0,1)

• Repeat 1000 times and measures type 1 error rate

22%

18%

14%

9%

5%



What is the problem?

• Illustration with 18900 independent variables (126 electrodes and 150 time
frames)

we know there are false positives – which ones is it?



Family Wise Error rate

• FWER is the probability of making one or more Type I errors in a 
family of tests, under H0

• H0 = no effect in any channel/time and/or frequency bins  implies 
that rejecting a single bin null hyp. is equal to rejecting H0

𝑃 𝑖∈𝑉ڂ 𝑇𝑖 ≥ 𝑢 |𝐻0 ≤ ∝

We want to find the threshold u such the prob of any
false positives under H0 is controlled at value alpha



Bonferroni Correction

𝑃 𝑇𝑖 ≥ 𝑢|𝐻0 ≤
∝

𝑚

FWER = 𝑃 𝑖∈𝑉ڂ 𝑇𝑖 ≥ 𝑢 |𝐻0 ≤ ∝

≤ σ𝑃 𝑇𝑖 ≥ 𝑢|𝐻0

≤ σ𝑖
∝

𝑚
= ∝

Boole’s inequality

Find u to keep the FWER < /m

Bonferroni correction allows to keep the FWER at 5% 
by simply dividing alpha by the number of tests



Maximum Statistics

• Since the FWER is the prob that any stats > u, then the FWER is also 
the prob. that the max stats > u

• All we have to do, is thus to find a threshold u such that the max only 
exceed u alpha percent of the time.

Distribution of max F value under H0

Threshold u such alpha 
Percent are above it



Maximum Statistics

• Estimate the distribution of max under H0 (bootstrap) and
simply threshold the observed results a threshold u

• Still  assumes all tests are independent

Max F values
Under H0



The clustering solution

• Clustering is an alternative, more powerful option that accounts for
topological features in the data. Techniques like Bonferroni, FDR, max(stats)
control the FWER but independently of the correlations (in time /
frequency / space) between tests.

• To use clustering we need to consider cluster statistics rather than
individual statistics

• Cluster statistics depend on (i) the cluster size, which depends on the data
at hand (how correlated data are in space and in time/frequency), and (ii)
the strength of the signal (how strong are the t, F values in a cluster) or (iii)
a combination of both.



The clustering solution

• Spatial-Temporal clustering: for each bootstrap, threshold at
alpha and record the max(cluster mass), i.e. sum of F values
within a cluster. Then threshold the observed clusters based on
there mass using this distribution  accounts for correlations
in space and time.

Loss of resolution: inference is about the cluster, not max in time or a specific electrode !

Max cluster mass
Under H0



Threshold Free Cluster Enhancement

• Threshold Free Cluster Enhancement (TFCE): Integrate the
cluster mass at multiple thresholds. A TFCE score is thus obtain
per cell but the value is a weighted function of the statistics by
it’s belonging to a cluster. As before, bootstrap under H0 and
get max(tfce).

Excellent resolution: inference is about cells, but we accounted for space/time dependence

Observed F values TFCE scores

Max tfce values
Under H0



Modern Analysis of EEG data

• Selection of channels and frequency bins must be independent
– without good priors, we can analyse the whole space

• Amplitude and Peaks are related, simply analyse the whole
space continuously

• Use HLM to account for variance across trials and model the
random subject effect

• Use a (robust) GLM at 1st level to model data – any designs and
covariates can be accounted for.

• Use (robust) group level statistics to infer effects in space /
time / frequency while controlling the type 1 FWER.
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