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Motivations
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Outline

Advanced sensors and apparatuses for measuring
neural, physiological, and behavioral data from
unconstrained subjects in virtual and real-world
environments.

Signal-processing techniques to automatically remove
artifacts or noise in the neural and physiological
recordings.

A sample study uses a multi-modal approach (e.g. eye-
gaze tracking and EEG) to explore students’ underlying

cognitive processes and brain dynamics during science
learning.




A Truly Wearable Multi-modal Biosensing
Platform for Real-World Neuroimaging

We have developed a low-cost wearable multi-modal bio-sensing system capable of

recording (neuro)physiological signals, eye-gaze overlaid on world view, and motion
capture in real-world settings.

Wearable sensors
World camera- Subject’s visual perspective

 Eye Camera: Tracking subject’s pupil

e EEG: Subject’s brain activity

e ECG: Subject’s Heart Rate and Heart-Rate Variability
* PPG: Photoplethysmogram

 Any other biosensors as per need such as GSR, HRV.




Sensors

Earlobe Photoplethysmogram (PPG) Sensor (1.6cm x 1.6cm x 0.6cm)

BACK

A.
B.

IR emitter & detector

A third-order analog high-gain band-
pass filter (0.8 - 4 Hz)

A 100Hz 16-bit ADC (TI ADS 1115)
A 3-axis accelerometer measures
motions of the sensor and removes
it from the PPG signal using an
adaptive noise-cancellation filter.

Silver-epoxy-based (Ag) EEG sensor
A 3D-printed case housing a
conductive element for shielding.
An on-board OpAmp (TI TLV 2211)
as a voltage follower to improve
SNR of the EEG data.



A Truly Wearable Multi-modal Biosensing Platform

for Real-World Neuroimaging _
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A wearable embedded system (Broadcom BCM2837)

Data acquisition from sensors
Control the sampling rate of each sensor
Using a digital filter on the sensor data if analog
filtering has not been done.
Time-stamping the sensors’ data for synchronization

Record the data on itself or send the time-stamped
data using Wi-Fi to a remote machine.

75.8 mm

Fig. 5. Embedded System (A) Power circuitry, (B) World camera connect
(C) PPG connector, (D) Audio jack connector, (E) Eye camera connect
(F) EEG sensors connector and ADC module, (G) Wi-Fi module, and (
Raspberry Pi Compute Module 3



Software on a Host Computer
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Evaluation of the Multi-modal Sensors
Earlobe Photoplethysmogram (PPG)

Heart rates were measured while subjects were sitting and walking in-place.
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Evaluation of the Multi-modal Sensors

B Steady-state visual evoked potential (SSVEP): Brain’s electrical
response to repetitive visual stimulation
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Evaluation of the Multi-modal Sensors
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Evaluation of the Multi-modal Sensors

A

Eye tracking ir
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Precision: the RMS of the angular
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during a fixation.
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A Truly Wearable Multi-modal Biosensing
Platform for Cognitive Experiments

We have developed a low-cost wearable multi-modal bio-sensing system capable of
recording (neuro)physiological signals, eye-gaze overlaid on world view, and motion

capture in real-world settings.
Wearable sensors . .
World camera- Subject’s visual perspective

 Eye Camera: Tracking subject’s pupil
e EEG: Subject’s brain activity
e ECG: Subject’s Heart Rate and Heart-Rate Variability

* PPG: Photoplethysmogram
e |[MUs for full-body motion capture

 Any other biosensors as per need such as GSR, HR,
HRV.

CREATE 100s

OF CONFIGURATIONS

UPTO
500Hz SAMPLING
FREQUENCY




Multi-modal Bio-sensing During a Gameplay

- + - + - - - +
- - + + + - - -
- - - - - - + +
- - - - - + + -
+ + - - - - - -
+ + + - - - - +



Outline

Advanced sensors and apparatuses for measuring
neural, physiological, and behavioral data from
unconstrained subjects in virtual and real-world
environments.

Signal-processing techniques to automatically remove
artifacts or noise in the neural and physiological
recordings.

A sample study uses a multi-modal approach (e.g. eye-
gaze tracking and EEG) to explore students’ underlying

cognitive processes and brain dynamics during science
learning.




Difficulties in Observing
Distributed EEG dynamics

Local
Synchrony

omains of N
synchrony Local
Synchrony

Scalp EEG signals appear to be
noisy because they are a
mixture of signals generated in
many brain areas.

Scott Makeig / UCSD 05/08
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Off-line Analysis and Visualization of EEG Source Dynamics

EEGLab Toolbox

Neuroelectromagnetic Inverse Source
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Real-time EEG Source-mapping

Toolbox (REST)

Live streaming multi-
channel data (LSL

Preprocessing:

e Re-reference

e Band-pass filtering (Il
e Data cleaning (ASR)
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Real-time applicatic
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Code: https://github.com/goodshawn12/REST

Hsu et al.,
Hsu et al.,
Pion-Tonachini & Hsu et al.,

IEEE EMBC, 2015
IEEE TBME, 2016
IEEE EMBC, 2018



Real-time Automatic Artifact
Rejection using REST

Luca Pion-Tonachini, Sheng-Hsiou Hsu,
Chi-Yuan Chang, Tzyy-Ping Jung

Swartz Center for Computational Neuroscience
University of California San Diego




Evaluation of ASR: a general-purpose real-
time automatic artifact rejection method

Artifact removal of the EEG data from a sample subject
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Chang, C. Y., Hsu, S.-H, Pion-Tonachini, L., and Jung, T. P., “Evaluating Artifact
Subspace Reconstruction for Automatic Artifact Removal.” IEEE EMBC, 2018



Evaluation of ASR: a general-purpose real-
time automatic artifact rejection method
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Outline

Advanced sensors and apparatuses for measuring
neural, physiological, and behavioral data from
unconstrained subjects in virtual and real-world
environments.

Signal-processing techniques to automatically remove
artifacts or noise in the neural and physiological
recordings.

A sample study uses a multi-modal approach (e.g. eye-
gaze tracking and EEG) to explore students’ underlying

cognitive processes and brain dynamics during science
learning.
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A Sample Multi-Modal
Neuroimaging Study

This study uses a multi-modal approach (e.q.
eye-gaze tracking and EEG) to explore
students’ underlying cognitive processes and
brain dynamics during science learning.

Chen, She, et al. (2014). Eye movements predict students’ computer-based assessment
performance of physics concepts in different modalities. Computers & Education, 74 (61-72).



A Multi-modal Approach to
Study Science Learning

Correct Incorrect

N =063
(undergraduate
Students)

Chen, She, et al. (2014). Eye movements predict students’ computer-based
assessment performance of physics concepts in different modalities. Computers &
Education, 74 (61-72).
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Table 3
The results of Generalized Estimating Equation (GEE) analysis of the
fixation points’ durations predicting students’ likelihood of correct

response in picture presentation modality.

95% CI
Covariate B? SE p Low lim Up lim
Intercept
0.099 0.218 0.650 -0.329 0.527
First 1 fixation point
-0.023 0.053 0.668 -0.127 0.081
First 2 fixation point
0.036 0.050 0.474 -0.062 0.134
First 3 fixation point
0.021 0.044 0.631 -0.065 0.108
First 4 fixation point
0.027 0.045 0.539 -0.060 0.115
First 5 fixation point
0.116™" 0.029 0.000 0.060 0.173

pd

/

The odds of students’ providing accurate responses (e%116 =1,123)
increased by 12.3% for every 100 ms increase at the 5th fixation point.




Fixation-locked EEG Dynamics
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Summary

« Low-cost multi-modal systems for measuring and
synchronizing neural, physiological, and behavioral data
from unconstrained subjects in virtual and real-world
environments.

 Signal-processing techniques to automatically remove
pervasive artifacts of the MoBI data collected in virtual
and real-world environments.

 Pilot data showed that eye movements and fixation-
locked EEG spectral changes can predict the likelihood
of responding with correct answers in science leaning.



Thank you for your attention!

Questions and Comments?

tpjung@ucsd.edu



