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Results

Intro to theory 

Demo



		x1 = Am1 sin 2π f1t +φ1( )

		x2 = Am2sin 2π f2t +φ2( )

		x5 = Am5 sin 2π f5t +φ5( )

		x3 = Am3sin 2π f3t +φ3( )

		x4 = Am4 sin 2π f4t +φ4( )

EEG

Brain oscillations

Copyright: artellia



Cross-Frequency Coupling



Amplitude Modulation Fundamentals

		vmod =Vmod sin 2π fmodt( )

		vcarr =Vcarr sin 2π fcarrt( )

Modulator

Carrier

AM Signal

vAM =Vcarr sin 2π fcarrt( )+ Vmod sin 2π fmodt( )⎡⎣ ⎤⎦sin 2π fcarrt( )



By means of the Hilbert transform  a signal can be  
expressed as its analytic signal

Instantaneous amplitude (or the envelope)

Instantaneous phase.

Instantaneous Phase and Amplitude
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Computing PAC
Electrophysiological signal

Kullback-Leibler Modulation Index

		

P j( ) =
AfA φ fp
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Compute the Kullback-Leibler with a 
uniform distribution
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Mean Vector Length

• Composite vectors !" = $"%&'(
• Mean vector length

No Coupling Coupling

Canolty et al. 2006
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GLM Measure

Explained variance as an index of PAC

Penny et al. 2008
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Time resolved ‘average’ PAC by applying 
GLM Measure for each latency in event 
related data
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Can we do better than this?



YES WE CAN



Goal:
Estimating PAC temporal dynamics



		
H X( ) = − p x( )log2p x( )

x
∑Shannon Entropy:  average amount of 

uncertainty associated to any measure !
of "

Mutual Information: average reduction in 
uncertainty about " given the knowledge of 
the value of #

Information Theory Definitions

		I X ,Y( ) =H X( )−H X Y( )

$ ", # = −() !, * +,-.
) !, *
) ! ) *

Non-linear form of correlation !!!!!!
!



		I X ,Y( ) =ψ k( )− ψ nx +1( )+ψ ny +1( ) +ψ N( )

Kraskov et al. 2004

Determining k-nearest neighbors for each !"

• Find K-nearest neighbor of  #$ (a distance %& ) 
• Count the number of points '( ) and '* ) in the 

marginal space within a row (and column) of width +

Estimate Mutual Information

KSG Mutual Information Estimator

Assume the joint space , = ., 0

• Extension of Kozachenko-Leonenko estimator of Entropy
• Non-parametric estimator
• Data efficient
• Minimal bias

# − #′ = 345 5 − 5′ , 6 − 6′

(Kraskov, Stogbauer and Grassberger)



Lizier et al. 2008,  considered  the  estimation of Local MI from the KSG estimator

		I X ,Y( ) =ψ k( )− ψ nx +1( )+ψ ny +1( ) +ψ N( )

Estimate Mutual Information Kraskov et al. 2004

Unrolling expectation

Estimating local Mutual Information

		i x , y( ) =ψ k( )−ψ nx +1( )−ψ ny +1( )+ψ N( )

Estimating Local Mutual Information

Lizier, J. T. Directed Information Measures in 
Neuroscience.  Springer, 2014



Goal:
Estimating PAC using local Mutual Information



Inst. MIPAC 
% Single trials or continuous

∆"#$ = Inf ; % Initialize Percentage variance reduction
c = 1;
while ∆"#$_'($)*(+,- < ∆"#$

Estimate / 01, 31 for k=c ;
Compute ∆"#$ ;

c = c+1 ;
End

MIPAC = Low-pass filter / 01, 31 at 456789 ;

Instantaneous MIPAC

Data model: Continuous data (1×>?71)

		i x , y( ) =ψ k( )−ψ nx +1( )−ψ ny +1( )+ψ N( )
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CDCA

01 3101 = EFG ℎ/IFJKL CA 31 = EMNIJ ℎ/IFJKL CD

Assume the joint space O = 01, 31

P − P′ = SET 3 − 3′ , 0 − 0′
Circular norm Euclidean norm

Martinez-Cancino et al , Neuroimage Volume 185, 2019



Inst. MIPAC in a nutshell



Event Related MIPAC (cyclostationary)
% Epoched data

for ! = 1:%&'(

∆*+, = Inf ; % Initialize Percentage variance reduction

c = 1;

while ∆*+,_./,01/234 < ∆*+,

Estimate 6 7(8&,( : , ! , :(8&,( : , ! for k=c ;
(Neighbors are count in a latency window)

Compute ∆*+, ;

c = c+1;

end

end

MIPAC = Low-pass filter  6 7(8&,(, :(8&,( at ;<='>?.

Event-related MIPAC

Data model: 

Epoched data (%(8A'&>×%&'()
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Martinez-Cancino et al, Neuroimage Volume 185, 2019



Event-related MIPAC in a nutshell



MIPAC Simulations



(A) Block-shaped waveform modulation strength.
(B) Simulated signal
(C) Estimated MIPAC (red), and local MI (light red)

Simulation 1.1: Instantaneous MIPAC

!"#$ = 5'(
!)*++ = 40'(
.+*/0 = 500'(

(Martinez-Cancino et al., 2019)



(A) Saw-tooth shape waveform modulation strength.
(B) Simulated signal
(C) Estimated MIPAC (red), and local MI (light red)

Simulation 1.2: Instantaneous MIPAC

!"#$ = 5'(
!)*++ = 40'(
.+*/0 = 500'(

(Martinez-Cancino et al., 2019)



(A) Absolute value of a sinusoid  used as modulation strength.
(B) Simulated signal
(C) Estimated MIPAC (red), and local MI (light red)

Simulation 1.3: Instantaneous MIPAC

!"#$ = 5'(
!)*++ = 40'(
.+*/0 = 500'(

(Martinez-Cancino et al., 2019)



Simulation 2: Event-related MIPAC

x200

Each trial was shifted 1-100 pts  

!"#$ = 5'(
!)*++ = 40'(
.+*/0 = 500'(

ER PAC data simulation
Event related MIPAC and ERPAC (Voytek et 
al, 2013) were used to estimate PAC

.12 = 10

(Martinez-Cancino et al., 2019)



Simulation 4: MIPAC & MImi

MI modulation index

Grand Mean

!"#$ = 7'(
!)*++ = 50'(
.+*/0 = 500'(



Inst. MIPAC and Event-related MIPAC
M

IP
A

C
 

Ev
en

t-r
el

at
ed

 M
IP

A
C



MIPAC application to real data



ECoG Data

Original publication:
The physiology of perception in human temporal llobe is specialized for contextual novelty
Kai J. Miller, Dora Hermes, Nathan Witthoft, Rajesh P. N. Rao, Jeffrey G. Ojemann

• Clinical monitoring and localization of seizure foci
• 1 subject (mv) 
• ECoG channels in:  Inf. Temp. Gyrus 

Lingual Gyrus
Fusiform Gyrus

Experimental design

Subject 

• Images of Houses and Faces were presented randomly
• 3 runs 100 presentations each (50 H / 50F)

400 ms

400 ms

Preprocessing

1. Artifact removal
2. CAR
3. Resampling to 512Hz
4. Line noise removal ~(60, 120) Hz   

Hamming-windowed FIR notch filter
5. Extract epochs time-locked to stimulus 

presentations  [-400,800] ms

Performed in EEGLAB (Delorme and Makeig, 2004)



ECoG Data: MImi in action

(Martinez-Cancino et al., 2019)



ECoG Data: Event Related Potential Image

Channel 16

(Martinez-Cancino et al., 2019)



ECoG Data: MIPAC vs ERPAC

!"#$%& = 16 *+
!$," = 95*+

Event-related MIPAC and ERPAC (Voytek et al. 2014) were computed

(Martinez-Cancino et al., 2019)



ECoG Data: MIPAC Image

!"#$%& = 16 *+
!$," = 95*+

ER-MIPAC computed for Faces
presentation

(Martinez-Cancino et al., 2019)



Conclusions

• A new method to estimating dynamical PAC in electrophysiological signals 

was proposed

• The method was validated on simulated  PAC signals

• Application to  human ECoG data showed positive  results

Future Direction



ERPAC Tools

Available from: https://github.com/nucleuscub/pop_pac

https://github.com/nucleuscub/pop_pac
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