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Issues with standard stats

* Standard stats are all instantiations of a GLM using an Ordinary
Least Squares solution = implies looking at the mean

* The breakdown point of an estimator is the proportion of incorrect
observations (e.g. arbitrarily large observations) an estimator can
handle before giving an incorrect estimate

* For data xa to xn — the mean has a breakdown point of o ! because
we can make the mean large changing a single xi (e.g. mean([1 2 2
333221])=2.2& mean([122333221000])=113.11).

* Robust estimators: median, trimmed mean, M-estimators

http://en.wikipedia.org/wiki/Robust_statistics


http://en.wikipedia.org/wiki/Estimator

Using the median and trimmed mean
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Yes but my data are Gaussian

* Are you sure?

* Micceri (2989). The Unicorn, The Normal Curve, and Other Improbable Creatures.
Psych Bul. 105, 156-166

* If the data are Gaussian, the median, the trimmed mean is the same as the mean
I So no reason not to use alternative techniques.

LIMO EEG toolbox

* 15t level GLM using temporally stable weighted least squares (WLS - trials have
spatially varying weights)

« 2"d]evel relies on 20% trimmed mean (weights of o for bad subjects) for t-tests, 1-
way ANOVA, and (soon) Repeated Measures ANOVA. It relies on lterative
Reweighted Least Squares (IRLS) for regressions and N-way ANOVA/ANOVA (all
subjects have weights from o to 1 that change in space and time).

http://en.wikipedia.org/wiki/Robust_statistics


http://isites.harvard.edu/fs/docs/icb.topic988008.files/micceri89.pdf

Robust tests (LIMO EEG toolbox)



LIMO EEGTOOLBOX

=ETXT

LINEAR MODELING TOOLBOX: Random Effects

Basic stats

Central tendency and Cl

* One sample trimmed mean test

Plot central tendency and Cl

* Yuen t-tests (paired [ 2 samples)

Make and plot a difference

* |RLS Regression

- * 1 way robust ANOVA (generalized Welch's
method)

* IRLS for N-ways ANOVA

* Hoteling T square for repeated measures
(soon to be robust)

Parameter plots

Working Directory
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One sample t-test

Mean Trimmed Mean

t = t =
std/vn JWinVar/(1 — 2 * trimming percentage) * \n
p = 2 * tcdf(abs(t), df) p =2 x(1—tcdf(abs(t),df)
df =n -1 df = n-2*floor((trimming percentage/100)*n)-1

limo_ttest.m limo_trimci.m



Test standard vs. robust t-test
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Paired t-test

t = —edn (diffeence) p = 2 * tcdf(abs(t), df) with df=n -1
std (dif ference)/+/n

limo_ttest.m

Dif ference of trimmed means

(WinVarl * (n — 1)) + (WinVarZ * (n — 1)) —(2+x(n—1) * WinCov)

(n—2) *xntrim

\
p=2x(1—tcdf(abs(t),df)with df=((n — 2) *n trim)-1

limo_yuend_ttest.m



Two-samples t-test

 _ mean(gp1)-mean(gp?) - Dif ference of trimmed means
\/var(gpl) i var(gp2) (nl — 1) * WinVarl (le — 1) x WinVar?2
n1 nz nltrim x (nltrim —1)  n2trim * (n2 trim — 1)
p = 2 * tcdf(abs(t), df) p =2 % (1 — tedf (abs(t), df)
2
df =-S5 df = uen st reen sy
ni-1 n2-1 nitrim—-1 n2trim-1

limo_ttest.m limo_yuen_ttest.m



IRLS

* limo_irls.m

* Start by OLS to obtain residuals
e Check outliers in standardized residuals (MAD)
* Compute weights (bisquare function)
* Recompute on weighted data
* Check residuals again until E(e) = o
—> for eeq, iterate until max(abs(oldRes-newRes)) < (0.0001)



Check the weights of trials/subjects

#Figure?z-

File Edit View Insert Tools Desktop Window Help

Ndde W RRODEMN- S| 0EH O
correction by spatial-temporal cluster

topoplot @ 151ms

W
QL
L=
O
| .
—
Q
@
L

time course @
electrode D2 (98)

100 200 300

Time in ms

>> |oad LIMO
>> size(LIMO.design.weights)
>> imagesc(squeeze(LIMO.design.weights(98,:,:)))

7 e =
File Edit View Insert Tools Desktop Window Help ‘
NS S| R ALNODREL- 2 |([08E| =D




Check the weights of trials/subjects

electrode98 single subjects Betas
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Building Cl using bootstrap



Introduction to
Efron (1979) Bootstrap Methods:

Anothor Look at she Tackkit Efron, B. (1979). Bootstrap methods; another

Rudolf J. Beran

B i e look at the jackknife . Ann. Statist.7,1—-26

not unusual, in the history of statistics, that an important paper goes

(1949) paper, T\xkc)- (1956) abstract on the jackknife, and Wald's (1943)
paper on the asymptotic optimality of likelihood ratio tests. Each of these

pioneering works was well ahcad of its time. Brad Efron’s (1979) paper on the
bootstrap sparked immediate intcrest among his peers. A decade after its
publication, the bootstrap litcrature is large and still growing, with no imme-

L o e Monographs Efron, B., and Tibshirani, R. (1993 ). An Introduction

did development of the bootstrap idea follow on Statistics and

Twould suggest that statistical perceptions in 1979 were influenced by four Applied Probability 57 to the Bootstra C h a I I l a n & H a | | N eW Yo rk
historical developments, First, by the late 1970s, the revolution in computing, L] I
and subsequently in data analysis, had put theoretical statistics on the defen-
sive. It was becoming increasingly clear that the classical formulations of
statistical theory, whether frequentist or Bayesian, did not provide a realistic
paradigm for the analysis of large data sets. One response was growing
theoretical interest in the jackknifc, cross-validation, and certain other re-
sampling schemes [see references in Efron {1982)]. These were all methods
that seemed to rély on direct internal examination of the data, rather than on
fitting an externally conceived statistical model.

Second, some data analysts, not all professional statisticians, had been An
experimenting in the 1960s and 1970s with Monte Carlo simulations from
fitted models as a means of generating plausible critical values for confidence
statements or tests. Examples include Williams (1970) and two astrophysical

Teber o 1576 G . e o 1506, S 14 S dires spuiotion Introduction
approaches were a natural response to the increased availability of inexpen-

to the
Bootstrap

EXPLORING LePage, R & Billard L (Ed)
S L “LIMITS " Exploring the Limits of Bootstrap, 1992

BOOTSTRAP

m SPRINGER-SCIENCE + BUSINESS MEDIA, B.V

Raoul LePage & Lynne Billard

Wikay Series in Probability and Mathematical Statistics:
Probabiity and Statiutics Section—
Vi Barmatt, falgh A. Bradiey, Nichotas L Fisher, J. Stusrt Muster,
2. . Kadane. David G. Kendall, Adrian F. M. Seith, Stephen M.
Stigler, Joret Yeugels aad Gootirey 5. Watsom, Advivery Eitors




Bootstrap: central idea

* Statistics rely on estimators (e.g. the mean) and measures of accuracy
for those estimators (standard error and confidence intervals)

* "The bootstrap is a computer-based method for assigning measures of
accuracy to statistical estimates.” Efron & Tibshirani, 1993

* The bootstrap is a type of resampling procedure along with jack-knife
and permutations.

* Bootstrap is particularly effective at estimating accuracy (bias, SE, Cl)

but it can also be applied to many other problems — in particular to
estimate distributions.



General recipe

original data

(1) sample WITH replacement n [ . 2 . . . |6 / |8

observations (under Ha for Cl

bootstrapped data

O R | BN BT B kB

the null distribution)

of an estimate, under Ho for [

\

(2) compute estimate >
e.g. sum, trimmed mean

(3) repeat (2) & (2) b times 212223242526 «.. 2b

(4) get bias, std, confidence interval, p-value



Percentile boot Confidence Interval

* Let 9 be an estimator, and we want the 1-alpha CI(9)

* Bootstrap the data computing 8" to obtain a distribution of this
parameter and take the 1-alpha/2 upper and lower percentile

observed sample bootstrapped means bootstrapped means
: . : 14 : : _ 2.1 ; ; .




The Annals of Staustics
1981, Vol. 9. No. 1, 130-134

THE BAYESIAN BOOTSTRAP

By DoNALD B. RUBIN

Educational Testing Service

The Bayesian bootstrap is the Bayesian analogue of the bootstrap. Instead of
[simulating the sampling distribution of a statistic estimating a parameter, the]
| Bayesian bootstrap simulates the posterior distribution of the parameter; opera-

tionally and inferentially the methods are quite similar. Because both methods of
drawing inferences are based on somewhat peculiar model assumptions and the
resulting inferences are generally sensitive to these assumptions, neither method
should be applied without some consideration of the reasonableness of these
model assumptions. In this sense, neither method is a true bootstrap procedure
yielding inferences unaided by external assumptions.




Bayesian bootstrap

* In the bootstrap, we sample each xi with replacement, with a
probability 1/ n —the assumption is that only the observed value are

possible values in the parent population

* In the Bayesian bootstrap, we use a posterior probability distribution
forthe Xi’s.

* Rubin’s algorithm: (z2) draw u=1:n-1 from uniform
} Substitute by a

(2) sort uu(o) =o and u(n) =1 Dirichlet

(3) gap = u(i)-u(i-1)
(4) resample X using prob of xi = gap(i)
—> repeat B times



High Density Intervals

* Having the posterior density of means — we can compute the most
dense intervals = credible intervals

—> compute the centile distances between bootstrap estimates and
take the smallest (i.e. densest)

observed sample bootstraped means High Density Interval of the mean

100 200 300 400 500 600 700 800 900 1000




Estimating the mean - revised

* Using posterior densities allows to define the probability of the mean,
providing a more natural definition of intervals.

* Frequentist Cl: an intervals that fails to cover the population mean 1-
alpha percent of the time.

* Bayesian Cl: an interval that reflects the probability that mean takes
those values 1-alpha percent of the time



Estimators and HDI in one click

* LIMO EEG ‘central tendency

a n d C I , G UI type of estimator within subject? e of ectimator across subjects?
* Allows computing either on e e
the data or on the betas 20% Trimmed mean
* Many different robust |
estimators 15t and 2" level.

Quit ‘ Help Done

Copyright (C) LIMO Team 2015 - GNU GPL

limo_central_tendency_and_ci.m
(2 levels + data handling)

limo_central_estimator.m (estimator and ci)



Summary stats do not reflect ERP dynamics




Summary stats do not reflect ERP dynamics




Summary stats do not reflect ERP dynamics




Summary stats do not reflect ERP dynamics




Controlling the FWER using bootstrap

Single subject or group analyses



Distributions can take any shape

QAN

2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

The bootstrap method allows the bootstrap estimate of the sampling
distribution to conform to any shape the data suggest, taking into account
the variance and the skewness of the sample. This can be the distribution
of estimators (mean, median) or T/F values under Ho or under Ha.



Testing the mean with bootstrap

* Let T be the t-test for the mean

* Bootstrap the nullified data computing T" to obtain a distribution and
compute the p value

* Freq= mean(T>T*) and p = 2*min(Freq,1-Freq)

observed sample t distribution under HO




Pearson-Newman hypothesis testing

* Ho: no effect
* H1i: there is an effect

True negative False positive

False negative  True positive

—> Robust stats reduces false negatives (increase power) by using more

stable estimators of distribution parameters

—> Bootstrap controls false positives (i.e. if you choose alpha 0.05 then
the test will ‘fail’ 5% of the time)



What is the problem?

* Assuming tests are independents from each other, the famillywise error
rate FWER =1 - (2 - alpha)”n

» for alpha =5/100, if we do 2 tests we should get about 1-(1-5/100)*2 ~
9% false positives, if we do 126 electrodes * 150 time frames tests, we
should get about 1-(1-5/200)*18900 ~ 100% false positives! i.e. you can't
be certain of any of the statistical results you observe



What is the problem?

* [llustration with 5 independent variables from N(o,1)
* Repeat 1000 times and measures type 1 error rate

type one error rate per variable Famillywise error rate
025

22%

18%

14%

9%




What is the problem?

* [llustration with 18900 independent variables (126 electrodes and 150
time frames)

R? - uncorrected threshold

topoplot @ 224ms

— time course @
| electrode B7 (34)
06~

100

we know there are false positives — which ones is it?



Family Wise Error rate

* FWER is the probability of making one or more Type | errors in a
family of tests, under Ho

* Ho = no effect in any channel/time and/or frequency bins = implies
that rejecting a single bin null hyp. is equal to rejecting Ho

P(UieV{Ti > u}|Hy) < x

We want to find the threshod u such the prob of any
false positives under Ho is controlled at value alpha



False Discovery Rate

* In the LIMO EEG toolbox, we control for the false positve rate, i.e. the
probability to make alpha percent of errors under Ho (false positive among
all results). In EEGLAB/ERPLAB, you have the option to choose a

correction based on FDR

FDR = False positives [ All positives
Controls the number of false positves
among all positives i.e. it does not
True negative False positive et iegaia=:4

False negative  True positive




Bonferroni Correction

Bonferroni correction allows to keep the FWER at 5%
by simply dividing alpha by the number of tests

X
P(T; =z u|lHO) < m Find u to keep the FWER < a/m

FWER = P(U;cyiT; = u}|Hy) < x
< ). P(T; = u|HO) Boole’s inequality

e
Szia=



onferroni Correction

* Assumes all tests are independent
* Too conservative

nificant «

electrodes

One samplettest>07?




Correcting using
the maximum under Ho



Maximum Statistics

* Since the FWER is the prob that any stats > u, then the FWER is
also the prob. that the max stats > u

 All we have to do, is thus to find a threshold u such that the max
only exceed u alpha percent of the time.

Distribution of max F value under Ho

Threshold u such alpha
Percent are above it

[mask,p val] =
limo max correction (A,B,p)

A
B

P

observed stats (F,T"2)
bootstrapped data
alpha wvalue



Maximum Statistics

* Estimate the distribution of max under Ho (bootstrap) and
simply threshold the observed results a threshold u

* Still assumes all tests are independent

correction by F max

: '

Electrodes

100 200 300 40

Observed F values : L
" 0 % Time inms




Cluster Mass for MEEG



Let's analyse clusters

* In MEEG, instead of the max, we consider clusters as it is much less likely
that statistics are significant in isolation

0.0476% significant cells - cluste stributicn

electrodes

One samplettest>07?




Let's analyse clusters

* In MEEG, instead of the max, we consider clusters as it is much less likely
that statistics are significant in isolation because data are smooth in
space and time!

0.0466% significant cells cluster size distribution
. 100

electrodes

One samplettest>07?



The clustering solution

* Clustering is a good option because it accounts for topological features
in the data. Techniques like Bonferroni, FDR, max(stats) control the
FWER but independently of the correlation between tests.

* To use clustering we need to consider cluster statistics rather than
individual statistics

* Cluster statistics depend on (i) the cluster size, which depends on the
data at hand (how correlated data are in space and in time/frequency),
and (ii) the strength of the signal (how strong are the t, F values in a
cluster) or (iii) a combination of both.
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The clustering solution

* In LIMO EEG, we bootstrap the data under Ho: center the data or break the
link between the design matrix and the data and then resample and test. This
way we can find u for a single bin, the whole space, or for clusters.

e —

3 =
— b - — ==

-l ¥ - N
* L E - - -
—— - i =

- -

> - g

- -t = —"_: —: e
A W - =

Observed F values > F values under Ho



The clustering solution

 Spatial-Temporal clustering: for each bootstrap, threshold at alpha and record the
max(cluster mass), i.e. sum of F values within a cluster. Then threshold the observed
clusters based on there mass using this distribution = accounts for correlations in space
and time.

[mask,cluster p] = limo cluster correction (A,AP,B,BP,neighbouring,method, p)
5 ! ; 5 5 spatial-temporal cluster
- =i  UnderHo
E ¥
: £
Observed F —_— o K E
va | UES . 0 1000 ED:\IHII :E-IZ.I:I] 0 4000 5[\.\]\] Eil.jl:lj.nj.l 7000 J ’ 100

Time in ms

Loss of resolution: inference is about the cluster, not max in time or a specific electrode !



TFCE for MEEG



Threshold Free Cluster Enhancement

* Threshold Free Cluster Enhancement (TFCE): Integrate the cluster mass at multiple
thresholds. A TFCE score is thus obtain per cell but the value is a weighted function of the
statistics by it's belonging to a cluster. (limo_tfce.m followed by limo_max_correction)

original

signal
__TFCE

enhancement

Figure 1: Illustration of the TFCE approach. Left: The TFCE score at voxel p is given by the sum of the scores of all incremental
supporting sections (one such is shown as the dark grey band) within the area of “support” of p (light grey). The score for each
section 1s a simple function of its height /» and extent . Right: Example input image and TFCE-enhanced output. The input contains
a focal, high signal, a much more spatially extended, lower, signal and a pair of overlapping signals of intermediate extent and height.
The TFCE output has the same maximal values for all three cases, and preserves the distinct local maxima in the third case.

Smith & Nichols 2009 Neurolmage 44




Threshold Free Cluster Enhancement

* Threshold Free Cluster Enhancement (TFCE): Integrate the cluster mass at multiple
thresholds. A TFCE score is thus obtain per cell but the value is a weighted function of the
statistics by it's belonging to a cluster. As before, bootstrap under Ho and get max(tfce).

: _ correction using TFCE
= i Max tfce values
+ -
L — L
TFCE scores _ N . o0 200
Observed F values o i 2

pN_—

Excellent resolution: inference is about cells, but we accounted for space/time dependence



Review of techniques

* All techniques (including permutation not shown here) control well
the FWER under Ho with some limitations for small sample sizes

Cluster-Mass critical 5% FWE threshold
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Review of techniques

* All techniques (including permutation not shown here) control well
the FWER under Ho with some limitations for small sample sizes

Subject 1 Subject 2 Subject 3 Subject 4
0.08 0.08 0.08




MCC summary

* Simulation work show that overall permutation / bootstrap /
cluster-mass [ TFCE control well the type 1 FWER.

* a minimum of 800 iterations are necessary to obtain stable results

* for low critical family-wise error rates (e.g. p = 1%), permutations
can be too liberal;

* For within subject bootstrap, a min of 5o trials per condition is
requested at the risk to be too conservative



Conclusions

* When performing multiple tests, statistical correction MUST be applied.

» All techniques provide a FWER at the specified level but not all techniques
have the same power.

* Spatial-temporal clustering and TFCE seem to provide good estimates,
with TFCE giving higher spatio-temporal inference resolution, but at the
cost of long computing time.
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