The Source Information Flow Toolbox

An Electrophysiological Information Flow Toolbox for EEGLAB

Tim Mullen

15th EEGLAB Workshop June 16, 2012 Tsinghua University, Beijing, China Introduction

Theory				
Functional and Effective Connectivity				
Linear Dynamical Systems and Vector Autoregressive Modeling				
Granger Causality and Related Multivariate Connectivity Measures				
Scalp or Source?				
Adapting to Time-Varying Dynamics				
The Source Information Flow Toolbox (SIFT)				
Some Applications of SIFT				
The Road Ahead				
Fin				

The Dynamic Brain

- A key goal: To measure temporal changes in neural dynamics and information flow that index and predict task-relevant changes in cognitive state and behavior
- Important factors:
 - Accuracy and Validity
 - Temporal Specificity
 - Non-invasive measures

SIFT

Apps

-0-D0

Categorizations of Large-Scale Brain Connectivity Analysis

(Bullmore and Sporns, *Nature*, 2009)

SIFT

Apps

[0-D0

Ē

Modeling Brain Connectivity

 Model-based approaches mitigate the 'curse of dimensionality' by making some assumptions about the structure, dynamics, or statistics of the system under observation

Box and Draper (1987):

"Essentially, all models are wrong, but some are useful [...] the practical question is how wrong do they have to be to not be useful"

"The map is not the territory"

Apps

[0-D0]

Fin

Estimating Functional Connectivity

Popular measures

- Cross-Correlation
- Coherence
- Phase-Locking Value
- Phase-amplitude coupling

Coherence/CC/PLV indicate *functional*, but not *effective* connectivity

Apps

ntrc

Estimating Effective Connectivity

Non-Invasive

- Post-hoc analyses applied to measured neural activity
- Confirmatory
 - Dynamic Causal Models
 - Structural Equation Models
- Exploratory
 - Granger-Causal methods

- Data-driven
- Rooted in conditional predictability
- Scalable (Valdes-Sosa, 2005)
- Extendable to nonlinear and/or nonstationary systems (Freiwald, 1999; Ding, 2001; Chen, 2004; Ge, 2009)
- Extendable to non-parametric representations (Dhamala, 2009a,b)
- Can be (partially) controlled for (unobserved) exogenous causes (Guo, 2008a,b; Ge, 2009)
- Equivalent to Transfer Entropy for Gaussian Variables (Seth, 2009)
- Flexibly allows us to examine timevarying (dynamic) multivariate causal relationships in either the time or frequency domain

Linear Dynamical Systems

time step

Vector Autoregressive (VAR / MAR / MVAR) Modeling

Intro

Theory

S L

Apps

-0-D0

VAR Modeling: Assumptions • "Weak" stationarity of the data

"Weak" stationarity of the data

- mean and variance do not change with time
- An EEG trace containing prominent evoked potentials is a classic example of a non-stationary time-series

Stability

- A stable process will not "blow up" (diverge to infinity)
- Importantly, stability implies stationarity

SIFT

Apps

To-Do

Theory

Apps

The Linear Vector Autoregressive (VAR) Model

M x M matrix of (possibly time-varying) model coefficients indicating variable dependencies at lag k

multichannel data k samples in the past

$$\mathbf{A}^{(k)}(t) = \left(\begin{array}{ccc} a_{11}^{(k)}(t) & \dots & a_{1M}^{(k)}(t) \\ \vdots & \ddots & \vdots \\ a_{M1}^{(k)}(t) & \cdots & a_{MM}^{(k)}(t) \end{array}\right)$$

at current time t

 $\mathbf{E}(t) = N(0, \mathbf{V})$

/AR[p] mode

Theory Intro

SIFT

Apps

Selecting a VAR Model Order

Model order is typically determined by minimizing information criteria such as Akaike Information Criterion (AIC) for varying model order (p):

 $AIC(p) = 2log(det(V)) + M^2p/N$

Penalizes high model orders (parsimony)

entropy rate (amount of prediction error)

Selecting a VAR Model Order

• Other considerations:

 A M-dimensional VAR model of order p has at most Mp/2 spectral peaks distributed amongst the M variables. This means we can observe at most p/2 peaks in each variables' spectrum (or in the causal spectrum between each pair of variables)

 Optimal model order depends on sampling rate (higher sampling rate often requires higher model orders)

Granger Causality

- First introduced by Wiener (1958). Later reformulated by Granger (1969) in the context of linear stochastic autoregressive models
- Relies on two assumptions:

Granger Causality Axioms

- 1. Causes should precede their effects in time (Temporal Precedence)
- Information in a cause's past should improve the prediction of the effect, above and beyond the information contained in past of the effect (and other measured variables)

Theory

SIFT

Apps

To-Do

15

Granger Causality

Granger (1969) quantified this definition for **bivariate** processes in the form of an F-ratio: reduced model

$$F_{X_1 \leftarrow X_2} = \ln \left(\frac{var(\tilde{E}_1)}{var(E_1)} \right) = \ln \left(\frac{var(X_1(t) \mid X_1(\cdot))}{var(X_1(t) \mid X_1(\cdot), X_2(\cdot))} \right)$$
full model

To-Do

Apps

Intro

Theory

SIFT

Alternately, for a **multivariate interpretation** we can fit a single MVAR model to all channels and apply the following definition:

Definition 1

- X_j granger-causes X_i conditioned on all other variables in X
- if and only if $A_{ii}(k) >> 0$ for some lag $k \in \{1, ..., p\}$

SIF

Apps

To-Do

Fin

Granger Causality Quiz

Example: 2-channel MVAR process of order 1

$$\begin{pmatrix} X_{1}(t) \\ X_{2}(t) \end{pmatrix} = \begin{pmatrix} -0.5 & 0 \\ 0.7 & 0.2 \end{pmatrix} \begin{pmatrix} X_{1}(t-1) \\ X_{2}(t-1) \end{pmatrix} + \begin{pmatrix} E_{1}(t) \\ E_{2}(t) \end{pmatrix}$$

$$\begin{pmatrix} X_{1}(t) = -0.5X_{1}(t-1) + 0X_{2}(t-1) + E_{1}(t) \\ X_{2}(t) = 0.7X_{1}(t-1) + 0.2X_{2}(t-1) + E_{2}(t) \end{pmatrix}$$

Which causal structure does this model correspond to?

2

b)

C)(1)

a) (1

Intro Granger Causality – Frequency Domain Theory

$$\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)} \mathbf{X}(t-k) + \mathbf{E}(t)$$

Fourier-transforming $\mathbf{A}^{(k)}$ we obtain

$$\mathbf{A}(f) = -\sum_{k=0}^{p} \mathbf{A}^{(k)} e^{-i2\pi fk}; \mathbf{A}^{(0)} = I$$

Likewise, $\mathbf{X}(f)$ and $\mathbf{E}(f)$ correspond to the fourier transforms of the data and residuals, respectively

We can then define the spectral matrix $\mathbf{X}(f)$ as follows:

$$\mathbf{X}(f) = \mathbf{A}(f)^{-1}\mathbf{E}(f) = \mathbf{H}(f)\mathbf{E}(f)$$

Where H(f) is the *transfer matrix* of the system.

Definition 2

 X_i granger-causes X_i conditioned on all other variables in X if and only if $|\mathbf{A}_{ii}(f)| >> 0$ for some frequency f

leads to PDC

Apps

To-Do

IVIDIOIDIDIOIDIDIOIDIDIOIDIDIOIDI

Or

21

 $\overline{O-DO}$

Scalp or Source?

Volume conduction exists for ECoG too!

(c.f. Whitmer, Worrell, ..., Makeig, Frontiers in Neuro. 2010

Solution? Source Separation

 $I^{(k)}(t)\overline{S(t-k)} + \overline{E(t)}$

S(t) =

Adapting to Non-Stationarity

- Theory Intro • The brain is a dynamic system and measured brain activity and coupling can change rapidly with time (non-stationarity)
 - event-related perturbations (ERSP, ERP, etc)
 - structural changes due to learning/feedback
 - How can we adapt to non-stationarity?

mV

SIFT

Apps

Adapting to Non-Stationarity

- Many ways to do adaptive VAR estimation
 - Segmentation-based adaptive VAR estimation
 - Factorization of time-varying spectral density matrices (e.g. from STFTs, Wavelets, etc)
 - State-Space Modeling

Fin

Intro

Theory

SIF

time

SIFT

Apps

[0-D0]

Fin

Time-Frequency GC

What is a good window length?

- Considerations:
 - Temporal smoothing
 - Local stationarity
 - Sufficient amount of data
 - Process dynamics

Time-Frequency GC

Consideration: Temporal Smoothness

Too-large windows may smooth out interesting transient dynamic features.

S

Time-Frequency GC

Consideration: Local Stationarity

Too-large windows may not be locally-stationary

SIF

Apps

[0-D0

Time-Frequency GC

Consideration: Sufficient data

M = number of variables

- p = model order
- $N_{tr} = number of trials$
- W = length of each window (sample points)

We have M²p model coefficients to estimate. This requires a minimum of M²p independent samples. So we have the constraint M²p <= N_{tr} W. In practice, however, a better heuristic is M²p <= (1/10)N_{tr} W.

Or: W >= 10(M²p/N_{tr})

10x more data points than parameters to estimate

SIFT will let you know if your window length is not optimal

S F

Apps

0-00

Time-Frequency GC Consideration: Process dynamics

Consideration: Process dynamics

- Your window must be larger than the maximum expected interaction time lag between any two processes.
- Your window should be large enough to span ~1 cycle of the lowest frequency of interest (remember the Heisenberg uncertainty principle)

Time-Frequency GC • Many ways to do time-varying VAR e

Many ways to do time-varying VAR estimation

- Segmentation-based adaptive VAR estimation
- Factorization of time-varying spectral density matrices (e.g. from STFTs, Wavelets, etc)
- State-Space Modeling

Fin

Apps

SIFI

Discrete State-Space Model (SSM) for Electrophysiological Dynamics

observation equation (e.g. noisy sensor observations) $y(t) = Hs(t) + \epsilon(t)$

known deterministic inputs u(t)

state transition equation (e.g. latent source and/or coupling dynamics) $s(t) = f(s(t^-), u(t^-), \theta(t)) + v(t)$

×

+

Linear VAR[1] $> s(t) = \mathbf{A}(t)s(t-1) + v(t)$

- Dynamical system may be linear or nonlinear, dense or sparse, non-stationary, highdimensional, partially-observed, and stochastic
- Subsumes discrete Delay Differential Equation (DDE) and Vector Autoregressive (VAR) methods and closely related to Dynamic Causal Modeling (DCM)

Intro

Theory

Apps

Apps

Fin

Kalman Filtering

optimal estimator (in terms of minimum variance) for the state of a linear dynamical system

Kalman Filtering

GPDC Causality From

Time (sec)

Intro

SIFT

Saturday, June 16, 2012

EEGLAB Software framework

Delorme, Mullen, Kothe, Akalin Acar, Bigdely-Shamlo, Vankov, Makeig, Computational Intelligence and Neuroscience, 2011

Theory

SIFT

Apps

To-Do

Source Information Flow Toolbox (SIFT)

- A toolbox for (source-space) electrophysiological information flow and causality analysis (single- or multi-subject) integrated into the EEGLAB software environment.
- Modular architecture intended to support multiple modeling approaches
- Emphasis on vector autoregression and SSMs and time-frequency domain approaches
- Standard and novel interactive visualization methods for exploratory analysis of connectivity across time, frequency, and spatial location
- **Requirements**: EEGLAB, MATLABTM 2008a+, Signal Processing Toolbox, Statistics Toolbox (for some functions -- may be removed in the future)

Theory

SIFT

Apps

[0-D0]

		SIFT				•	Pre-	processing					
		Locat Peak	e dipo detect	les using ion using	DIPFIT 2.x EEG toolb	ox	Model fitting and validation Connectivity Statistics		tion ►	Simulation)	
		FMRI	B Tool	s		•	Visu	alization	►				
0	00	Locat	e dipo	les using	LORETA	•		A					
File	Edit	Tools	Plot	Study	Datasets	Help		MMM MMMMM	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4			
	_#1: Bu	utton p	ress	epochs	3		1	Mar Mar	man	•			
	Filename	:eta/1	Data/bt/	/3 RespWro	nq.set								
	Channels	per frame	2	127				Pre-proces	sing				
	Frames p	er epoch		1024									
	Events			1451									
	Sampling	rate (Hz)		256				Model Fitti	ina	\mathbf{Z}			
	Epoch st	art (sec)		-2.000					ing .	\leq			
	Epoch en	d (sec)		1.996				and Validat	tion	Q			
	Referenc	e		unknow	n					\mathbf{O}			
	Channel	locations		Yes						\square			
	ICA weig	hts		Yes				Connoctiv	/ity/				
	Dataset	size (Mb)		175.3				CONNECTIV	/ity	ÖL			
								Statistics	S				
				Group	o Analy	sis	\rightarrow	Visualizati	on				

Preprocessing

Modeling

Statistics

Visualization

Source reconstruction (performed externally using EEGLAB or other toolboxes)
Filtering or Local Detrending
Downsampling
Differencing
Normalization (temporal or ensemble)
Trial balancing

Preprocessing

Modeling

Statistics

Visualization

Pre-processing
Model fitting and validation
Connectivity
Statistics
Visualization

0 0	Preprocessing Optio	ns
▼ Miscellaneous		
VerbosityLevel		2
Data Selection		
SelectComponents		
ComponentsToK	eep	8; 11; 12; 13; 14; 15;
EpochTimeRange		0
TrialSubsetToUse		0
▼ Filtering		
NewSamplingRate		250
FilterData		[0.01 0]
▼ DifferenceData		
DifferencingOrde	er	1
Detrend		
DetrendingMeth	bd	linear
Piecewise		
SegmentLengt	th	0.33
StepSize		0.082
Plot		
Normalization		
▼ NormalizeData		
Method		ensemble 🔹
	🗹 ens	emble
	🗌 tim	e
	(Car	ncel OK
Method		
Normalize windows	across time, ensemble	, or both.
Help	Cancel	OK

SIFT

FID

Preprocessing		Modeling	Statistics	Visualization	
	Model Fit	ting Validation Co	nnectivity		
	Linear		Linear+Nonlinear		
,	VAR Modelir Vieira-Morf	ng , ARFIT	Dual Extended Kalman Filtering		
	Sparse VAR Group Lass	so (L _{1,2}), TSBL (L _p)	Cubature Kalman Fi	Itering	
	Linear Kalma	an Filtering	Transfer Entropy (TRENTOOL interface)		
	Nonparamet spectral mat	ric VAR (minimum-phase rix factorization)			

Fin

42

42

atta treated for the areast of the state Neuroscience

Statistics

E 20 -

togn

10 -

0.

Ō

10

20

opt. model order

30

Visualization

sbc (5)

aic (30)

hq(14)

ris (5)

Model Fitting

Connectivity

Visualization

Algorithm

Detrend

Downdate

▼ Miscellaneous

VerbosityLevel

Unconstrained VAR modeling via Vieira-Morf

[1] A. Schlogl, Comparison of Multivariate

Cancel

OK

Maximum Entropy algorithm.

References and code:

Help

PlotResults

Algorithm

Vieira-Morf:

Statistics

11 ĝi

5.

٥.

0

10

20

opt. model order

43

Preprocessing	Modeling	Statistics	Visualization
Model Fitti	ng Validation C	onnectivity	
Model fitting and validat	tion > Model Order Selection	Autoregressive Model Fitti	ng
Connectivity	Fit AMVAR Model	en i et et	
Visualization			
	V Modeli	ng Parameters	
	Algoriti	Ontions Gr	oup Lasso DAL/SCSA
	V DAL	_Options	0.1
	R S	egularizationParam	0.1
	3	nrinkDiagonal	nerholicSecont
		erbosity ny	perbolicsecant
	×	AL NVP Ares ()	0
	Model	Order U	18
	Window	vi enoth	18
	Window	vicingun	0.4
	Enoch	Simel imits []	0.03
	Window	VSamplePercent	100
	Windo	w Preprocessing	100
	Norma	lizeData	
	V Detren	d	
	Detr	endingMethod con	nstant
	▼ Miscel	aneous	
	Timer		
	Verbos	ityLevel	2
	Algorith	m NB ma dallara via Carron Lanas	100
	Sparse V	Ak modeling via Group Lasso.	e using the
	This opti	on estimates sparse VAR coefficient	s using the
		Help Cancel	OK

SIFT

Apps

To-Do

Fin

anter Anter for Anter for Anter stillenst Neuroscience

Saturday, June 16, 2012

Validation

Statistics

Model Fitting

Connectivity

ocessing	Modeling	Stati	stics	Visualization	
Model Fitti	ing Validation	Connectivity			
	VAR-based Measures				
Power spec	Power spectrum (ERSP)				
Coherence (Coh), Partial Coherence (pCoh), Multiple Coherence (mCoh)					
Partial Directed Coherence (PDC)					
Generalized	Generalized PDC (GPDC)				
Partial Direc	ted Coherence Factor	(PDCF)			
Renormalize	ed PDC (rPDC)				
Directed Tra	Insfer Function (DTF)				
Direct Direc ⁻	Direct Directed Transfer Function (dDTF)				
Bivariate Gr	Bivariate Granger-Geweke Causality (GGC)				
Conditional	Conditional GGC				
Blockwise G	Blockwise GGC				
fully	implemented	alpha-testing		comina soon	

SIFT

To-Do Apps

Fin

47

Validation

Connectivity

Model Fitting

SIFT

Pre-processing	
Model fitting and validation	►
Connectivity	
Statistics	۲
Visualization	►

😝 😋 😋 🛛 Ca	Iculate Connectivity	Measures					
1 2 I I I I I I I I I I I I I I I I I I							
 Connectivity Esti ConnectivityMeasu Options SquaredModulus ConvertSpectrumT Frequencies Miscellaneous VerbosityLevel 	DTF nDTF dDTF dDTF08 ffDTF PDC						
ConnectivityMeasures Select measures to estimate. Measures are categorized as follows: + DIRECTED TRANSFER FUNCTION MEASURES DTF: Directed Tranfer Function nDTF: Normalized DTF dDTF: Direct DTF dDTF08: Direct DTF (with full causal normalization) ffDTF: Full-frequency DTF							
PDC: Partial Directed Coherence nPDC: Normalized PDC GPDC: Generalized Partial Directed Coherence PDCF: Partial Directed Coherence Factor RPDC: Renormalized Partial Directed Coherence + GRANGER-GEWEKE CAUSALITY MEASURES GGC: Granger-Geweke Causality + SPECTRAL COHERENCE MEASURES Coh: Complex Coherence iCoh: Imaginary Coherence pCoh: Partial Coherence pCoh: Partial Coherence mCoh: Multiple Coherence + SPECTRAL DENSITY MEASURES S: Complex Spectral Density							
Help	Cancel	0	к				

Statistics

Visualization

Parametric

Non-parametric

SIFT

Asymptotic analytic estimates of confidence intervals Applies to: PDC, nPDC, DTF, nDTF, rPDC Tests: Hnull, Hbase, HAB

Confidence intervals using Bayesian smoothing splines Applies to: all Tests: H_{base}, H_{AB}

Phase-randomization

Applies to: all Tests: H_{null}

Bootstrap, Jacknife, Cross-Validation

> Applies to: all Tests: H_{AB}, H_{base}

fully implemented

alpha-testing

coming soon

49

Preprocessing

Modeling

Statistics

Visualization

Parametric

Non-parametric

00	Analytic Statistics
Miscellaneous Estimator Statistic Alpha VerbosityLevel Statistic Statistic Statistic	Analytic Statistics
Hala	Canaal

fully implemented

\varTheta 🔿 Si	urrogate Statistics
·····································	
▼ Miscellaneous	
Mode Mode	Bootstrap
NumPermutations	Bootstrap
AutoSave	Jacknife
ConnectivityMethods	InverseJacknife
VerbosityLevel	Crossval
	PhaseRand
Mode Resampling modes. Boots replacement), Jacknife (lea (k-fold cross-validation), randomization)	strap (Efron Bootstrap resampling with we-one-out cross-validation), Crossval PhaseRand (Theiler phase
Help	Cancel OK

Saturday, June 16, 2012

Visualization

Interactive Visualizers

Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Projection Movie

Directed Graphs and Graph Theoretic Analysis (Bioinformatics Toolbox Interface)

and more ...

fully implemented

Saturday, June 16, 2012

51

coming soon

Interactive Time-Frequency Grid

5					😝 🔿 🔿 Time Frequency Grid Options			
D	Pre-processing Model fitting and validation	•		11 A				
_	Connectivity			▼ Di	splayProperties			1
_	Statistics			▼ Ma	atrixLayout		Partial	
	Visualization		Time Freewood Caid		UpperTriangle		dDTF08	
	visualization	<u></u>	Time-Frequency Grid		LowerTriangle		dDTF08	
			BrainMovie3D		Diagonal		S	
-			Causal Projection	Co	olorLimits		99.9	
				Ti	mesToPlot		[-0.75 1]	
				Fr	equenciesToPlot		[1:50]	
				Plo	otContour			
				Plo	ottingOrder		0	
				So	urceMarginPlot		dipole	
				No	odeLabels		{'8', '11', '12', '1	.3', '1
				Ev	entMarkers		{{0, 'r', ':', 2}}	
				Fr	equencyScale		linear	
\cap				Co	olormap		jet(300)	
5				▼ Th	resholding			
				The The	nresholding		Simple	
\sum					PercentileThreshold		[95 3]	
					AbsoluteThreshold		0	
				▼ Da	ataProcessing			
				Ba	seline		[-0.75 -0.25]	
				Sn	nooth2D			
				► Mi	scellaneous			
\mathbf{O}				▼ Fr	equencyMarkers			
				Fr	equencyMarkers		[3 7]	
				Fr	equencyMarkerColor		[0.7 0.7 0.7]	
				▼ Te	xtAndFont			
				Ti	tleString			
				Ti	tleFontSize			12 ,
					e set			104
				Perc	entile i nreshold	form Increase	le dimension1 m	
				Perce	entile threshold. If of	form (percentil	le, dimensionj, p	ercentile
				is ap	plied elementwise acr	oss the specifi	ed dimension.	
					Help	Cancel	OK	

12 🕌

Interactive Time-Frequency Grid

Saturday, June 16, 2012

ntro

Theory

SIFT

Apps

To-Do

Ē

Interactive Causal BrainMovie3D

000

ntro

SIFT

~	<u> </u>					
8	\$i					
	DataProcessing					
	ConnectivityMethod	nDTF				
	MovieTimeRange	[-0.75 0.98828125] [3:7] mean 0				
	FrequenciesToCollapse					
	FregCollapseMethod					
	TimeResamplingFactor					
	SubtractConditions					
	Baseline	0				
-	DisplayProperties					
	NodeLabels	{ '8' , '11' , '13' , '19' , '20' , '2				
	NodesToExclude					
	EdgeColorMapping	Connectivity				
	EdgeSizeMapping	ConnMagnitude				
	NodeColorMapping	AsymmetryRatio -				
	NodeSizeMapping	None				
v	FooterPanelDisplaySpec	Outflow				
	icaenvelopevars	Inflow				
	backprojectedchans	CausalFlow				
•	BrainMovieOptions	Outdegree				
	Visibility					
	RotationPath3D	CausalDegree				
	InitialView	Asymmetry@atio				
	ProjectGraphOnMRI	Paymineuyrado				
	RenderCorticalSurface					
	Transparency	0.7				
	UseOpenGL	on				
	EventFlashTimes	0				
	DisplayLegendPanel	on				
	ShowLatency	M				
	DisplayRTProbability					
	BackgroundColor	[0 0 0]				

BrainMovie3D Control Panel

NodeColorMapping

Specify mapping for node color. This determines how we index into the colormap. Options are as follows. None: node color is not modulated. Outflow: sum connectivity strengths over outgoing edges. Inflow: sum connectivity strengths over incoming edges. CausalFlow: Outflow-Inflow. Asymmetry Ratio: node colors are defined by the equation C = 0.5*(1 + outflow-inflow/(outflow+inflow)). This is 0 for exclusive inflow, 1 for exclusive outflow, and 0.5 for balanced inflow/outflow

Searce Charter for Compositional Neuropational

Bioinformatics Toolbox IFace

Interactive Directed Graphs

Radial, Hierarchical, or Customized Node Layout

Graph-Theoretic Analysis (SCCs, Shortest-Path, MaxFlow, etc)

Assignment of useful quantities to Node and Edge size/color

alpha-testing

SIFT

Apps

 $\overline{O-DO}$

E

Group Analysis

Causal/Measure Projection Bayesian Hierarchical Model

Error > Correct (p<0.05, N=24) 3-7 Hz

Mullen, Onton, et al, 2010, HBM, Barcelona Bigdely-Shamlo, Mullen, et al, 2012, *in review*

Thompson, Mullen, Makeig, 2011, ICONXI Thompson, Mullen, Makeig, 2012, *in prep*

Saturday, June 16, 2012

Causal Projection

Error > Correct (p < 0.05, N=24)

3-7 Hz

dDTF

SIFT

Intro

Theory

Fin

alpha-testing

Causal Projection

Error > Correct (p < 0.05) 3-7 Hz

Mullen, et al, 2010, HBM, Barcelona

Theory Intro

SIFT

Apps

To-Do

Bayesian Multi-Subject Inference

Intro

Theory

SIFT

Apps

Bayesian Multi Subject Inference

Thompson, Mullen, Makeig, 2011, ICONA Thompson, Mullen, Makeig, 2012, *in prep*

Saturday, June 16, 2012

Theory

SIFT

Apps

To-Do

SIFT

Simulation

Dynamical System Simulation Workbench

Systems of linear stochastically-forced damped coupled oscillators

Support for arbitrary time-varying (non-stationary) coupling dynamics

Intuitive equation-based scripting environment

Support for generalized gaussian or hyperbolic secant innovations

Nonlinear Dynamical Systems

Rössler and Lorenz Systems

Apps

fully implemented

Simulated Seizure

SIFT

Apps

To-Do

Fin

Simulated Seizure Sources

Beta	Alpha	IED
	wiscente in an antique and the application and a spectra frequency of the application of the application of the	wersteinfiller afflier and the filter and the deflict of
2 W/M/W/W/	nan a' dinahiya din'arper maini arang nang nang nang nang nang nang nan	ieserieraiseisentiitaskinaansiveilusuur
	*MANNERSENNENNENNENNENNENNENNENNENNENNENNENNENN	entele-grimmenterenterentelenterentelenterenterenter
s Manine and the second s	Milling and Milling and and a stranger the providence of the second	untransministration and the and the second of the second
e ware when here the property the second and the second of the second of the second of the second of the second	With the has and the contract of the share of the state of the second of	Name-Mallimenser-Shillingers and territy which the many amount property
 Marking and an an and an an and an an	en e	an management and the second of the
o		-mantenersterare werdeling with a stranger of the second stranger and the second s
10 And Warden and allowed and a second of the second of the second and all a second and all a second and all a		March March and a contraction of the second of the start of the start of the
15 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	or for region production and reserve and record and record and record and record and the second	www.comenter.com/www.com/www.Analyse.com/www.Analyse.com/www.Analyse.com/www.Analyse.com/www.Analyse.com/www.An
13 Angerelistalangar sensistangkangkangkangkangkangkangkangkangkangk	ienturpaennuullangeninuullaingetidhunannikuntullukaenipenitunnikuulaispurnuulusteeteeteet	๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
I I	I I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>	39 40 41 42 43 44 45 46 41

JOOL

Where do I get SIFT?

Some Applications of SIFT

Identification of event-related shifts in effective connectivity which index and predict behavior

Single-trial spatiotemporal modeling of seizure propagation dynamics

To-Do

Brain-Computer Interfaces: Error correction/prediction Neural Prostheses

Mullen et al, HBM, Barcelona, 2010

Some Applications of SIFT

SIFT

Identification of event-related shifts in effective connectivity which index and predict behavior

Apps

To-Do

E

Single-trial spatiotemporal modeling of seizure propagation dynamics

Brain-Computer Interfaces: Error correction/prediction Neural Prostheses

. . .

Mullen, et al IEEE EMBC, 2011

Some Applications of SIFT

Brain-Computer Interfaces: Error correction/prediction Neural Prostheses

- - - - - -

Theory

Apps

The Road Ahead

- Public release of alpha-testing methods (SIFT 1.0-beta ... being released at <u>sccn.ucsd.edu/wiki/SIFT</u> in the next week)
- Ongoing development of sparse/regularized VAR and state-space models as well as nonlinear SSMs
- Improved Group Analysis and Statistics
- Integration with other toolboxes: Transfer Entropy (TRENTOOL), Dynamic Causal Modeling (SPM), Brain-Computer Interfaces (BCILAB)
- Incorporation of structural constraints on dynamic connectivity (e.g. from DTI, anatomical priors, etc)

Theory

SIF

Apps

To-Do

SIFT

Apps

To-Do

Fin

Acknowledgements

Virginia de Sa Vicente Malave

Ken Kreutz-Delgado

Arnaud Delorme Christian Kothe

Nima Bigdely Shamlo Zeynep Akalin Acar Jason Palmer Zhilin Zhang **Scott Makeig**

Wes Thompson