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A key goal: To measure temporal changes in neural dynamics 
and information flow that index and predict task-relevant 
changes in cognitive state and behavior

Important factors:

Accuracy and Validity 

Temporal Specificity

Non-invasive measures
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The Dynamic Brain
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milliseconds-secondsHours-Years

Categorizations of Large-Scale 
Brain Connectivity Analysis

4

(Bullmore and Sporns, Nature, 2009)

Structural

state-invariant, 
anatomical

Functional

dynamic, state-dependent, 
correlative, symmetric

Effective

dynamic, state-dependent, 
asymmetric, causal, 
information flow

Temporal Scale
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Model-based approaches mitigate the ‘curse of 
dimensionality’ by making some assumptions about the 
structure, dynamics, or statistics of the system under 
observation
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Modeling Brain Connectivity

“Essentially, all models are wrong, but some 
are useful [...] the practical question is how 
wrong do they have to be to not be useful”

Box and Draper (1987):

“The map is not the territory”
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Popular measures

Cross-Correlation

Coherence

Phase-Locking Value

Phase-amplitude coupling

...

Estimating Functional 
Connectivity

6
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Cross-Correlation and Linear 
Coherence 1
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Coherence/CC/PLV indicate functional, but not effective connectivity
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Non-Invasive

Post-hoc analyses 
applied to measured 
neural activity

Confirmatory

Dynamic Causal Models

Structural Equation Models

Exploratory

Granger-Causal methods

Estimating Effective 
Connectivity

8

Granger-Causal methods

•Data-driven
• Rooted in conditional predictability
• Scalable (Valdes-Sosa, 2005)

• Extendable to nonlinear and/or non-
stationary systems (Freiwald, 1999; Ding, 
2001; Chen, 2004; Ge, 2009)

• Extendable to non-parametric 
representations (Dhamala, 2009a,b)

• Can be (partially) controlled for 
(unobserved) exogenous causes 
(Guo, 2008a,b; Ge, 2009)

• Equivalent to Transfer Entropy for 
Gaussian Variables (Seth, 2009)

• Flexibly allows us to examine time-
varying (dynamic) multivariate 
causal relationships in either the 
time or frequency domain
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Stochastic Linear Dynamical System

Linear Dynamical Systems

look at page 808 of Neural Networks and 
Learning Machines (Haykin) for 2-neuron 
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Vector Autoregressive 
(VAR / MAR / MVAR) Modeling

VAR

Granger Causality Coherence Spectrum ...

E
E

G
X1(t)
X2 (t)


XM (t)
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VAR Modeling: Assumptions

“Weak” stationarity of the data

mean and variance do not change with time

An EEG trace containing prominent evoked potentials is 
a classic example of a non-stationary time-series

Stability

A stable process will not “blow up” (diverge to infinity)

Importantly, stability implies stationarity
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multichannel data  k 
samples in the past

The Linear Vector Auto-
regressive (VAR) Model

random noise process

M x M matrix of (possibly time-varying) 
model coefficients indicating variable 

dependencies at lag k

model order 

   E(t) = N (0,V)

VA
R

[p
] m

od
el

M-channel data vector 
at current time t

t

X(t) =

x1(t)
x2 (t)


xM (t)

X(t) = A(k ) (t)
k=1

p∑ X(t − k) + E(t)

A(k ) (t) =
a(k )11(t) … a(k )1M (t)
  

a(k )M1(t)  a(k )MM (t)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Ordinary Least-Squares
Lattice Filters

Kalman Filtering
Bayesian Methods
Sparse methods

...
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Selecting a VAR Model Order

Model order is typically determined by minimizing information criteria 
such as Akaike Information Criterion (AIC) for varying model order (p):

	 AIC(p) = 2log(det(V)) + M2p/N

entropy rate (amount of prediction error)

Penalizes high model orders (parsimony)

model order

A
IC

 (b
its

)

optimal order
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Selecting a VAR Model Order

Other considerations:

A M-dimensional VAR model of order p has at 
most Mp/2 spectral peaks distributed 
amongst the M variables. This means we can 
observe at most p/2 peaks in each variables’ 
spectrum (or in the causal spectrum between 
each pair of variables)

δ

θ

α

β
γ

Optimal model order depends on sampling rate (higher 
sampling rate often requires higher model orders)

14Saturday, June 16, 2012



Granger Causality

First introduced by Wiener (1958). Later reformulated by 
Granger (1969) in the context of linear stochastic 
autoregressive models
Relies on two assumptions:

15

Granger Causality Axioms

1. Causes should precede their effects in time (Temporal 
Precedence)

2. Information in a cause’s past should improve the 
prediction of the effect, above and beyond the information 
contained in past of the effect (and other measured 
variables)
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VAR1 var(E1(t))

VAR2 var(E1(t))

= ?

X1(t)
X2 (t)
X3(t)

X1(t)
X2 (t)
X3(t)
X4 (t)

~

Does X4 granger-cause X1?
(conditioned on X2, X3)

?

prediction error for X1

(variance of residuals E1)

X(t) = A(k )
k=1

p∑ X(t − k) + E(t)

X−4 (t) = A(k )
k=1

p∑ X−4 (t − k) + E(t)

Granger Causality
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Alternately, for a multivariate interpretation we can fit a single MVAR 
model to all channels and apply the following definition:  

Granger Causality

Granger (1969) quantified this definition for bivariate processes in the 
form of an F-ratio:

   
FX1←X2

= ln
var( E1)
var(E1)

⎛

⎝⎜
⎞

⎠⎟
= ln

var( X1(t) | X1(⋅))
var( X1(t) | X1(⋅), X2 (⋅))

⎛

⎝⎜
⎞

⎠⎟

reduced model

full model

Xj granger-causes Xi conditioned on all other variables in X
 if and only if A ij (k) >> 0  for some lag  k ∈  {1,  ... ,  p}

Definition 1
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Granger Causality Quiz

Example: 2-channel MVAR process of order 1

  

X1(t)= −0.5X1(t -1)  +      0X2 (t -1)  +   E1(t)
X2 (t)=  0.7 X1(t -1)  +   0.2X2 (t -1)  +   E2 (t)

X1(t)

X2 (t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= −0.5 0

0.7 0.2

⎛

⎝⎜
⎞

⎠⎟
X1(t −1)

X2 (t −1)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

E1(t)

E2 (t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Which causal structure does this model correspond to?

1 2a) 1 2b) 1 2c)

X
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Granger Causality – Frequency Domain

X(t) = A(k )
k=1

p∑ X(t − k) + E(t)

Fourier-transforming A(k) we obtain

A( f ) = − A(k )e− i2π fk
k=0

p∑ ;A(0) = I

Likewise, X(f) and E(f) correspond to 
the fourier transforms of the data 

and residuals, respectively

Where H(f) is the transfer matrix of the system.

X( f ) = A( f )−1E( f ) = H( f )E( f )

We can then define the spectral matrix X(f) as follows:

Xj granger-causes Xi conditioned on all other variables in X
 if and only if |Aij(f)| >> 0 for some frequency f

Definition 2
leads to 

PDC
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X(t) = A(k )
k=1

p∑ (t)X(t − k) + E(t)
A( f ,t) = − A(k ) (t)e− i2π fk

k=0

p∑ ;   A(0) = I
X( f ,t) = A( f ,t)−1E( f ,t) = H( f ,t)E( f ,t)



x1(t)
x2 (t)


xM (t)

spurious

direct true flow

indirect true flow•

Functional Effective

KUŚ et al.: DETERMINATION OF EEG ACTIVITY PROPAGATION: PAIR-WISE VERSUS MULTICHANNEL ESTIMATE 1503

A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on June 15,2010 at 13:07:27 UTC from IEEE Xplore.  Restrictions apply. 

Ground Truth

Kus, 2004

π ij
2 ( f ) =

| Aij ( f ) |
2

Akj ( f )
2

k=1

M∑
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on June 15,2010 at 13:07:27 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on June 15,2010 at 13:07:27 UTC from IEEE Xplore.  Restrictions apply. 
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(Geweke, 1982; Bressler et al., 2007)

Fij ( f ) =
Σ jj − (Σ

2
ij / Σii )) | Hij ( f ) |

2

Sii ( f )

Pij ( f ) =
S −1
ij ( f )

S −1
ii ( f )S

−1
jj ( f )
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on June 15,2010 at 13:07:27 UTC from IEEE Xplore.  Restrictions apply. 

• ••

C
oh

er
en

cy

(Bendat and Piersol, 1986)

Frequency	  (Hz)

Po
w
erS( f ) = X( f )X( f )*

       = H( f )ΣH( f )*

S
p

ec
tr

um

(Brillinger, 2001)

B
iv

ar
ia

te
M

ul
tiv

ar
ia

te

NOTE: time index (t) dropped for convenience 

20Saturday, June 16, 2012



Scalp or Source?
398 15 Multivariate Signal Analysis by Parametric Models

Fig. 15.13: Direction of flows for 21-channel EEG (awake state eyes closed) obtained
by means of different methods. The shade of gray of the arrow represents the
strength of the connection (black = the strongest), for each method 40 strongest
flows are shown. Reprinted from with permission [49] (© IEEE 2005).

lot of activity flowing to the destination channels from the posterior electrodes,
so the denominator in Eq. (15.6) is quite large, which diminishes the values of
DTFs showing outflows from Fz. For Granger causality and DTF there is no
propagation from the temporal electrodes. This is practically also the case for
dDTF. The dDTF shows only direct flows, we can see that in this case the pattern
of flows is consistent with anatomy, e.g., a lack of direct connection between Oz
and Pz, Fz, and Fpz—locations where hemispheres are partitioned. The main
sources of the activity—namely, electrodes P3, P4, O2, Oz, O1—are the same as
for the other multivariate estimates.
Inspecting the results of application of the PDC function to the same data

epoch we observe a different picture. One can notice that, unlike the results of
dDTF, some channels became sinks. This is due to the normalization of PDC. In
fact, we do not see the transmission, as is the case for dDTF, but the ratio between
the flow to a given channel with respect to all the outflows from the considered
channel. In this way, a channel propagating activity in all directions will show
weaker flows than a channel propagating only in one direction. Therefore, the
method is not suitable for identification of sources of EEG activity, but it may be
useful when the destination channel is of primary interest.
The pattern of propagations obtained for the bivariate estimates of the Granger

or
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S(t) = A(k )
k=1

p

∑ (t)S(t − k) + E(t)

X (t) = HS(t)

Volume
Conduction

sources

X (t) = HS(t) = HA(k )
k=1

p

∑ (t)H −1X (t − k) + HE(t)

Solution? Source Separation 

ICA
SBL

Beamforming
Minimum-norm

...

H −1

Volume conduction 
exists for ECoG too!
(c.f. Whitmer, Worrell, ... , Makeig, 
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The brain is a dynamic system and measured brain activity 
and coupling can change rapidly with time (non-stationarity)

event-related perturbations (ERSP, ERP, etc)

structural changes due to learning/feedback

How can we adapt to non-stationarity?
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Many ways to do adaptive VAR estimation

Segmentation-based adaptive VAR estimation

Factorization of time-varying spectral density matrices 
(e.g. from STFTs, Wavelets, etc)

State-Space Modeling

...

Segmentation-based adaptive VAR estimation
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X(t) = A(k )
k=1

p∑ (t)X(t − k) + E(t)
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Analogous to short-
time Fourier transform

A( f ,t) = − A(k ) (t)e− i2π fk
k=0

p∑ ;A(0) = I

GCVAR

ensemble normalization

Segmentation-based VAR
(Jansen et al., 1981; Florian and Pfurtscheller, 1995; Ding et al, 2000)
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Time-Frequency GC

What is a good window length?

Considerations:

Temporal smoothing

Local stationarity 

Sufficient amount of data

Process dynamics
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Consideration: Temporal Smoothness

Too- l a rge w indows may 
s m o o t h o u t i n t e r e s t i n g 
transient dynamic features.

Ding et al, 2000
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Ding et al, 2000
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Too-large windows may not be 
locally-stationary

Consideration: Local Stationarity
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Time-Frequency GC

Ding et al, 2000

Consideration: Sufficient data

M = number of variables
p = model order
Ntr = number of trials
W = length of each window (sample points)

We have M2p  model coefficients to estimate. This requires a 
minimum of M2p independent samples. 
So we have the constraint M2p <= Ntr W. 
In practice, however, a better heuristic is M2p <= (1/10)Ntr W.  

Or:   W >= 10(M2p/Ntr)

SIFT will let you know if your window length is not optimal

10x more data points than 
parameters to estimate
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Time-Frequency GC

Ding et al, 2000

Consideration: Process dynamics

• Your window must be larger than the maximum expected 
interaction time lag between any two processes.

• Your window should be large enough to span ~1 cycle of the 
lowest frequency of interest (remember the Heisenberg uncertainty 
principle)
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Time-Frequency GC

Many ways to do time-varying VAR estimation

Segmentation-based adaptive VAR estimation

Factorization of time-varying spectral density matrices 
(e.g. from STFTs, Wavelets, etc)

State-Space Modeling

...

State-Space Modeling
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Discrete State-Space Model (SSM) for 
Electrophysiological Dynamics

•Dynamical system may be linear or nonlinear, dense or sparse, non-stationary, high-
dimensional, partially-observed, and stochastic

•Subsumes discrete Delay Differential Equation (DDE) and Vector Autoregressive (VAR) 
methods and closely related to Dynamic Causal Modeling (DCM)
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observation equation
(e.g. noisy sensor observations)

y(t) = Hs(t) + (t)

s(t) = A(t)s(t −1) + v(t)Linear VAR[1]

state transition equation
(e.g. latent source and/or coupling dynamics)

s(t) = f s(t − ),u(t − ),θ(t)( ) + v(t)

known 
deterministic inputs

u(t)
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Time Update  
(“Predict”)

Measurement 
Update

(“Correct”)

Initialize

optimal estimator (in terms of minimum variance) for the state of a 
linear dynamical system

y(t)

new data point

ŷ(t)

y(0)

ε(t) = y(t) − ŷ(t)

updated model
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Source Information Flow Toolbox
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http://sccn.ucsd.edu/wiki/SIFT
Mullen, et al, Journal of Neuroscience Methods (in prep, 2012)

Mullen, et al, Society for Neuroscience, 2010
Delorme, Mullen, Kothe et al, Computational Intelligence and Neuroscience, vol 12, 2011

Pre-processing

Statistics

VisualizationGroup Analysis

Model Fitting 
and Validation
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Computational Intelligence and Neuroscience 3

NFT toolbox EEGLAB SIFT

28 user plugins

EyeTracker

Wii remote

Mocap

EEG

Tactile stream

Video stream

Audio stream

Producer

DataRiver

MatRiver

BCILAB

HeadIT

ERICA framework

Analysis

Analysis plugins

Data archive

Data sync and handling

Interactive tools

Stimulus control

Figure 1: Complete electrophysiological experiment control, data collection, analysis, archiving, and meta-analysis suite: the EEGLAB
environment for data analysis; the ERICA framework for data recording, online analysis, and stimulus control; the BCILAB toolbox for
online and offline classification and BCI; the SIFT toolbox for information flow modeling; HeadIT, an archival data and tools resource
under development for laboratory or archival data storage, retrieval and meta-analysis; dashed lines indicates planned interfaces under
construction.

Table 1: Components of the extended SCCN software suite.

Software Since Vers. Licence Open Src. Platform Web link

EEGLAB 2002 10.0 GNU GPL Yes Matlab http://sccn.ucsd.edu/wiki/EEGLAB
NFT toolbox 2009 2.0 GNU GPL Yes† Matlab† http://sccn.ucsd.edu/wiki/NFT
SIFT 2010 0.1a GNU GPL Yes Matlab http://sccn.ucsd.edu/wiki/SIFT
BCILAB 2010 0.9 GNU GPL Yes Matlab http://sccn.ucsd.edu/wiki/BCILAB
ERICA 2009 1.0 Mixed∗ Mixed∗ Windows†† http://sccn.ucsd.edu/wiki/ERICA
∗

DataRiver, a central compiled C++ ERICA component, is free for noncommercial use. It is not open source.
†Contains a large number of precompiled C and C++ routines, all of them being open source.
††Many components also run under Linux and Mac OSX.

removing artifacts. Once these data sets have been pre-
processed, users then have to import the subject data sets
into a STUDY. Creating a STUDY design for analysis then
allows statistical group comparison of data measures for
different conditions (e.g., time locked to specific event types)
for each subject. For example, in an oddball paradigm
comprised of trials time locked to target, distractor, and
standard stimuli, users might want to contrast these three
types of trials using a 3× 1 design. Alternatively, they might
want to contrast distractor and target stimulus-locked trials,
considered together, with responses to standard stimuli. The
STUDY design feature of EEGLAB allows users to easily
investigate such contrasts. In a STUDY with N subject
groups, the STUDY design scheme also allows users to look
at group effects for each condition using a 2×N design.

All of the above design concepts may be implemented
within a single STUDY using multiple STUDY.design specifi-
cations. Finally, use of multiple designs may also be useful for
testing different signal processing options. For instance, one
might create two identical STUDY designs, one computing
time/frequency measures using fast fourier transforms (FFT)
and the other using wavelets. Once computed, the user can

toggle between designs to compare results using the two
types of time/frequency decomposition.

EEGLAB uses statistical tools including surrogate and
parametric statistics to perform hypothesis testing on
STUDY designs. Surrogate tests involve bootstrap or permu-
tation methods. Depending on the design type, statistical
hypothesis testing using t-test, one-way ANOVA or two-
way ANOVA—or their surrogate-data equivalents—are per-
formed for paired data or unpaired data designs. Finally,
the False Discovery Rate (FDR) algorithm is applied to
correct for multiple comparisons [9]. Using these simple
yet powerful statistical tools, EEGLAB allows comparison
of multiple experimental designs applied to a given data
STUDY.

When working with data from multiple subjects using
the STUDY design framework, users may analyse either
IC, scalp channel, or other types of component activities
associated with individual subjects. Decomposition of the
data into ICs allows inclusion of source localization infor-
mation, since many ICs strongly resemble the projection
of a single equivalent current dipole, presumably reflecting
their origin in a single locally synchronized cortical patch.
The neuroelectromagnetic forward head modeling toolbox

Delorme, Mullen, Kothe, Akalin Acar, Bigdely-Shamlo,Vankov, Makeig, Computational Intelligence and Neuroscience, 2011

BCILAB

EEGLAB Software framework
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Source Information Flow 
Toolbox (SIFT)

A toolbox for (source-space) electrophysiological information flow and 
causality analysis (single- or multi-subject) integrated into the EEGLAB 
software environment.

Modular architecture intended to support multiple modeling approaches

Emphasis on vector autoregression and SSMs and time-frequency 
domain approaches

Standard and novel interactive visualization methods for exploratory 
analysis of connectivity across time, frequency, and spatial location

Requirements: EEGLAB, MATLABTM 2008a+, Signal Processing Toolbox, 
Statistics Toolbox (for some functions -- may be removed in the future)

37
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Pre-processing

Statistics

VisualizationGroup Analysis

Model Fitting 
and Validation

Connectivity

M
odeling

In
tr

o
Th

eo
ry

S
IF

T
A

pp
s

To
-D

o
Fi

n

Simulation

38Saturday, June 16, 2012



VisualizationStatisticsModeling
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Preprocessing

Source reconstruction
(performed externally using EEGLAB or other toolboxes)

Filtering or Local Detrending

Downsampling

Differencing

Normalization (temporal or ensemble)

Trial balancing
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Preprocessing VisualizationStatisticsModeling
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Model Fitting Validation Connectivity

Modeling VisualizationStatisticsPreprocessing

41
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Linear Linear+Nonlinear
VAR Modeling
  Vieira-Morf, ARFIT

Dual Extended Kalman Filtering

Sparse VAR
  Group Lasso (L1,2), TSBL (Lp)

Cubature Kalman Filtering

Linear Kalman Filtering Transfer Entropy (TRENTOOL interface)

Nonparametric VAR (minimum-phase 
spectral matrix factorization)

Modeling VisualizationStatisticsPreprocessing

Model Fitting Validation Connectivity
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fully implemented alpha-testing coming soon
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Modeling VisualizationStatisticsPreprocessing

Model Fitting Validation Connectivity
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Modeling VisualizationStatisticsPreprocessing

Model Fitting Validation Connectivity
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VAR Model Validation
Residual ‘Whiteness’ Tests

      Multivariate portmanteau tests

      Residual autocorrelation probability test

Model Consistency

Model Stability

Nonparametric Spectral/Coherence Correlation

Modeling VisualizationStatisticsPreprocessing

Model Fitting Validation Connectivity
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Modeling VisualizationStatisticsPreprocessing

Model Fitting Validation Connectivity
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VAR-based Measures
Power spectrum (ERSP)

Coherence (Coh), Partial Coherence (pCoh), Multiple Coherence (mCoh)

Partial Directed Coherence (PDC)

Generalized PDC  (GPDC)

Partial Directed Coherence Factor (PDCF)

Renormalized PDC  (rPDC)

Directed Transfer Function (DTF)

Direct Directed Transfer Function (dDTF)

Bivariate Granger-Geweke Causality (GGC)

Conditional GGC

Blockwise GGC

fully implemented alpha-testing coming soon

Modeling VisualizationStatisticsPreprocessing

Model Fitting Validation Connectivity
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Modeling VisualizationStatisticsPreprocessing

Model Fitting Validation Connectivity
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Hnull : Cij ≤ Cnull         Hbase: Cij ≤ Cbaseline             HAB: CAij = CBij

Statistics VisualizationModelingPreprocessing

Parametric Non-parametric

Asymptotic analytic estimates of 
confidence intervals

Applies to: PDC, nPDC, DTF, 
nDTF, rPDC
Tests: Hnull, Hbase, HAB

Confidence intervals using 
Bayesian smoothing splines

Applies to: all
Tests: Hbase, HAB

Phase-randomization 
 Applies to: all
 Tests: Hnull

Bootstrap, Jacknife, Cross-
Validation

Applies to: all
Tests: HAB, Hbase
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Statistics VisualizationModelingPreprocessing

Parametric Non-parametric
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VisualizationStatisticsModelingPreprocessing

51

Interactive Visualizers

Interactive Time-Frequency Grid

Interactive 3D Causal Brainmovie

Causal Projection Movie

Directed Graphs and Graph Theoretic Analysis 
(Bioinformatics Toolbox Interface)

and more ...
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fully implemented alpha-testing coming soon
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Interactive Time-Frequency GridIn
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Interactive Time-Frequency Grid
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Interactive Causal BrainMovie3D
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Bioinformatics Toolbox IFace
Interactive Directed Graphs

Radial, Hierarchical, or 
Customized Node Layout

Graph-Theoretic Analysis (SCCs, 
Shortest-Path, MaxFlow, etc)

Assignment of useful quantities 
to Node and Edge size/color
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clusters

LEGEND

causal flow

prefrontal

dorsofrontal

postcentral

precentral

0

0.3

-0.3

source

sink

dDTF

0.27

0.03

0.14

4-25 Hz

Seizure Late StagePre-seizure Seizure Early Stage Post-Seizure

alpha-testing

Mullen et al, 2011
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Causal/Measure Projection Bayesian Hierarchical Model
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Group Analysis

!"

P(S1 | Z1) P(b1 | Z1)

Z1

S1 b1

P(Z1 |G)

P(SN | ZN ) P(bN | ZN )

ZN

SN

G = {S,b}!"#$%&'()('*+(,-#".*
/0,(+,*

123(")(4*

bN

P(ZN |G)

5$26(7,*8*

Thompson, Mullen, Makeig, 2011, ICONXI
Thompson, Mullen, Makeig, 2012, in prep

Mullen, Onton, et al, 2010, HBM, Barcelona
Bigdely-Shamlo, Mullen, et al, 2012, in review
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Causal Projection
Error > Correct (p < 0.05, N=24)

dDTF

3-7 Hz
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alpha-testingMullen, et al, 2010, HBM, Barcelona
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EEG has millisecond temporal resolution, necessary for analysis of transient cortical dynamics. However, the 
poor spatial resolution of scalp EEG combined with the confounding effects of volume conduction and non-brain 
artifacts complicates interpretation of neural dynamics when examined at the level of scalp electrodes. Accurate 
localization of sources of EEG activity is a difficult, ill-posed problem. One approach is to apply Independent 
Component Analysis (ICA) to scalp EEG recordings to obtain time courses and scalp maps of maximally-
independent sources of EEG activity with projections resembling single or dual symmetric equivalent dipoles. 
These sources can then be localized using appropriate forward and inverse models, while adaptive vector 
autoregressive models may be fit to the source time series to model transient information flow. Applied to 
different subjects, this typically results in varying numbers and locations of source dipoles across subjects which 
complicates efforts to obtain robust group-level statistics. Here we develop a Bayesian spatiotemporal model for 
multi-subject source-localized EEG which provides group inferences on the spatial locations and causal 
relationships among localized sources. Each subject's localized sources are modeled as arising from a mixture 
distribution of spatial coordinates and time-varying multivariate granger causality. Model inference is obtained via 
a Markov Chain Monte Carlo algorithm. This approach can be generalized to other non-ICA approaches for 
separation and localization of dipolar sources, such as beamforming. The utility of this method is initially 
demonstrated by application to a large multi-subject EEG dataset, where we examine network dynamics 
underlying error commission in an ERN-producing task. 

Theory!

Results!

MULTI-SUBJECT INFERENCE!
!
Group-level inferences of multi-subject source-localized (dipolar) independent components (ICs) can be 
problematic. Two or more subjects performing the same task may end up with differing numbers of retained IC 
sources and different source locations. Thus, unlike scalp channel recordings or region-of-interest (ROI) source 
analysis there is an inherent uncertainty in matching IC sources across subjects, and therefore in obtaining 
reliable group inferences regarding functional connectivity between these sources. While various disjoint 
clustering methods can be used to identify similar sources across subjects, these methods often suffer from poor 
statistical properties as the number of missing variables increases. It is thus preferable to employ a method which 
propagates uncertainty regarding source identification to inferences regarding group-level effective connectivity 
(EC) estimates.!
 !
MIXTURE MODEL!
!
Let the Mi x T matrix of IC time series for the ith subject be denoted by Yi and let the estimated Mi corresponding 
dipole spatial locations be denoted by Si. Let M be the total number of group-level sources (e.g. clusters or ROIs) 
under consideration for all N subjects (currently M is chosen by a preliminary a priori decision, though in the future 
we will determine this automatically within the inferential framework as in [1]).!
!
The data are modeled as coming from a mixture distribution [2]. To implement this mixture model, for each subject 
we augment the observed data {Yi, Si} with an Mi x M matrix of latent indicators Zi. The jth row of Zi consists of 
zeros with exactly one entry equal to one in column k: this indicates that the jth source for subject i corresponds to 
the kth cluster.!
!
Conditional on the Zi we assume!
!

  Pr( Si  | Zi ) = !j=1:Mi!k=1:M [ N(Sij | µk, !k) ]zijk         (1) 
 !

In addition to the spatial information, we want to incorporate information regarding the dynamics of the source-
localized times series Yi into the mixture model. Suppose we summarize the EC information contained in the 
source time series Yi via time-varying EC estimates Fi(t). We include this information in the mixture model via!
!

  Pr( Fi  | Zi ) = !j=1:Mi!k=1:M [ Pr(Fi | "k) ]zijk                 (2) 

!
where  βk are parameters which determine the distribution of Fi conditional on Zi.   !
!
In the following example, we obtain Fi(t) by computing the graph-normalized Direct Directed Transfer Function 
(dDTF, [3]) – a frequency-domain measure of multivariate Granger-causal relationships – for each pair of IC 
sources. We obtain time-varying dDTF estimates using a sliding-window vector autoregressive (VAR) model with 
a 500 ms window length and 30 ms step size producing 80 time points. The dDTF is integrated over the theta 
band (3-7 Hz) and modeled as a smooth function of time via a penalized B-spline; the βk are the fixed effects 
group level of the coefficients bi of the spline basis functions.!
!

 Pr( bi  | Zi ) = N(bi | "k, "2
bkI)                  (3) 

!
BAYESIAN INFERENCE!
!
We place Dirichlet(αi) prior distributions on the allowable patterns of the latent indicator matrices Zi. Along with the 
augmented likelihood derived from Eq. (1)-(3), we complete the Bayesian specification of the model by placing 
Inverse Wishart (IW) prior distributions on the Σk , Inverse Gamma distributions on the σ2

bk , and diffuse normal 
distributions on the  μk and βk. !
!
Model inference proceeds via a Markov Chain Monte Carlo (MCMC) algorithm. Full conditional posterior 
distributions are standard. In particular, the allowable patterns of the indicator matrices Zi are multinomial. 
Allowable patterns have exactly one nonzero element in each row and at most one non-zero element in each 
column. Since the number of allowable patterns is too large to sample from directly (in general Mi ! / (M-Mi)!), we 
sample a subset of the allowable patterns at each iteration of the MCMC algorithm as follows:!
!

(i)  For subject i, randomly sample two distinct row indices j1 and j2 between 1 and Mi. !
(ii)  Keeping all other indices fixed, compute the conditional posterior over all allowable patterns permuting the 

column indices k1 and k2 for which the j1 and j2 rows are nonzero. !
(iii)  Sample Zi from the conditional distribution keeping other rows fixed.!

Sampling of all other parameters conditional on the latent data Zi  is straightforward. !
!
!
!
!
!
 !
 !
!
!

We have demonstrated a preliminary application of a novel Bayesian spatiotemporal model for obtaining group-
level inferences and confidence intervals on expected dipolar source locations and dynamics (e.g. connectivity). 
In this application we demonstrated the emergence of statistically significant causal relationships between dorsal 
MCC and several cortical and cingulate structures during error commission. This is commensurate with theoretical 
and experimental evidence for a significant causal role of MCC in error processing [6]. We realize this model 
represents a first step which can be further improved upon. We are currently working on expanding this to the 2D 
time-frequency plane using a tensor product of 1D splines (allowing different degrees of smoothing across time or 
frequency). We also plan to use a Dirichlet hyperprior to automatically select the optimal number of clusters as in 
[1]. The method also can be adapted to gracefully handle outliers, which should help improve the confidence 
interval estimates from those shown above. Finally, while in this example prior distribution parameters were 
determined using mean and covariance information from an initial k-means clustering step, it is straightforward to 
incorporate biologically-plausible priors for source locations and dispersion, which can be determined via existing 
numerical simulation data as well as task-specific prior expectations. The method can also be extended naturally 
to modeling statistical interactions between multiple experimental conditions via hierarchical modeling, which is a 
current avenue of research for us. !
!
Once fully developed, we expect this approach will have a significant impact on the ability to flexibly obtain robust 
group-level inferences and statistics on the spatiotemporal dynamics and/or interactions of point-process (dipolar) 
sources. The approach may also have utility when used with distributed source localization algorithms and we are 
currently exploring the use of source spatial distributions obtained from Sparse Bayesian Learning.!

[1] Ishwaran, H. and James, L., (2002) JCGS [2] Fruhwirth-Schnatter, S., (2006) Finite Mixture and Markov Switching Models. Springer, 
NY, NY. [3] Korziniewska, et al, (2008) Human Brain Mapping [4] Onton, J. and Makeig, S (2007) Society for Neuroscience [5] Makeig, 
S., et al (2002) Science [6] Shackman et al (2011) Nature Reviews  [7] Mullen, T., et al (2010) www.sccn.ucsd.edu/wiki/SIFT!

Color-coded clustering of all 246 dipoles

128-channel (256 Hz) EEG data were collected from 24 subjects 
performing a visual letter two-back task with auditory feedback [4]. Trials 
were segregated based on response type (Incorrect vs. Correct). 
Following zero-phase FIR high-pass filtering (1 Hz), response-locked 
datasets were subjected to Infomax Independent Component Analysis 
(ICA). ICA is effective at separating source components that are maximally 
instantaneously independent, which can be further analyzed for transient 
dependencies [5]. A single (or dual symmetric) equivalent dipole model 
was then fit to each independent component (IC) using EEGLABʼs 
DIPFIT2 function. We rejected ICs corresponding to artifacts such as eye 
blinks and muscle activity, and those with a poor dipole fit (> 15% r.v., or 
lying outside brain volume).!

Data!

Below: All retained dipolar sources from 
all subjects color-coded by cluster 
membership (k-means clustering). !
R i g h t : F r a m e s f r o m a C a u s a l 
BrainMovie3D showing group inferences 
on source locations and effective 
connectivity (integrated over 3-7 Hz theta 
band) as obtained from Bayesian mixture 
model. K-means cluster centroids and 
spatial dispersion used as initial values 
and priors for MCMC algorithm. A cluster 
is retained if more than 33% of subjects 
have greater than 50% probability of 
cluster membership. We retain only 
connectivity that deviates significantly 
from [-750 -500 ms] baseline (p<0.01).!

Below: Time-varying theta-band (3-7 Hz) dDTF group-level inferences with 99% confidence intervals. Mean source 
locations with Talairach coordinates and anatomical designations (Talairach Daemon) are shown on the marginals. 
Translucent regions indicate time intervals that deviate significantly from the [-750 to -500] ms baseline (p<0.01, 
uncorrected). Note the significant outflow from a source in the dorsal middle cingulate cortex (BA24/MCC) – likely the 
rostral cingulate zone (RCZ) – immediately before, during, and following responses made in error. All connectivity 
analysis and visualizations are produced using the EEGLAB-compatible Source Information Flow Toolbox [7].!

Conclusions and Future Work!
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EEG has millisecond temporal resolution, necessary for analysis of transient cortical dynamics. However, the 
poor spatial resolution of scalp EEG combined with the confounding effects of volume conduction and non-brain 
artifacts complicates interpretation of neural dynamics when examined at the level of scalp electrodes. Accurate 
localization of sources of EEG activity is a difficult, ill-posed problem. One approach is to apply Independent 
Component Analysis (ICA) to scalp EEG recordings to obtain time courses and scalp maps of maximally-
independent sources of EEG activity with projections resembling single or dual symmetric equivalent dipoles. 
These sources can then be localized using appropriate forward and inverse models, while adaptive vector 
autoregressive models may be fit to the source time series to model transient information flow. Applied to 
different subjects, this typically results in varying numbers and locations of source dipoles across subjects which 
complicates efforts to obtain robust group-level statistics. Here we develop a Bayesian spatiotemporal model for 
multi-subject source-localized EEG which provides group inferences on the spatial locations and causal 
relationships among localized sources. Each subject's localized sources are modeled as arising from a mixture 
distribution of spatial coordinates and time-varying multivariate granger causality. Model inference is obtained via 
a Markov Chain Monte Carlo algorithm. This approach can be generalized to other non-ICA approaches for 
separation and localization of dipolar sources, such as beamforming. The utility of this method is initially 
demonstrated by application to a large multi-subject EEG dataset, where we examine network dynamics 
underlying error commission in an ERN-producing task. 

Theory!

Results!

MULTI-SUBJECT INFERENCE!
!
Group-level inferences of multi-subject source-localized (dipolar) independent components (ICs) can be 
problematic. Two or more subjects performing the same task may end up with differing numbers of retained IC 
sources and different source locations. Thus, unlike scalp channel recordings or region-of-interest (ROI) source 
analysis there is an inherent uncertainty in matching IC sources across subjects, and therefore in obtaining 
reliable group inferences regarding functional connectivity between these sources. While various disjoint 
clustering methods can be used to identify similar sources across subjects, these methods often suffer from poor 
statistical properties as the number of missing variables increases. It is thus preferable to employ a method which 
propagates uncertainty regarding source identification to inferences regarding group-level effective connectivity 
(EC) estimates.!
 !
MIXTURE MODEL!
!
Let the Mi x T matrix of IC time series for the ith subject be denoted by Yi and let the estimated Mi corresponding 
dipole spatial locations be denoted by Si. Let M be the total number of group-level sources (e.g. clusters or ROIs) 
under consideration for all N subjects (currently M is chosen by a preliminary a priori decision, though in the future 
we will determine this automatically within the inferential framework as in [1]).!
!
The data are modeled as coming from a mixture distribution [2]. To implement this mixture model, for each subject 
we augment the observed data {Yi, Si} with an Mi x M matrix of latent indicators Zi. The jth row of Zi consists of 
zeros with exactly one entry equal to one in column k: this indicates that the jth source for subject i corresponds to 
the kth cluster.!
!
Conditional on the Zi we assume!
!

  Pr( Si  | Zi ) = !j=1:Mi!k=1:M [ N(Sij | µk, !k) ]zijk         (1) 
 !

In addition to the spatial information, we want to incorporate information regarding the dynamics of the source-
localized times series Yi into the mixture model. Suppose we summarize the EC information contained in the 
source time series Yi via time-varying EC estimates Fi(t). We include this information in the mixture model via!
!

  Pr( Fi  | Zi ) = !j=1:Mi!k=1:M [ Pr(Fi | "k) ]zijk                 (2) 

!
where  βk are parameters which determine the distribution of Fi conditional on Zi.   !
!
In the following example, we obtain Fi(t) by computing the graph-normalized Direct Directed Transfer Function 
(dDTF, [3]) – a frequency-domain measure of multivariate Granger-causal relationships – for each pair of IC 
sources. We obtain time-varying dDTF estimates using a sliding-window vector autoregressive (VAR) model with 
a 500 ms window length and 30 ms step size producing 80 time points. The dDTF is integrated over the theta 
band (3-7 Hz) and modeled as a smooth function of time via a penalized B-spline; the βk are the fixed effects 
group level of the coefficients bi of the spline basis functions.!
!

 Pr( bi  | Zi ) = N(bi | "k, "2
bkI)                  (3) 

!
BAYESIAN INFERENCE!
!
We place Dirichlet(αi) prior distributions on the allowable patterns of the latent indicator matrices Zi. Along with the 
augmented likelihood derived from Eq. (1)-(3), we complete the Bayesian specification of the model by placing 
Inverse Wishart (IW) prior distributions on the Σk , Inverse Gamma distributions on the σ2

bk , and diffuse normal 
distributions on the  μk and βk. !
!
Model inference proceeds via a Markov Chain Monte Carlo (MCMC) algorithm. Full conditional posterior 
distributions are standard. In particular, the allowable patterns of the indicator matrices Zi are multinomial. 
Allowable patterns have exactly one nonzero element in each row and at most one non-zero element in each 
column. Since the number of allowable patterns is too large to sample from directly (in general Mi ! / (M-Mi)!), we 
sample a subset of the allowable patterns at each iteration of the MCMC algorithm as follows:!
!

(i)  For subject i, randomly sample two distinct row indices j1 and j2 between 1 and Mi. !
(ii)  Keeping all other indices fixed, compute the conditional posterior over all allowable patterns permuting the 

column indices k1 and k2 for which the j1 and j2 rows are nonzero. !
(iii)  Sample Zi from the conditional distribution keeping other rows fixed.!

Sampling of all other parameters conditional on the latent data Zi  is straightforward. !
!
!
!
!
!
 !
 !
!
!

We have demonstrated a preliminary application of a novel Bayesian spatiotemporal model for obtaining group-
level inferences and confidence intervals on expected dipolar source locations and dynamics (e.g. connectivity). 
In this application we demonstrated the emergence of statistically significant causal relationships between dorsal 
MCC and several cortical and cingulate structures during error commission. This is commensurate with theoretical 
and experimental evidence for a significant causal role of MCC in error processing [6]. We realize this model 
represents a first step which can be further improved upon. We are currently working on expanding this to the 2D 
time-frequency plane using a tensor product of 1D splines (allowing different degrees of smoothing across time or 
frequency). We also plan to use a Dirichlet hyperprior to automatically select the optimal number of clusters as in 
[1]. The method also can be adapted to gracefully handle outliers, which should help improve the confidence 
interval estimates from those shown above. Finally, while in this example prior distribution parameters were 
determined using mean and covariance information from an initial k-means clustering step, it is straightforward to 
incorporate biologically-plausible priors for source locations and dispersion, which can be determined via existing 
numerical simulation data as well as task-specific prior expectations. The method can also be extended naturally 
to modeling statistical interactions between multiple experimental conditions via hierarchical modeling, which is a 
current avenue of research for us. !
!
Once fully developed, we expect this approach will have a significant impact on the ability to flexibly obtain robust 
group-level inferences and statistics on the spatiotemporal dynamics and/or interactions of point-process (dipolar) 
sources. The approach may also have utility when used with distributed source localization algorithms and we are 
currently exploring the use of source spatial distributions obtained from Sparse Bayesian Learning.!

[1] Ishwaran, H. and James, L., (2002) JCGS [2] Fruhwirth-Schnatter, S., (2006) Finite Mixture and Markov Switching Models. Springer, 
NY, NY. [3] Korziniewska, et al, (2008) Human Brain Mapping [4] Onton, J. and Makeig, S (2007) Society for Neuroscience [5] Makeig, 
S., et al (2002) Science [6] Shackman et al (2011) Nature Reviews  [7] Mullen, T., et al (2010) www.sccn.ucsd.edu/wiki/SIFT!

Color-coded clustering of all 246 dipoles

128-channel (256 Hz) EEG data were collected from 24 subjects 
performing a visual letter two-back task with auditory feedback [4]. Trials 
were segregated based on response type (Incorrect vs. Correct). 
Following zero-phase FIR high-pass filtering (1 Hz), response-locked 
datasets were subjected to Infomax Independent Component Analysis 
(ICA). ICA is effective at separating source components that are maximally 
instantaneously independent, which can be further analyzed for transient 
dependencies [5]. A single (or dual symmetric) equivalent dipole model 
was then fit to each independent component (IC) using EEGLABʼs 
DIPFIT2 function. We rejected ICs corresponding to artifacts such as eye 
blinks and muscle activity, and those with a poor dipole fit (> 15% r.v., or 
lying outside brain volume).!

Data!

Below: All retained dipolar sources from 
all subjects color-coded by cluster 
membership (k-means clustering). !
R i g h t : F r a m e s f r o m a C a u s a l 
BrainMovie3D showing group inferences 
on source locations and effective 
connectivity (integrated over 3-7 Hz theta 
band) as obtained from Bayesian mixture 
model. K-means cluster centroids and 
spatial dispersion used as initial values 
and priors for MCMC algorithm. A cluster 
is retained if more than 33% of subjects 
have greater than 50% probability of 
cluster membership. We retain only 
connectivity that deviates significantly 
from [-750 -500 ms] baseline (p<0.01).!

Below: Time-varying theta-band (3-7 Hz) dDTF group-level inferences with 99% confidence intervals. Mean source 
locations with Talairach coordinates and anatomical designations (Talairach Daemon) are shown on the marginals. 
Translucent regions indicate time intervals that deviate significantly from the [-750 to -500] ms baseline (p<0.01, 
uncorrected). Note the significant outflow from a source in the dorsal middle cingulate cortex (BA24/MCC) – likely the 
rostral cingulate zone (RCZ) – immediately before, during, and following responses made in error. All connectivity 
analysis and visualizations are produced using the EEGLAB-compatible Source Information Flow Toolbox [7].!
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Simulation

Dynamical System Simulation Workbench

Systems of linear stochastically-forced damped coupled oscillators
     Support for arbitrary time-varying (non-stationary) coupling dynamics

     Intuitive equation-based scripting environment

     Support for generalized gaussian or hyperbolic secant innovations

Nonlinear Dynamical Systems

     Rössler and Lorenz Systems
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% ---------------------------------------------------------------------
% STEP 2: Simulate the VAR process
 
[A] = sim_genTVARcoeffs(Aproto,ModelOrder,Nl, ...
                       'NumSamplesToDiscard',ndisc,'Verbose',true);
% ---------------------------------------------------------------------
% STEP 3: generate data from the VAR model

M = size(A{1},1);

% Specify the process mean 
Mu = zeros(1,M);

% Specify the noise covariance matrix. 
sigma = 1;
E = sigma*eye(M);             
 
% generate simulated data with laplacian (supergaussian) innovations
data = sim_tvarsim(Mu,A,E,[Nl Nr],ndisc,1,1,'gengauss');

% Example: Trivariate damped coupled oscillators with sinusoidally-modulated coupling
% ---------------------------------------------------------------------
% STEP 1: create prototype VAR structure

Fs = 100;                % Sampling Rate (Hz)
Nl = 500;                % length of each epoch (samples)
Nr = 100;                % number of trials (realizations)
ndisc = 1000;            % number of startup samples to discard
ModelOrder = 2;          % model order
f0 = 10;                 % central oscillation frequency (Hz)

expr = {...
    ['x1(t) = ' sim_dampedOscillator(f0,9,Fs,1) '                                     + e1(t)'] ... 
    ['x2(t) = ' sim_dampedOscillator(f0,2,Fs,2) ' + -0.1*x1(t-2)                      + e2(t)'] ...
    ['x3(t) = ' sim_dampedOscillator(f0,2,Fs,3) ' + {0.3*sin(2*pi*t/100)+0.3}*x1(t-2) + e3(t)'] ...
};

Aproto = sim_genVARModelFromEq(expr,ModelOrder);
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Where do I get SIFT?
sccn.ucsd.edu/wiki/SIFT
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Some Applications of SIFT

Identification of event-related shifts in 
effective connectivity which index and 
predict behavior

Single-trial spatiotemporal modeling of 
seizure propagation dynamics

error event

Mullen et al, HBM, Barcelona, 2010
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Identification of event-related shifts in 
effective connectivity which index and 
predict behavior

Single-trial spatiotemporal modeling 
of seizure propagation dynamics

Mullen, et al IEEE EMBC, 2011
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Identification of event-related shifts in 
effective connectivity which index and 
predict behavior

Single-trial spatiotemporal modeling of 
seizure propagation dynamics

Some Applications of SIFTIn
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Brain-Computer Interfaces: 
Error correction/prediction
Neural Prostheses
...

!

s1(t)
s2 (t)
!

sM (t)

Source 
Identification 

•  Independent Component Analysis 
•  Sparse Bayesian Learning 
•  Beamforming 

Multi-Subject 
Inference 

•  Bayesian Hierarchical Modeling 
•  Causal/Measure Projection 

Model Fitting  •  Sparse Autoregressive Models 
•  Non-linear Kalman Filtering 

Time-Frequency 
Connectivity 

•  Multivariate Granger Causality 
•  Cross-Frequency Coupling 
•  Graph-Theoretic Reduction 

BCILAB

•  Real-time identification of 
cognitive/sensorimotor states 
using spatiotemporal network 
dynamics 
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Public release of alpha-testing methods (SIFT 1.0-beta ... being 
released at sccn.ucsd.edu/wiki/SIFT in the next week)

Ongoing development of sparse/regularized VAR and state-space 
models as well as nonlinear SSMs

Improved Group Analysis and Statistics

Integration with other toolboxes: Transfer Entropy (TRENTOOL), 
Dynamic Causal Modeling (SPM), Brain-Computer Interfaces 
(BCILAB)

Incorporation of structural constraints on dynamic connectivity (e.g. 
from DTI, anatomical priors, etc)

The Road AheadIn
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