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2. Introduction

Mapping the structural and active functional properties of brain networks is a key goal of
basic and clinical neuroscience and medicine. The novelty and importance of this
transformative research was recently emphasized by the U.S. National Institute of Health in
their 2010 announcement for the Human Connectome Project:

Knowledge of human brain connectivity will transform human neuroscience by
providing not only a qualitatively novel class of data, but also by providing the
basic framework necessary to synthesize diverse data and, ultimately, elucidate
how our brains work in health, illness, youth, and old age.

The study of human brain connectivity generally falls under one or more of three
categories: structural, functional, and effective (Bullmore and Sporns, 2009).

Structural connectivity denotes networks of anatomical (e.g., axonal) links. Here the
primary goal is to understand what brain structures are capable of influencing each other
via direct or indirect axonal connections. This might be studied in vivo using invasive
axonal labeling techniques or noninvasive MRI-based diffusion weighted imaging
(DWI/DTI) methods.

Functional connectivity denotes (symmetrical) correlations in activity between brain
regions during information processing. Here the primary goal is to understand what regions
are functionally related through correlations in their activity, as measured by some imaging
technique. A popular form of functional connectivity analysis using functional magnetic
resonance imaging (fMRI) has been to compute the pairwise correlation (or partial
correlation) in BOLD activity for a large number of voxels or regions of interest within the
brain volume.

In contrast to the symmetric nature of functional connectivity, effective connectivity denotes
asymmetric or causal dependencies between brain regions. Here the primary goal is to
identify which brain structures in a functional network are (causally) influencing other
elements of the network during some stage or form of information processing. Often the
term “information flow” is used to indicate directionally specific (although not necessarily
causal) effective connectivity between neuronal structures. Popular effective connectivity
methods, applied to fMRI and/or electrophysiological (EEG, iEEG, MEG) imaging data,
include dynamic causal modeling, structural equation modeling, transfer entropy, and
Granger-causal methods.

Contemporary research on building a human ‘connectome’ (complete map of human brain
connectivity) has typically focused on structural connectivity using MRI and diffusion-
weighted imaging (DWI) and/or on functional connectivity using fMRI. However, the brain
is a highly dynamic system, with networks constantly adapting and responding to
environmental influences so as to best suit the needs of the individual. A complete
description of the human connectome necessarily requires accurate mapping and modeling
of transient directed information flow or causal dynamics within distributed anatomical
networks. Efforts to examine transient dynamics of effective connectivity (causality or
directed information flow) using fMRI are complicated by low temporal resolution,
assumptions regarding the spatial stationarity of the hemodynamic response, and
smoothing transforms introduced in standard fMRI signal processing (Deshpande et al,,



2009a; Deshpande et al., 2009b). While electro- and magneto-encephalography (EEG/MEG)
affords high temporal resolution, the traditional approach of estimating connectivity
between EEG electrode channels (or MEG sensors) suffers from a high risk of false positives
from volume conduction and non-brain artifacts. Furthermore, severe limitations in spatial
resolution when using surface sensors further limits the physiological interpretability of
observed connectivity. Although precisely identifying the anatomical locations of sources of
observed electrical activity (the inverse problem) is mathematically ill-posed, recent
improvements in source separation and localization techniques may allow approximate
identification of such anatomical coordinates with sufficient accuracy to yield anatomical
insight invaluable to a wide range of cognitive neuroscience and neuroengineering
applications (Michel et al,, 2004). In limited circumstances it is also possible to obtain
human intracranially-recorded EEG (ICE, ECoG, iEEG) that, although highly invasive, affords
high spatiotemporal resolution and (often) reduced susceptibility to non-brain artifacts.

Once activity in specific brain areas have been identified using source separation and
localization, it is possible to look for transient changes in dependence between these
different brain source processes. Advanced methods for non-invasively detecting and
modeling distributed network events contained in high-density EEG data are highly
desirable for basic and clinical studies of distributed brain activity supporting behavior and
experience. In recent years, Granger Causality (GC) and its extensions have increasingly
been used to explore ‘effective’ connectivity (directed information flow, or causality) in the
brain based on analysis of prediction errors of autoregressive models fit to channel (or
source) waveforms. GC has enjoyed substantial recent success in the neuroscience
community, with over 1200 citations in the last decade (Google Scholar). This is in part due
to the relative simplicity and interpretability of GC - it is a data-driven approach based on
linear regressive models requiring only a few basic a priori assumptions regarding the
generating statistics of the data. However, it is also a powerful technique for system
identification and causal analysis. While many landmark studies have applied GC to
invasively recorded local field potentials and spike trains, a growing number of studies have
successfully applied GC to non-invasively recorded human EEG and MEG data (as reviewed
in (Bressler and Seth, 2010)). Application of these methods in the EEG source domain is also
being seen in an increasing number of studies (Hui and Leahy, 2006; Supp et al.,, 2007;
Astolfi et al,, 2007; Haufe et al., 2010).

In the last decade an increasing number of effective connectivity measures, closely related
to Granger’s definition of causality, have been proposed. Like classic GC, these measures can
be derived from (multivariate) autoregressive models fit to observed data time-series.
These measures can describe different aspects of network dynamics and thus comprise a
complementary set of tools for effective connectivity or causal analysis.

Several toolboxes affording various forms of Granger-causal (or related) connectivity
analysis are currently available in full or beta-release. Table 1 provides a list of several of
these toolboxes, along with the website, release version, and license. Although these
toolboxes provide a number of well-written and useful functions, they generally lack
integration within a more comprehensive framework for EEG signal processing (with the
exception of TSA, which does integrate into the Biosig EEG/MEG processing suite).
Furthermore, most of these either implements only one or two (often bivariate)
connectivity measures, lacks tools for sophisticated visualization, or lacks robust statistics
or multi-subject (group) analysis. Finally, with the exception of E-Connectome, none of
these toolboxes directly support analysis and/or visualization of connectivity in the EEG



source domain. These are all issues that our Source Information Flow Toolbox (SIFT),
combined with the EEGLAB software suite, attempts to address.

Table 1. A list of free Matlab-based toolboxes for connectivity and graph-theoretical analysis in neural
data.

Toolbox Name Primary Release License
Author
Granger Causality Anil Seth 2.6.1 http://www.informatics | GPL 3
Connectivity Analysis .sussex.ac.uk/users/anil
(GCCA) Toolbox s/index.htm
Time-Series Analysis | Alois Schloegl 3.00 http://biosig- GPL 2
(TSA) Toolbox consulting.com/matlab/
tsa
E-Connectome Bin He 1.0 http://econnectome.um GPL 3
n.edu/
Brain-System for Jie Cui beta http://www.brain- --
Multivariate smart.org/
AutoRegressive
Timeseries
(BSMART)

SIFT is an open-source Matlab (The Mathworks, Inc.) toolbox for analysis and visualization
of multivariate information flow and causality, primarily in EEG/iEEG/MEG datasets
following source separation and localization. The toolbox supports both command-line
(scripting) and graphical user interface (GUI) interaction and is integrated into the widely
used open-source EEGLAB software environment for electrophysiological data analysis
(sccn.ucsd.edu/eeglab). There are currently four modules: data preprocessing, model fitting
and connectivity estimation, statistical analysis, and visualization. A fifth group analysis
module, affording connectivity analysis and statistics over a cohort of datasets, will be
included in the upcoming beta release. First methods implemented include a large number
of popular frequency-domain granger-causal and coherence measures, obtained from
adaptive multivariate autoregressive models, surrogate and analytic statistics, and a suite of
tools for interactive visualization of information flow dynamics across time, frequency, and
(standard or personal MRI co-registered) anatomical source locations.

In this paper, I will outline the theory underlying multivariate autoregressive modeling and
granger-causal analysis. Practical considerations, such as data length, parameter selection,
and non-stationarities are addressed throughout the text, and useful tests for estimating
statistical significance are outlined. This theory section is followed by a hands-on
walkthrough of the use of the SIFT toolbox for analyzing source information flow dynamics
in an EEG dataset. Here we will walk through a typical data processing pipeline culminating
with the demonstration of some of SIFT’s powerful tools for interactive visualization of
time- and frequency-dependent directed information flow between localized EEG sources in
an anatomically-coregistered 3D space. Theory boxes through the chapter will provide
additional insight on various aspects of model fitting and parameter selection.



3. Multivariate Autoregressive Modeling

Assume we have an M-dimensional time-series of length T (e.g., M channels of EEG data,
with T time points per channel): X :=x,...x, wherex, =[x, ...x,,]. We can represent the

multivariate process at time ¢ as a stationary, stable vector autoregressive (VAR, MVAR,
MAR) process of order p (Henceforth we will denote this as a VAR[p] process):

P
X, =v+ZAkxt_k +u, (Eq 3.1)

k=1
Here v=[v,...v,, 1" is an (M x 1) vector of intercept terms (the mean of X), 4; are (M x M)
model coefficient matrices andu,is a zero-mean white noise process with nonsingular

covariance matrix 2.

3.1.  Stationarity and Stability

We assume two basic conditions regarding the data X and its associated VAR[p] model:
stationarity and stability. A stochastic process X is weakly stationary (or wide-sense
stationary (WSS)) if its first and second moments (mean and covariance) do not change

with time. In other words E(x,)= g for all t and E[(x, — )(x,_, — 1t)']=T(h) =T'(=h) for
all t and h=0,1,2, ... where E denotes expected value. A VAR[p] process is considered stable if
its reverse characteristic polynomial has no roots in or on the complex unit circle. Formally,
x, is stable if

det(/,, —Az) #0 for ‘Z‘ <1 where

A4 4 - A
V4
w| 0 - 0
0 - 7, 0

B (Mp % Mp) B

Equivalently, x;is stable if all eigenvalues of A have modulus less than 1 (Liitkepohl, 2006).
A stable process is one that will not diverge to infinity (“blow up”). An important fact is that
stability implies stationarity - thus it is sufficient to test for stability to ensure that a VAR[p]
process is both stable and stationary. SIFT performs a stability test by analyzing the
eigenvalues of A.

3.2. The Multivariate Least-Squares Estimator

A parametric VAR model can be fit using a number of approaches including multivariate
least-squares approaches (e.g., MLS, ARFIT), lattice algorithms (e.g., Vieira-Morf), or state-



space models (e.g., Kalman filtering). Here we will briefly outline the multivariate least-
squares algorithm (multichannel Yule-Walker) and encourage the interested reader to
consult (Schlogl, 2000; Liitkepohl, 2006; Schlégl, 2006) for more details on this and other
algorithms (several of which are implemented in SIFT).

To derive the multivariate least-squares estimator, let us begin with some definitions:

X =(x,....,x,) (M x T),
b’:z(V,AI,...,Ap) (M x (Mp+1)),
_ 1 .

*

((Mp+1) X D),

'r/—/ﬁ—l

Z = (_ZO,...,Z,_I) (Mp+1) x 7),
U=u,...,u,) (M x T)

Our VAR[p] model (Eq 3.1) can now be written in compact form:
X=BZ+U (Eq 3.2)

Here B and U are unknown. The multivariate (generalized) least-squares (LS, GLS)

estimator of B is the estimator B that minimizes the variance of the innovation process
(residuals) U. Namely,

B= argmin S(B)
B

where S(B)=tr[(X —BZ)'X ™' (X - BZ)].
It can be shown (Liitkepohl, 2006) that the LS estimator can be obtained by
B=XZ'(2Z")" (Eq 3.3)

This result can be derived in several ways, however a simple approach follows from post-
multiplying

X, =BZ _, +u,
by Z:_l and taking expectations:
E(x,Z,)=BE(Z,_Z,) (Eq3.4)

Estimating E(x,Z, ) by



we obtain the normal equations

l)(Z’:f}?lzz’
T T

and thus, B = XZ'(ZZ')™".

The reader may note that B is simply the product of X and the Moore-Penrose
pseudoinverse of Z: B=XZ"where Z! =pinv(Z). The reader familiar with univariate

autoregressive model fitting might also note that (Eq 3.4) is very similar to the well-known
system of Yule-Walker equations. Hence, this can be considered an extension to the
multivariate case of the Yule-Walker algorithm for univariate AR model fitting.

Although asymptotically optimal, the LS algorithm often suffers from sub-optimal
performance when even moderate sample sizes are available, as compared to more robust
modified LS algorithms (e.g., the stepwise least-squares ARFIT algorithm) or non-LS
algorithms (e.g., the Vieira-Morf lattice algorithm). A detailed empirical performance
comparison of these and other algorithms can be found in (Schlégl, 2006). For this reason,
SIFT abandons the LS algorithm in favor of these more robust algorithms. The SIFT
functions pop_est fitMVAR() and est_fitMVARKalman () provide access to various
model-fitting approaches.

3.3. Frequency-Domain Representation

Electrophysiological processes generally exhibit oscillatory structure, making them well
suited for frequency-domain analysis (Buzsaki, 2006). A suitably fit autoregressive model
provides an idealized model for the analysis of oscillatory structure in stochastic time series
(Burg, 1967; Zetterberg, 1969; Burg, 1975; Neumaier and Schneider, 2001). From the AR
coefficients, we can obtain a number of useful quantities including the spectral density
matrix and the transfer function of the process. From these and related quantities we can
obtain power spectra, coherence and partial coherence, Granger-Geweke causality, directed
transfer function, partial directed coherence, phase-locking value, and a number of other
quantities increasingly being used by the neuroscience community to study synchronization
and information flow in the brain (Pereda et al., 2005; Schelter et al., 2006).

To obtain our frequency-domain representation of the model, we begin with our VAR[p]
model from (Eq 3.1). For simplicity, we will assume the process mean is zero:

P
X = ZAkxt—k Tu,
k=1

Rearranging terms we get



p ~ ~ ~
u,= ZAkx[_k where 4, =—4, and 4, =1
k=0

Z-transforming both sides yields:

U= AHX(F) where
A=Y A"

Premultiplying by A(f)_l and rearranging terms we obtain:

X(f)=A)' U =H(NU)

Here X(f) is the (M x M) spectral matrix of the multivariate process, U(f) is a matrix of
random sinusoidal shocks and A(f)-1 = H(f) is the transfer matrix of the system. Note that H(f)
transforms the noise input (U) into the structured spectral matrix. This should give us a hint
that analysis of H(f) (and A(f)) will help us in identifying the structure of the modeled
system (including information flow dynamics). The spectral density matrix of the process
(which contains the auto-spectrum of each variable (at frequency f) on the diagonals and
the cross-spectrum on the off-diagonals) is given by:

S = XX =H(ZH(f)*

As we shall see in Section 4.3., from S(f), A(f),H(f) and X, we can derive a number of

frequency-domain quantities relevant to the study of oscillations, information flow, and
coupling in neural systems.

3.4. Modeling non-stationary data using adaptive VAR models

In section 3. we stated that data stationarity is a necessary precondition for accurate VAR
estimation. However, it is well-known that neural data, including EEG and Local Field
Potentials (LFPs), can be highly non-stationary, exhibiting large fluctuations in both the
mean and variance over time. For instance, a record of EEG data containing evoked
potentials (EPs) is a classic example of a non-stationary time series (both the mean and
variance of the series changes dramatically and transiently during the evoked response).
Another example would be EEG data collected during slow-wave sleep, which exhibits slow
fluctuations in the mean EEG voltage over time. A number of algorithms have been
proposed for fitting VAR models to non-stationary series. In the neuroscience community
the most popular approaches include segmentation (overlapping sliding-window)
approaches (Jansen et al., 1981; Florian and Pfurtscheller, 1995; Ding et al., 2000), state-
space (Kalman filtering) approaches (Schlogl, 2000; Sommerlade et al., 2009), and non-
parametric methods based on minimum-phase spectral matrix factorization (Dhamala et al.,,
2008). All of these approaches are currently - or soon to be made - accessible in SIFT. Here
we will briefly outline the concepts behind each modeling approach.
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3.4.1. Segmentation-based Adaptive VAR (AMVAR) models

A segmentation-based AMVAR adopts an approach rather similar to the concept behind
short-time fourier transforms or other windowing techniques. Namely, we extract a sliding
window of length W from the multivariate dataset, and fit our VAR[p] model to this data. We
then increment the window by a (small) quantity Q and repeat the procedure until the start
of the window is greater than T-W. This produces floor((T-W)/Q+1) VAR coefficient
matrices which describe the evolution of the VAR[p] across time. The concept here is that by
using a sufficiently small window, the data will be locally stationary within the window and
suitable for VAR modeling. By using highly overlapping windows (small Q) we can obtain
coefficients that change relatively smoothly with time. Figure 1 shows a schematic of the
sliding-window AMVAR approach.

One concern here is whether sufficient data points are available to accurately fit the model.
In the general case, we have M?p coefficients (free parameters) to estimate, which requires a
minimum of M?p data samples. However, in practice, we would like to have at least 10 times
as many data points as free parameters (Schlégl and Supp, 2006; Korzeniewska et al., 2008).
When multiple realizations (e.g., experimental trials) are available, we can assume that each
trial is a random sample from the same stochastic process and average covariance matrices
across trials to reduce the bias of our model coefficient estimator (Ding et al., 2000). For the
LS algorithm, explained in section 3., this yields the modified estimator:

B=EX"Z'NEZ"Z'")" (Eq 3.5)

Where X and Z() denote matrices X and Z for the ith single-trial and the expected value is
taken across all trials. This approach effectively increases the number of samples available
for a sliding window of length W from W to WN, where N is the number of
trials/realizations. This allows us to potentially use very small windows (containing as few
as p+1 sample points) while still obtaining a good model fit.

When using short windows with multi-trial data, an important preprocessing step is to
pointwise subtract the ensemble mean and divide by the ensemble standard deviation
(ensemble normalization). This ensures that the ensemble mean is zero and the variance is
one, at every time point. This can dramatically improve the local stationarity of the data
(Ding et al, 2000). An important result of this is that we are essentially modeling
dependencies in the residual time-series after removing the event-related potential (ERP)
from the data. The fact that this preprocessing step has become common practice in
published applications of AMVAR analysis to neural data suggests that there is, in fact, rich
task-relevant information present in the so-called “residual noise” component of the EEG
which cannot be inferred from the ERP itself (Ding et al.,, 2000; Bressler and Seth, 2010).
This fits under the model that mean-field electrophysiological measures such as LFPs and
EEG measure a sum of (potentially oscillatory) ongoing activity and evoked responses
where the amplitude and phase of the evoked response depends largely on the phase of the
ongoing oscillations (Kenet et al.,, 2005; Wang et al,, 2008). Analyzing the phase structure of
the stationary ongoing oscillations may provide a deeper insight into the state of the
underlying neural system than the analysis of the evoked responses themselves.
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Figure 1. Schematic of sliding-window AMVAR modeling. W is the window length, T is the length of each
trial in samples, N is the number of trials.

3.5. Model order selection

Parametric VAR model fitting really involves only one parameter: the model order. The
most common approach for model order selection involves selecting a model order that
minimizes one or more information criteria evaluated over a range of model orders.
Commonly used information criteria include, Akaike Information Criterion (AIC), Schwarz-
Bayes Criterion (SBC) - also known as the Bayesian Information Criterion (BIC) - Akaike’s
Final Prediction Error Criterion (FPE), and Hannan-Quinn Criterion (HQ). A detailed
comparison of these criteria can be found in Chapter 4.3 of (Liitkepohl, 2006). In brief, each
criterion is a sum of two terms, one that characterizes the entropy rate or prediction error
of the model, and a second term that characterizes the number of freely estimated
parameters in the model (which increases with increasing model order). By minimizing
both terms, we seek to identify a model that is both parsimonious (does not overfit the data
with too many parameters) while also accurately modeling the data. The criteria
implemented in SIFT are defined in Table 2.

Table 2. Information criteria for model order selection implemented in SIFT. Here T = TN is the total
number of samples (data points) used to fit the model

Estimator Formula

Schwarz-Bayes Criterion ~ In( 7 ) )
(Bayesian Information Criterion) SEC(p)= ln|2(p)| + 7 oM

Akaike Information Criterion - 2 )
AIC(p)=In[E(p)|+ Z oM
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Akaike’s Final Prediction Error A V74
7+ Mp+1 }

fPEuo=huw+(f_A¢_l

and its logarithm (used in SIFT)

. 7+ Mp+1
In(FPE =In|Z +MIn| ————
(FPE(p))=1n[Z(p) (T_&@_J
Hannan-Quinn Criterion - 21n(In( 7
HO(p) =S p)|+ 220D 0

For a given information criterion, IC, we select the model order that minimizes IC:

Py =argmin IC(p)
V4

Here, the first term, ln‘i(p)‘ is the logarithm of the determinant of the estimated noise

covariance matrix (prediction error) for a VAR model of order p fit to the M-channel data,
where TN is the total number of datapoints used to fit the model (T samples per trial x N
trials). The key difference between the criteria is how severely each penalizes increases in
model order (the second term). AIC and SBC are the most widely used criteria, but SBC
more heavily penalizes larger model orders. For moderate and large TN, FPE and AIC are
essentially equivalent (see Lutkepohl (2006) p. 148 for a proof); however, FPE may
outperform AIC for very small sample sizes. HQ penalizes high model orders more heavily
than AIC but less than SBC. Both SBC and HQ are consistent estimators, which means that
lim, . Pr{p =p,.}=1.This cannot be said of AIC and FPE. However, under small sample

conditions (small N), AIC/FPE may outperform SBC and/or HQ in selecting the true model
order (Liitkepohl, 2006). When modeling EEG data, it is common for AIC and FPE to show
no clear minimum over a reasonable range of model orders. In this case, there may be a
clear “elbow” in the criterion plotted as a function of increasing model order, which may
suggest a suitable model order.

When selecting a model order for neural connectivity analysis, it is important to consider
the dynamics of the underlying physiological system. In particular, one should consider the
maximum expected time lag between any two variables included the model. If we have
reason to expect a time lag of 7 seconds between any two brain processes, we should make
sure to select a model order of p > 7 Fs where F; is the process sampling rate in Hz.
Additionally, we should consider that the multivariate spectrum of a M-dimensional VAR[p]
model has Mp/2 frequency components (peaks) distributed amongst the M variables (there
are Mp complex-conjugate roots of the characteristic equation of the model). This means
that we can observe p/2 frequency peaks between each pair of variables (Florian and
Pfurtscheller, 1995; Schlégl and Supp, 2006). Thus a reasonable lower bound on the model
order might be twice the number of expected frequencies plus one (for the zero-Hz peak).
Tests performed by Jansen (1981) and Florian and Pfurtscheller (1995) demonstrated that
a potentially optimal model order for modeling EEG spectra was p=10, although little
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spectral differences were identified for model orders between 9 and 13. A key point,
however, is that this was identified for a sampling rate of 128 Hz and it is known that the
optimal model order depends significantly on the sampling rate of the process (Zetterberg,
1969).

The principle motivation behind heavy penalization of high model orders in an information
criterion is to improve forecasting performance by reducing over-fitting. However,
forecasting is not necessarily the ultimate goal of our neural modeling approach.
Furthermore, selecting a too-small model order can severely impair our frequency
resolution (merging peaks together) as well as our ability to detect coupling over long time
lags. Where there is a question as to a suitable model order, it is often better to err on the
side of selecting a larger model order. As such, a criterion such as HQ, which often shows a
clear minimum but affords intermediate penalization between AIC and SBC may represent
an optimal choice for neural data.

In general, it is good practice to select a model order by examining multiple information
criteria and combining this information with additional expectations and knowledge
specific to the physiological properties of the neural system being analyzed. When possible
spectra and coherence obtained from fitted VAR models should be compared with those
obtained from non-parametric methods (such as wavelets) to validate the model. Model
order selection is often an iterative process wherein, through model validation, we
determine the quality of our model fit, and, if necessary, revise our model specification until
the data is adequately modeled.

Model order selection is implemented in SIFT using pop_est_selModelOrder () .

3.6. Model Validation

There a number of criteria which we can use to determine whether we have appropriately
fit our VAR model. SIFT implements three commonly used categories of tests: (1) checking
the residuals of the model for serial and cross-correlation (whiteness tests), (2) testing the
consistency of the model, and (3) check the stability/stationarity of the model. These can be
accessed through the SIFT GUI using pop_est_validateMVAR()

3.6.1. Checking the whiteness of the residuals

Recall the compact model definition from (Eq 3.2): X =BZ+U . Here we can regard the
VAR[p] model coefficients B as a filter which transforms innovations (random white noise),
U, into observed, structured data X. Consequently, for coefficient estimates 1:3, we can obtain
the residuals U = X — BZ. If we have adequately modeled the data, the residuals should be
small and uncorrelated (white). Correlation structure in the residuals means there is still
some correlation structure in the data that has not been described by our model. Checking
the whiteness of residuals typically involves testing whether the residual autocorrelation
coefficients up to some desired lag h are sufficiently small to ensure that we cannot reject
the null hypothesis of white residuals at some desired significance level.
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3.6.1.1. Autocorrelation Function (ACF) Test

A AL

The (M x M) lag I autocovariance matrix of the residuals is given by C, =E[uu, ,]. We
denote the autocovariances up to lag las C, =(C,,...,C,). The lag  autocorrelation matrix is
given by R, =D_]CID_1Where D is a (M x M) diagonal matrix, the diagonal elements being
the square root of the diagonal elements of C,. We are generally interested in testing the
(white noise) null hypothesis H, : R, =(R,,...,R,) =0against the alternative H, : R, #0. A
simple test, based on asymptotic properties of univariate white noise processes, involves
rejecting the hypothesis that U is white noise at the 5% level if |Rl| >iZ/\/¥ for any lag I
(excluding the diagonal elements of Ry which are always 1). T =TN is the total number of
samples used in estimating the covariance. However, since this is a pointwise significance
test at the 5% level, in practice we expect one in twenty coefficients to exceed Z/ﬁin

absolute value even if U is white. A reasonable corrected statistic is thus the probability of a
coefficient exceeding the 5% significance bounds:

count(|Rh|>i2/\/?) count(|R,l|>i2/\/¥)
P comt(R,) | MA(hiD-M

If p < 0.05, or equivalently 1-p > 0.95, then we cannot reject the null hypothesis at the 5%
level and we accept that the residuals are white.

Due to its simplicity, this sort of test enjoys much popularity. However, it is important to
bear in mind that the 5% confidence intervals apply to individual coefficients (i.e., for
univariate models) and although the R; and R;are asymptotically uncorrelated for i # j this

is not necessarily true for the elements of R As such, this test may be misleading when
considering the coefficients of a multivariate model as a group. Additionally, in small sample

conditions (small T ), this test may be overly conservative such that the null hypothesis is
rejected (residuals indicated as non-white) less often than indicated by the chosen
significance level (Lutkepohl, 2006).

3.6.1.2. Portmanteau Tests

In the previous section, we noted that the simple asymptotic ACF test may yield misleading
results when the coefficients are considered independently rather than as a group, derived
from a multivariate process. In contrast, portmanteau tests are a powerful class of test
statistics explicitly derived to test Hyp up to some lag h. SIFT implements three portmanteau
test statistics: Box-Pierce (BPP), Ljung-Box (LBP), and Li-McLeod (LMP). Under the null
hypothesis, for large sample size and h, each of these test statistics approximately follow a
Zz-distribution with M?(h—p) degrees of freedom. A p-value can thus be obtained by

comparing the test statistic with the c.d.f. of this distribution. If 1-p is greater than some
value « (e.g., 0.05 for a 5% significance level), we cannot reject the null hypothesis and we
accept that the residuals are white. Table 3 lists the three tests implemented in SIFT along
with their test statistics and practical notes.
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Table 3. Popular portmanteau tests for whiteness of residuals, implemented in SIFT. Here T = TN is the
total number of samples used to estimate the covariance

Portmanteau Test Formula (Test Statistic) Notes

, The original portmanteau

. A 1 -1 test.  Potentiall overly-
Box-Pierce (BPP) Q= TZtr(C,CO GG ) conservative. P(})Ior smaI};-
=1

sample properties.

Modification of BPP to

improve small-sample

. i R 1 ( 1 1) properties. Potentially

. 0, =T(T+2)Y (T-D"'tr(C/C;'C,C;")| inflates the variance of the
Ljung-Box (LBP) =1 test statistic. Slightly less

conservative than LMP with
slightly higher (but nearly
identical) statistical power.

Further modification of BPP
to improve small-sample

h 2 roperties without variance

A yo i\ M?h(h+1) | Prop
Li-McLeod (LMP) 0, = TZtr(CZCOIC, C01)+ (A ) inflation.  Slightly  more
I=1 2T conservative than  LBP.

Probably the best choice in
most conditions.

BPP is the classical portmanteau test statistic. It can be shown that in small sample
conditions (small T ) its distribution under the null hypothesis diverges from the
asymptotic Zz distribution. This can render it overly-conservative leading us to reject the
null hypothesis of white residuals even when the model was appropriately fit.

The LBP statistic attempts to improve the small-sample properties of the test statistic. By
adjusting each covariance coefficient by its asymptotic variance, it can be shown that under
the null hypothesis, the LBP statistic has a small-sample distribution much closer to the
asymptotic distribution than the BPP statistic. However, it can also be shown that the
variance of the LBP statistic can be inflated to substantially larger than its asymptotic
distribution.

Like LBP, the LMP statistic has better small-sample properties than BPP. However, unlike
LBP, it does so without inflating its variance. Although less popular than LBP, it has been
demonstrated that the variance of LMP is closer to its asymptotic variance whereas LBP is
more sensitive with significance levels somewhat larger than expected when 7 is large. LMP
is slightly conservative but the statistical power for LMP and LBP are nearly identical. Since,
in practice, it is preferable to select the more conservative test among tests with
comparable power, LMP may represent an ideal choice of test statistic for most applications.

The interested reader should consult (Lutkepohl, 2006) and (Arranz, n.d.)for additional
details and references concerning checking the whiteness of residuals. The whiteness of
residuals can be tested in SIFT using est _checkMVARWhiteness ()
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3.6.2. Checking the consistency of the model

To address the question of what fraction of the correlation structure of the original data is
captured by our model, we can calculate the percent consistency (Ding et al., 2000). We
generate an ensemble, of equal dimensions as the original data, using simulated data from
the VAR model. For both the real and simulated datasets, we then calculate all auto- and
cross-correlations between all variables, up to some predetermined lag. Letting R, and Rs
denote the vectorized correlation matrices of the real and simulated data, respectively, the
percent consistency index is given by

[R,-R,
pC=|1-12 A
IR,

A PC value near 100% would indicate that the model is able to generate data that has a
nearly identical correlation structure as the original data. A PC value near 0% indicates a
complete failure to model the data. While determining precisely what constitutes a
sufficiently large PC value is an area for future research, a rule of thumb is that is a value of
PC > 85% suggests the model is adequately capturing the correlation structure of the

original data. The percent consistency can be calculated in SIFT using
est_checkMVARConsistency () .

]XIOO where |||| denotes the Euclidean (Lz) norm.

3.6.3. Checking the stability and stationarity of the model

In section 3.1. we provided a condition for the stability of a VAR[p] process. Namely, an M-
dimensional VAR|[p] process is stable if all the eigenvalues of the (Mp x Mp) augmented
coefficient matrix A have modulus less than 1. Thus, a useful stability index is the log of the
largest eigenvalue A,,,, of A:

SI=1In|A,

ax

A VAR[p] process is stable if and only if SI < 0. The magnitude of the SI can be loosely
interpreted as an estimate of the degree to which the process is stable. As mentioned in
section 3.1., a stable process is a stationary process. Thus it is sufficient to test for stability
of the model to guarantee that the model is also stationary. If the model is not stable,
additional tests such as the Augmented Dickey-Fuller test may be used to separately
evaluate the stationarity of the data. However, since we are generally interested modeling
stable processes, these additional stationarity tests are not implemented in SIFT. The

stability index of a fitted model can be calculated in SIFT using
est_checkMVARStability() .

3.6.4. Comparing parametric and nonparametric spectra and coherence

Another approach sometimes used to validate a fitted VAR model is to compare the spectra
and/or pairwise coherence estimated from the parametric models with those derived from
a robust nonparametric approach such as multitapers or wavelets. Using an equation
similar to percent consistency, we can estimate the fraction of the nonparametric spectrum
or coherence that is captured by our VAR model. Of course, here we assuming the
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nonparametric spectra are optimal estimates of the true spectra (“ground truth”), which
may not be the case (interestingly, Burg (1967; 1975) demonstrated that, if the data is
generated by an AR process and the true model order is known, AR spectral estimation is a
maximum-entropy method which means that it represents an optimal spectral estimator).
Nevertheless, if the nonparametric quantities are carefully computed, this can be a useful
validation procedure. An upcoming release of SIFT will include routines for computing this
spectral consistency index.

4. Granger Causality and Extensions

Granger causality (GC) is a method for inferring certain types of causal dependency
between stochastic variables based on reduction of prediction error of a putative effect
when past observations of a putative cause are used to predict the effect, in addition to past
observations of the putative effect. The concept was first introduced by Norbert Wiener in
1956 and later reformulated and formalized by C.W. Granger in the context of bivariate
linear stochastic autoregressive models (Weiner, 1956; Granger, 1969). The concept relies
on two assumptions:

1. Causes must precede their effects in time

2. Information in a cause’s past must improve the prediction of the effect above
and beyond information contained in the collective past of all other measured
variables (including the effect).

Assumption (1) is intuitive from basic thermodynamical principles: the arrow of causation
points in the same direction as the arrow of time - the past influences the future, but not the
reverse. Assumption (2) is also intuitive: for a putative cause to truly be causal, removal of
the cause should result in some change in the future of the putative effect - there should be
some shared information between the past of the cause and the future of the effect which
cannot be accounted for by knowledge of the past of the effect.

The theory and application of GC (and its extensions) to neural system identification has
been elaborated in a number of other articles and texts (Kaminski, 1997; Eichler, 2006;
Blinowska and Kaminski, 2006; Ding et al., 2006; Schlégl and Supp, 2006; Bressler and Seth,
2010). As such, here we will only briefly introduce the theory and focus primarily on
multivariate extensions of the granger-causal concept, including the partial directed
coherence (PDC) and direct directed transfer function (dDTF).

4.1. Time-Domain GC

Suppose we wish to test whether a measured EEG variable j Granger-causes another
variable i conditioned on all other variables in the measured set. Let V represent the set of
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all measured variables (e.g., all available EEG sources/channels): V = {1, 2, ... , M}. Our
complete (zero-mean) VAR[p] model is specified as:

Y
) — )
X, 0= ZAA'X/—A' + “,
=1

We fit the full model and obtain the mean-square prediction error when x@ is predicted
from past values of x(¥) up to the specified model order:

(7) |

)
var(r,” | .x

o £ €{l,..., p}} denotes the past of x(")

)= Var(u[(")) =2 where x((j) = {xfy,

Now, suppose we exclude j from the set of variables (denoted V\j) and re-fit the model
X/(V\/) — ZAVV/(Q/) +Z7/
#=1

and again obtain the mean-square prediction error for x(.

) =var(z ") =%,

var(x,” | x)

I3

In general, X, > iii and X = iii if and only if the best linear predictor of x' based on the

full past x) does not depend on x‘. This leads us to the following definition for
multivariate GC (Eichler, 2006):

Let I and J be two disjoint subsets of V. Then x0) Granger-causes x( conditioned on x(V)
if and only if the following two equivalent conditions hold:

1. = >3

2. A4, ,>0forsome ke {l,..., p}

Here >» means “significantly greater than.” In other words, inferring conditional GC
relationships in the time domain amounts to identifying non-zero elements of a
VAR|p] coefficient matrix fit to all available variables.

Granger (1969) quantified DEFINITION 1 for strictly bivariate processes in the form of an F-
ratio:
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Here, Fj denotes the GC from process j to process i. This quantity is always non-negative and
increases away from zero proportionate to the degree to which the past of process j
conditionally explains (“granger-causes”) the future of process i.

4.2. Frequency-Domain GC

In the frequency domain a very similar definition holds for GC as in the time domain. If we
obtain the Fourier-transform of our VAR[p] coefficient matrices A(f) as in section 3.3.,
based on the time-domain definition of GC we can derive the following definition for GC in
the frequency-domain (Eichler, 2006):

Let I and J be two disjoint subsets of V. Then x0) Granger-causes x( conditioned on x(V)
if and only if the following condition holds:

A4,(/)> 0 for some frequency f

DEFINITION 2 suggests a simple method for testing multivariate (conditional) GC at a given
frequency f: we simply test for non-zero coefficients of |A(f)|. This approach yields a class of
GC estimators known as Partial Directed Coherence (PDC) measures (Baccald and
Sameshima, 2001).

A slightly different approach, due to Granger (1969) and later refined by Geweke (1982),
provides an elegant interpretation of frequency-domain GC as a decomposition of the total
spectral interdependence between two series (based on the bivariate spectral density
matrix, and directly related to the coherence) into a sum of “instantaneous”, “feedforward”
and “feedback” causality terms. However, this interpretation was originally derived only for
bivariate processes and, while this has been recently been extended to trivariate (and block-
trivariate) processes (Chen et al,, 2006; Wang et al., 2007), it has not yet been extended to
the true multivariate case. An implementation of the Granger-Geweke formulation for
bivariate processes is provided in SIFT as the “GGC” connectivity estimator. The interested
reader should consult (Ding et al.,, 2006) for an excellent tutorial on the Granger-Geweke
approach.

There is a direct relationship between bivariate time-domain and frequency-domain GC. If
Fj is the time-domain GC estimator ((Eq 4.1) and W(f); is the frequency-domain Granger-
Geweke estimator, then the following equivalency holds:

E =W, df
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It is unknown whether a similar equivalency exists for other multivariate GC estimators,
such as the PDC and dDTF. However, in practice, integrating these estimators over a range
of frequencies provides a simple way to obtain a general time-domain representation of the
estimator.

4.3. A partial list of VAR-based spectral, coherence and GC estimators

Table 4 contains a list of the major spectral, coherence, and GC/information flow estimators
currently implemented in SIFT. Each estimator can be derived from the quantities
S(f), A(f),H(f), and Zobtained in section 3.3., with the exception of the renormalized

PDC (rPDC). The rPDC requires estimating the [(Mp)? x (Mp)?] inverse cross-covariance
matrix of the VAR[p] process. SIFT achieves this using an efficient iterative algorithm
proposed in (Barone, 1987) and based on the doubling algorithm of (Anderson and Moore,
1979). These estimators and more can be computing using the SIFT’s functions
pop_est_mvarConnectivity () or the low-level function est_mvtransfer() .

Table 4. A partial list of VAR-based spectral, coherence, and information flow / GC estimators
implemented in SIFT.

Estimator Formula Primary Reference and Notes

(Brillinger, 2001)

S =X(AHAX * Si(f) is the spectrum for
Spectral ()= XX variable i. Sy(f) = Si(f)" is the
Density Matrix =H(f)ZH(f)*

cross-spectrum between
variables i and j.

Spectral M.

(Brillinger, 2001)

Complex quantity. Frequency-
domain analog of the cross-
correlation. The magnitude-
squared coherency is the
S, () coherence Cohy(f) = |Cij(f)|> The
Cij (f)=—F—7—7—= phase of the coherency can be
Coherency Sii(f)Sjj () used to infer  lag-lead
2 relationships, but, as with cross-
OS|C,,(]{)| <1 correlation, this should be
treated with caution if the
coherence is low, or if the
system under observation may
be open-loop.

Coherence Measures

Imaginary (Nolte et al., 2004)

Coherence iCoh; () =Im(C, (1))

The imaginar art of the
(iCoh) gy P

coherency. This was proposed
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Partial Directed Coherence Measures

as a coupling measure invariant
to linear instantaneous volume-
conduction. iCoh;j(f) > 0 only if
the phase lag between i and j is
non-zero, or equivalently,

0 <angle(C,(f)) <27

Partial
Coherence
(pCoh)

P(f)= S0
JS.(NS, ()
S(ES)!
0<|p (| <1

(Brillinger, 2001)

The partial coherence between i

and j is the remaining
coherence which cannot
explained by a linear
combination  of coherence

between i and j and other
measured variables. Thus, Pj(f)
can regarded as the conditional
coherence between i and j with
respect to all other measured
variables.

Multiple
Coherence
(mCoh)

det(S(f))
G(f)= 1-——————
) \/ S (IM, (1)
M. (f)is the minor of S(f) obtained

by removing the ith row and column of
S(f) and returning the determinant.

(Brillinger, 2001)

Univariate  quantity = which
measures the total coherence of
variable [ with all other

measured variables.

Normalized
Partial
Directed
Coherence
(PDCQ)

A4;(f)
V4,00
0<|z, (N <1

§|zry<f)|2 =1

7, (f) =

(Baccala and Sameshima, 2001)

Complex measure which can be
interpreted as the conditional
granger causality from j to i
normalized by the total amount
of causal outflow from j
Generally, the  magnitude-

squared PDC |”,-,- (f)|2 is used.

Generalized
PDC (GPDC)

21 ()
7(f) =i

Jzk = 4,0
0<|7,(n)| <1

(Baccala and Sameshima, 2007)

Modification of the PDC to
account for severe imbalances
in the wvariance of the
innovations. Theoretically
provides more robust small-
sample estimates. As with PDC,

the squared-magnitude |7z' (f)|
is typically used
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Renormalized
PDC (rPDC)

A, =0,(N*V, () 0,(f)
where

Re[ 4,
0,(7)<[ R4

fm[4,(f)] ]
V()= SR kD, ZQrf kD)

k=1

Z(w,k,])
_ [ cos(wk)cos(wl) cos(wk)sin () ]

nd

- sin(wk)cos(wl) sin(wk)sin (awl)

R is the [(Mp)? x (Mp)?] covariance
matrix of the VAR[p] process
(Litkepohl, 2006)

(Schelter et al., 2009)

Modification of the PDC. Non-
normalized PDC is
renormalized by the inverse
covariance matrix of the
process to render a scale-free
estimator (does not depend on
the unit of measurement) and

eliminate normalization by
outflows and dependence of
statistical significance on

frequency. To our knowledge
SIFT is the first publically
available toolbox to implement
this estimator.

Normalized
Directed
Transfer
Function
(DTF)

H,(f)
LRG]S
0sly, () <1
> () =1

}/ij(f):

(Kaminski  and Blinowska,
1991; Kaminski et al,, 2001)

Complex measure which can be
interpreted as the total
information flow from j to i
normalized by the total amount
of information inflow to i
Generally, the magnitude-

squared DTF |7’,-,-(f)|2 is used
and, in time-varying

applications the DTF should not
be normalized.

Full-
Frequency
DTF (ffDTF)

|, (|
>, 2l

n,(f)=

(Korzeniewska, 2003)

A different normalization of the
DTF which eliminates the
dependence of the denominator
on frequency allowing more
interpretable comparison of
information flow at different
frequencies.

Direct DTF

(dDTF)

&, () =m;(NHE (f)

(Korzeniewska, 2003)

The dDTF is the product of the
ffDTF and the pCoh. Like the
PDC, it can be interpreted as
frequency-domain conditional
GC.
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(Geweke, 1982; Bressler et al,,

% 2007)

§ glefkeer_ (2 o (2% /2))‘1_](]0)‘2 For bivariate models (M = 2),
= " i F.(f)= s v i this is identical to Geweke’s
) “ausality / Si(f) 1982 formulation. However, it
§ (GGC) is not yet clear how this extends
5 to multivariate models (M > 2).

4.4. Time-Frequency GC

In section 3.4. we discussed using adaptive VAR models to model nonstationary time series.
These methods allow us to obtain a sequence of time-varying VAR coefficient matrices. A
time-frequency representation of the spectrum, coherence or information-flow/GC can thus
easily be obtained by computing one or more of the estimators in Table 4 for each
coefficient matrix. Figure 2 shows an example of a time-frequency image of dDTF
information flow between two neural processes. Each column of the image corresponds to
the dDTF “spectrum” at a given point in time.

erdDTF: ACZp (24) — RCZa (16)
1
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Figure 2. A time-frequency image showing the dDTF between two processes for a selected range of
frequencies and times. Frequency is on the y-axis and Time on the x-axis. Red (blue) indicates more
(less) information flow, relative to a baseline period (purple shaded region).

4.5. (Cross-) correlation does not imply (Granger-) causation

An important result of the definition of granger causality is that it provides a much more
stringent criterion for causation (or information flow) than simply observing high
correlation with some lag-lead relationship. A common approach for inferring information
flow is to compute the cross-correlation (or cross-partial-correlation) between two
variables for a range of time lags and determine whether there exists a peak in the
correlation at some non-zero lag. From this we might infer that the leading variable “causes”
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- or transmits information to - the lagged variable. However, using such an approach to
infer causation, or even a direction of information flow, can be quite misleading for several
reasons.

Firstly, the cross-correlation is a symmetric measure and is therefore unsuitable for
identifying lag-lead relationships in systems with feedback (closed-loop systems) (Chatfield,
1989). It is currently understood that many neural systems exhibit feedback, albeit
potentially on a large enough time scale that they system may appear locally open-loop.

Secondly, even if the system under observation is open-loop, a clear peak in the cross-
correlation at some non-zero lag would satisfy Assumption 1 of GC (causes must precede
effects in time) but not Assumption 2 (the past of a cause must share information with the
future of the effect that cannot be explained by the past of all other measured variables,
including the effect). In this regard it is fundamentally different than GC. As it turns out, the
ability for GC to test Assumption 2 is what makes it such a powerful tool for causal
inference, in contrast to simple correlative measures.

To illustrate: suppose we are observing two ants independently following a pheromone trail
towards some tasty morsel. Ant 1 started the journey two minutes before Ant 2 and so he
appears to be “leading” Ant 2. If we compute the cross-correlation between the two ants’
trajectories for a range of time lags we would find a high correlation between their
trajectories and, furthermore, we would find the correlation was peaked at a non-zero lag
with Ant 1 leading Ant 2 by a lag of two minutes. But it would be foolish to say that Ant 1
was “causing” the behavior of Ant 2. In fact, not only is there no causal relationship
whatsoever between the two, but there is not even any information being transmitted
between the two ants. They are conditionally independent of each other, given their own
past history and given the fact that each is independently following the pheromone trail
(this is the “common (exogenous) cause” that synchronizes their behavior). If we were to
intervene and remove Ant 2 (Ant 1), Ant 1 (Ant 2) would continue on his way, oblivious to
the fact that his comrade is no longer in lock-step with him. Consequently, if we calculate
the Granger-causality between the two trajectories we will find that the GC is zero in both
directions: there is no information in the history of either ant that can help predict the
future of the other ant above and beyond the information already contained in each ant’s
respective past.

Because the spectral coherence is simply the Fourier transform of the cross-correlation
(and therefore the frequency-domain representation of the cross-correlation), the same
limitations hold for coherence as for cross-correlation regarding inference of directionality
of information flow or causation. Namely, using the phase of coherence to infer
directionality of information flow in some frequency (as is often done in the neuroscience
community) may be highly misleading if there is even moderate feedback in the system (or
if the coherence is low). Coherence is not necessarily a measure of information flow, but
rather correlation between two processes at a particular frequency (a useful analogy here,
similar to the ants, is to consider two pendulums on opposite sides of the globe swinging in
synchrony at the same frequency, with one pendulum started % cycle before the other -
their behavior is coherent, but is there information flow between them?). In contrast,
frequency-domain extensions of Granger-causality condition on the past history of the
processes and, assuming all relevant variables have been included in the model, can
correctly distinguish between such spurious forms of information flow or causation and
“true” information flow.
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5. Statistics

When making inferences about information flow or causation in the neural systems, it is
highly important to also produce confidence intervals and statistical significance thresholds
for the estimator. The most common statistical tests used in neural system identification are
listed in Table 5. Statistical routines in SIFT are designed to address one or more of these
three tests and currently fall under two main categories: non-parametric surrogate
statistics, and asymptotic analytic statistics.

Table 5. Common statistical tests. Here C(i,j) is the measured information flow from process j to process i. Cnunl
is the expected measured information flow when there is no true information flow, Crase is the expected
information flow in some baseline period.

Huun C(i,j) < Caun(i,j) [s there significantly non-zero Phase randomization
information flow from process j>1i? Analytic tests

Hpase  C(i,j) = Cpase(i,j) [s there a difference in information Bootstrap resampling
flow relative to the baseline?

Hyp Ca(i,j) = Ce(i,j) [s there a difference in information Bootstrap resampling
flow between experimental
conditions/populations A and B?

5.1. Asymptotic analytic statistics

In recent years, asymptotic analytic tests for non-zero information flow (Hnu) at a given
frequency have been derived and validated for the PDC, rPDC, and DTF estimators (Schelter
et al., 2005; Eichler, 2006b; Schelter et al, 2009). These tests have the advantage of
requiring very little computational time, compared to surrogate statistics. However, these
tests are also based on asymptotic properties of the VAR model, meaning they are
asymptotically accurate and may suffer from inaccuracies when the number of samples is
not very large or when assumptions are violated. Nonetheless, these tests can provide a
useful way to quickly check for statistical significance, possibly following up with a more
rigorous surrogate statistical test. These tests are implemented in SIFT’s
stat_analyticTests() function. To our knowledge, SIFT is the only publically
available toolbox that implements these analytic tests.

5.2. Nonparametric surrogate statistics

Analytic statistics require knowledge of the probability distribution of the estimator in
question. When the distribution of an estimator is unknown, nonparametric surrogate
statistical methods may be used to test for non-zero values or to compare values between
two conditions. Surrogate statistical tests utilize surrogate data (modified samples of the
original data) to empirically estimate the expected probability distribution of either the
estimator or a null distribution corresponding to the expected distribution of the estimator
when a particular null hypothesis has been enforced. Two popular surrogate methods,
implemented in SIFT, are bootstrap resampling, and phase randomization.
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5.2.1. Bootstrap resampling

Bootstrap resampling (Efron and Tibshirani, 1994) approximates the true distribution of an
estimator by randomly resampling with replacement from the original set of data and re-
computing the estimator on the collection of resampled data. This is repeated many (e.g.,
200-2000) times and the value of the estimator for each resample is stored. When the
procedure terminates we have an empirical distribution of the estimator from which we can
compute the expected value of the estimator, obtain confidence intervals around the
expected value, and perform various statistical tests (t-tests, ANOVAs, etc) to compare
different values of the estimator. It can be shown that, under certain conditions, as the
number of resamples approaches infinity, the bootstrap distribution approaches the true
distribution of the data. The convergence speed depends largely on the nature of the data,
but a rule of thumb is that 250-1000 resamples is generally sufficient to produce a
reasonable estimate of the distribution. In SIFT the bootstrap distribution of an estimator
can be obtained using the stat_bootstrap() function. P-values for Hnu and Hpase

significance tests, as well as confidence intervals on the estimators can be obtained via
stat_bootSignificanceTests ()

5.2.2. Phase Randomization

Phase randomization (Theiler, 1992) is a method for testing for non-zero information flow
in a dynamical system. The concept is quite simple: we begin by constructing the expected
probability distribution (the null distribution) of the estimator when the null hypothesis (no
information flow) has been enforced in the data. An observed value of the estimator is then
compared to the quantiles of the null distribution to obtain a significance level for rejection
of the null hypothesis for that value. Specifically, to generate our null distribution we
randomize only the phases of each time-series, preserving the amplitude distribution. We
then re-compute our estimator. Repeating this procedure many times produces the desired
null distribution. Phase randomization implemented efficiently in SIFT by applying a fast-
fourier transform (FFT) to obtain the complex power spectrum, replacing the phases with
those of a uniform random matrix, and finally applying the inverse FFT to obtain our
surrogate data matrix. This procedure ensures that (a) the surrogate spectral matrix is
hermitian and (b) the real part of the surrogate spectrum is identical to that of the original
data. Since our frequency-domain information flow estimators depend critically on the
relative phases of the multivariate time-series, any observed information flow in the
surrogate dataset should be due to chance. Therefore, values of the estimator greater than,
say, 95% of the values in the null distribution should be significant at 5% level (p < 0.05). In
SIFT, the phase-randomized null distribution can be obtained using the
stat_phaserand() function. P-values for significance can be obtained via
stat_bootSignificanceTests().

Importantly, the above tests (both analytic and surrogate) are only pointwise significance
tests, and therefore, when jointly testing a collection of values (for example, obtaining p-
values for a complete time-frequency image), we should expect some number of non-
significant values to exceed the significance threshold. As such, it is important to correct for
multiple comparisons using tests such as False Discovery Rate (FDR) (Benjamini and
Hochberg, 1995). SIFT currently affords FDR statistical correction using EEGLAB’s £dr ()
function with other statistical correction methods soon to be made available.
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6. Using SIFT to analyze neural information flow dynamics

This section provides a demonstration of the use of SIFT to estimate and visualize source-
domain information flow dynamics in an EEG dataset. To get the most of this tutorial you
may want to download the toolbox and sample data and follow along with the step-by-step
instructions. The toolbox is demonstrated through hands-on examples primarily using
SIFT’s Graphical User Interface (GUI). Theory boxes provide additional information and
suggestions at some stages of the SIFT pipeline.

In order to make the most use of SIFT’s functionality, it is important to first separate your
data into sources - e.g. using EEGLAB’s built-in Independent Component Analysis (ICA)
routines. To make use of the advanced network visualization tools, these sources should
also be localized in 3D space e.g. using dipole fitting (pop_dipfit()). Detailed
information on performing an ICA decomposition and source localization can be found in
the EEGLAB wiki. In this example we will be using two datasets from a single subject
performing a two-back with feedback continuous performance task depicted in Figure 3
(Onton and Makeig, 2007). Here the subject is presented with a continuous stream of
letters, separated by ~1500 ms, and instructed to press a button with the right thumb if the
current letter matches the one presented twice earlier in the sequence and press with the
left thumb if the letter is not a match. Correct and erroneous responses are followed by an
auditory “beep” or “boop” sound. Data is collected using a 64-channel Biosemi system with a
sampling rate of 256 Hz. The data is common-average re-referenced and zero-phase high-
pass filtered at 0.1 Hz. The datasets we are analyzing are segregated into correct (RespCorr)
and incorrect (RespWrong) responses, time-locked to the button press, and separated into
maximally independent components using Infomax ICA (Bell and Sejnowski, 1995). These
sources are localized using a single or dual-symmetric equivalent-current dipole model
using a four-shell spherical head model co-registered to the subjects’ electrode locations by
warping the electrode locations to the model head sphere using tools from the EEGLAB
dipfit plug-in.

Match
Two-back @ Response
with feedback Rl _R|
continuous + B H B F o
performance I'l I
task
Non-match
One trial
Letter Response Letter
presentation (360+ 50 ms) presentation
@ - O—>
&—— 600+ 100 ms L g 850 ms °

&—— 1450+ 100 m\§ ———8 @
Figure 3. Two-back with feedback CPT (Onton and Makeig, 2007).

In this exercise we will be analyzing information flow between several of these
anatomically-localized sources of brain activity during correct responses and error
commission.
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6.1. System Requirements

It is assumed that you have Matlab® 2008b or later, the Signal Processing Toolbox,
Statistics Toolbox, EEGLAB and the SIFT toolbox. The latter two are downloadable from
http://sccn.ucsd.edu/eeglab/ and http://sccn.ucsd.edu/sift. The SIFT toolbox must be in
the Matlab path when starting EEGLAB.

To use the ARFIT model-fitting algorithm and other (recommended) tools, you must
download the free ARFIT package from http://www.gps.caltech.edu/~tapio/arfit/. After
downloading and unzipping the ARFIT package, place the /arfit/ folder in <SIFT-
path>/external/ where <SIFT-path> is the full path to the SIFT install directory.

6.2. Configuring EEGLAB

First start up EEGLAB from the MATLAB® command-prompt:

>> eeglab.
Before we load any data, we need to make sure we have the right memory options set. From

the EEGLAB menu select File>Memory and other options. Make sure your memory
options are set as in Figure 4 below.

eno Memory options - pop_editoptions()

Set/Unset
STUDY options (set these checkboxes if you intend to work with studies)
If set, keep at most one dataset in memory. This allows processing hundreds of datasets within studies.
If set, save not one but two files for each dataset (header and data). This allows faster data loading in studies.

[_ ] @ [. ]

If set, write ICA activations to disk. This speeds up loading ICA components when dealing with studies.
Memory options

If set, use single precision under Matlab 7.x. This saves RAM but can lead to rare numerical imprecisions.

()

If set, use memory mapped array under Matlab 7.x. This may slow down some computation.

ICA options

If set, precompute ICA activations. This requires more RAM but allows faster plotting of component activations.
If set, scale ICA component activities to RMS (Root Mean Square) in microvolt (recommended).

Folder options

Lo

If set, when browsing to open a new dataset assume the folder/directory of previous dataset.

Option file: MUsershi D ORK/SCCNhomeAimD ORKIT: i i _options.m {_-_J

Help ) [ Cancel | [ Ok )|

Figure 4. Memory options for EEGLAB.
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6.3. Loading the data

Now let’s load our sample datasets in EEGLAB. We will first load the RespWrong.set file and
then RespCorr.setlocated in the <SIFT-path>/Data/ folder.

8,00 EEGLAB v9.0.2.3b
m Edit Tools Plot Study Datasets Help
Import data >
Import epoch info >
Import event info >
Export q
Load existing dataset o dacaset®

Save current dataset(s)
Save current dataset as b (continuous
Clear dataset(s) ld/edit

" (data

da: )
Create study > :eda[:m

ect

Load existing study
Save current study
Save current study as
Clear study

act epochs”
Remove
ICA"

Memory and other options

History scripts >

Quit

Figure 5. Load RespWrong.set then RespCorr.set

Now select both datasets from the Datasets—> Select multiple datasets menu. This will
enable SIFT to process these datasets in sequence, and visualize differences in connectivity
between conditions.

66 800 EEGLAB v9.0.2.3b
File Edit Tools Plot Study
__Datasets 1,2 v Dataset 1:RespWrong
v Dataset 2:RespCorrect
(use shiftlctrl to
e, Groupname: -(soon) - Select multiple datasets
— Number of datasets 2 Y—
Dataset type epoched
Epoch consistency ves
Channels per frame 152
Channel consistency yes
Cancel Channel locations ves
Events (total) 2083
Sampling rate (Hz) 256
4 ICA weights ves
Identical ICA no
Total size (Mb) 313.7

Figure 6. Select both datasets in EEGLAB

Note that the “ICA weights” field in the dataset description is set to “Yes” indicating we have
ICA decompositions for both these datasets. Source separation (and localization, for
advanced visualization) is currently a prerequisite for the GUI-based SIFT data-processing
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pipeline, although it is possible to apply low-level SIFT command-line routines to analyze
connectivity using channel data. Future releases of SIFT will support a wider variety of data
formats.

6.4. The SIFT analysis pipeline

Now that our data is properly loaded, we are ready to begin the SIFT data-processing
pipeline. SIFT can be started from the Tools—>SIFT menu. Figure 7 shows SIFT’s data-
processing pipeline. The sub-menu options correspond to SIFT’s five main modules: Pre-
Processing, Model Fitting and Validation, Connectivity Analysis, Statistics, and Visualization.
Group Analysis is a sixth module which is applied after a cohort of datasets have been
processed using Modules 1-4. This module is currently unavailable in SIFT 0.1a, but it is
being integrated into EEGLAB’s STUDY module and will be released in SIFT 1.0.

SIFT » Pre-processing
i i Model fitting and validation »
Locate dipoles using DIPFIT 2.x > Connectivity
Peak detection using EEG toolbox Statistics >
EMRIB Tools > Visualization >
® O | Locate dipoles using LORETA > ’L
File Editm Plot Study Datasets Help m
| VA A st NP
—#1: Button pressepochs — VA A e AP
Filename: ...eta/Data/bt73 RespWrong.set
Channels per frame 127 Pre_processing
Frames per epoch 1024
Epochs 165
Events 1451
Sampling rate (Ez) 2586 Model Flttlng
Epoch start (sec) =2.000
Epoch end (sec) 1.996 and Validation
Reference unknown
Channel locations Yes
ICA weights Yes ..
Dataset size (Mb) 175.3 COﬂneCtIVIty

Statistics
Group Analysis Visualization

Figure 7. SIFT Data processing pipeline

6.5. Preprocessing

The first step in our pipeline is to pre-process the data. Select SIFT-> Pre-processing to
bring up the Preprocessing GUI. This can also be opened from the command-line using

>> EEG = pop_pre_ prepData (EEG).
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The first thing you will see is the splash screen (Figure 8). This lists acknowledgements,
disclaimers, and, most importantly, the reference (Mullen et al, 2010) to cite in your
presentations/publications if you use SIFT. This is very important for continuing
maintenance/development of SIFT so please don’t forget to cite!

800 Source Information Flow Toolbox

R—e

> 3 ~ Souree Infarmarion Flow Taolbex
~ — Version 0.i-Alpha

Welcome to the Source Information Flow Toolbox version 0.1-alpha
Author: Tim Mullen (tim@scen.ucsd.edu)
With important contributions from Arnaud Delorme and Christian Kothe

DISCLAIMER: THIS IS AN EXPERIMENTAL *ALPHA* VERSION OF SIFT. THIS VERSION ISNOT A
SUPPORTED RELEASE AND IS INTENDED FOR EDUCATIONAL PURPOSES. USE AT YOUR OWN
RISK! CHECK httpz//scen.ucsd.edu/eeglab/ FOR UPDATES ON THE OFFICIAL BETA RELEASE (coming
very soon).

If you find this toolbox useful for your research, PLEASE include the following citation with any
publications/presentations:

T.MULLEN, A. DELORME, C. KOTHE, S. MAKEIG (2010) "An Electrophysiological Information Flow Toolbox for
EEGLAB" Society for Neuroscience 2010, San Diego, CA

CLOSE

Figure 8. SIFT splash screen.

Click Close to bring up the Preprocessing GUI. Figure 9 shows the GUI, set to the options we
will be using for this example. For most GUIs, help text for each menu item appears in the
Help Pane at the bottom of the GUI when the menu item is selected (for other GUIs help
text appears in the tooltip text when the mouse is hovered over a menu item). The
VerbosityLevel determines how much information SIFT will communicate to the user, via
command-window or graphical output, throughout the remaining pipeline (0=no (or
minimal) command-window output, 1=full command-window output, 2=command-window
and graphical (progress-bars, etc) output). The Data Selection group contains options for
selecting ICs and re-epoching the data. The Filtering group contains options for
downsampling the data, filtering, differencing and linear detrending. Normalization
(removal of mean and division by standard deviation) can be performed across the
ensemble, across time, or both (first temporal then ensemble normalization). For our
example, we will use the options shown in Figure 9 and in the table below:

VerbosityLevel 2

ComponentsToKeep 8;11;13;19; 20; 23; 38; 39;
(if typing component numbers manually,
make sure to use semicolons to delimit
numbers)

EpochTimeRange [-11.25]
(1 second before button press event to 1.25
seconds after event)

NormalizeData checked

Method time; ensemble.
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Once these options have been input, click OK. Both datasets will be pre-processed using
these settings and you will be prompted to create a new dataset(s) or overwrite the current
datasets. Check “Overwrite” and click OK.

B[4 [m] =il

¥ Miscellaneous
VerbosityLevel

¥ Data Selection

v SelectComponents

ComponentsToKeep

EpochTimeRange
TrialSubsetToUse

¥ Filtering
NewSamplingRate
FilterData
DifferenceData
Detrend

¥ Normalization

v NormalizeData

8; 11; 13; 19; 20; 23;...
[-11.25]
0
0
0
g
U
™
ensemble =1
™ ensemble

( OK ) (Cancel)

Method
|Normalize windows across time,

ensemble, or both. f_—l_—

[ Help ]

[Canoel]

=

V.

Help Pane

Figure 9 Preprocessing GUI. Accessible through pop_pre prepbData() .

Component selection
Epoching

Filtering
Downsampling
Differencing
Detrending
Normalization

SIFT currently allows the user access to the following pre-processing options:
1.
2.
3.
4.
5.
6.
7.

Many of these preprocessing steps can also be performed from EEGLAB prior to starting
SIFT (see the EEGLAB Wiki). Pre-processing can be performed from the command-line
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using SIFT’s pre_prepData () function

6.5.1.1. Component Selection

Ideally, one should fit a multivariate causal model to all available variables. This helps
reduce the chances of false positives in connectivity (e.g., spurious causation) due to
exogenous causal influences from excluded variables - i.e. “non-brain” components
(Schelter et al., 2006; Pearl, 2009). However, increasing the number of variables also
increases the number of parameters which we must estimate using a VAR model. For
example, if we wish to fit a VAR model of order p, increasing the number of variables from M
to M+1 requires us to estimate (2M +1)p additional parameters. This in turn increases the

minimal amount of data we need to adequately fit our model (see the discussion on Window
Length in section 6.6.1. ). Thus, when limited data is available it is often necessary to fit our
models to a subset of relevant variables.

Variables can be selected using several approaches. One approach is to estimate the partial
coherence between all variables using a non-parametric method (e.g.,, FFTs, or wavelets)
and then only keep those variables that show significant partial coherence with at least one
other variable. If one is working with ICA components, another (possibly complementary)
approach is to select only a subset of ICs that are clearly related to brain activity. This can be
performed manually (Onton and Makeig, 2009) or with the assistance of automation tools
such as ADJUST (Mognon et al., 2010). The validity of this approach relies on the (rather
strong) assumption that ICA has effectively removed all non-brain activity from brain
components, such that there is no shared information between variables in the preserved
set and those excluded from the set. See (Fitzgibbon et al., 2007; Onton and Makeig, 2009)
for discussions on the topic. Both approaches can be performed using standard EEGLAB
routines, as documented in the EEGLAB Wiki. In practice, one should apply a combination of
these two approaches, selecting the largest subset of partially-coherent ICs which will
afford an adequate model fit given the amount of data available, while giving highest
priority to those ICs which likely arise from brain sources and which demonstrate
significant partial coherence with one or more other “brain” ICs.

Sparse VAR estimation methods generally obviate the need to select variables by imposing
additional sparsity constraints on the model coefficients. Although we may have a large
number of variables, and therefore a large number of coefficients to estimate, we assume
that only a small subset of the coefficients are non-zero at any given time, effectively
decreasing the amount of data required to obtain unbiased coefficients estimates (Valdés-
Sosa et al., 2005; Schelter et al.,, 2006). We are currently implementing this approach and
sparse VAR modeling will be incorporated into SIFT in an upcoming release.

6.5.1.2. Epoching

This simply allows the user to analyze a subset of the original epoch. When using a sliding-
window AMVAR modeling approach with a window length of W seconds, if one wishes to
analyze time-varying connectivity from T1 to T2 seconds, he should choose his epoch length
to be T1-0.5W to T2+0.5W seconds. This is because the connectivity estimate at time ¢ will
correspond to the connectivity over the W-second window centered at time t. Thus the
earliest timepoint for which we will have a connectivity estimate is T1+0.5W, where T1
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denotes the start of the epoch.

6.5.1.3. Filtering

Filtering can be a useful pre-processing step if the data contains low-frequency drift or
pronounced artifacts in one or more frequency bands. Removal of drift (trend) can
dramatically improve data stationarity, and thereby the quality of a VAR model fit. Since the
relative phases of each time series are a key element in information flow modeling, it is
critical to apply a zero-phase (acausal) filter, which introduces no phase distortion. Filtering
is performed using EEGLAB’s eegfilt () function. This in turn calls £i1t£filt () from
the Matlab Signal Processing Toolbox which implements a forward-reverse (zero-phase)
FIR filter.

6.5.1.4. Downsampling

Downsampling can be an important step when fitting parametric autoregressive models.
Time series with high sampling rates generally require large model orders to appropriately
capture the process dynamics, particularly if interactions occur over a relatively long time
lag. As in the discussion above regarding variable selection, increasing the model order
increases the number of model coefficients that must be estimated which can lead to biased
estimates when limited data is available. Generally speaking, spectral and causal estimates
derived from models of high order exhibit increased variability relative to those with low
model order, which can complicate interpretation unless appropriate statistics are applied
(Schelter et al, 2005a). In SIFT, downsampling is implemented using EEGLAB’s
pop_resample () function which employs a zero-phase antialiasing filter prior to
downsampling. The use of a zero-phase antialiasing filter is critical for the same reasons
described above for band-pass filtering.

6.5.1.5. Differencing

Differencing is a standard operation for improving stationarity prior to fitting time-domain
parametric VAR models (Chatfield, 1989). A first-order difference filter for input x is given

by y, =x, —x, , = Vx,. This operation can be applied repeatedly to obtain an nt order

difference filter: y, =V"x, =V""'x, —=V""'x_ . Orders larger than two are rarely needed to

ensure stationarity. An important point to note is that differencing is a high-pass filter and
may complicate frequency-domain interpretations of connectivity (Seth, 2010). Differencing
is implemented in pre_diffData().

Recently published reports have examined the effect of different forms of downsampling,
differencing, and filtering on granger-causal measures and demonstrate that in some cases,
these operations may produce spurious connectivity estimates (Florin et al., 2010; Seth,
2010). In general, if the sampling rate is not excessively high (> 500 Hz) and there are not
large frequency-specific artifacts in the data, it is advisable to avoid downsampling or
filtering. Differencing should also be treated with great caution if one wishes to examine
frequency-domain connectivity. In general, one should maintain caution when applying any
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transformation to their data - either to remove artifacts or improve stationarity - due to the
fact that may not be well-understood how these operations affect connectivity estimates,
particularly under less-than-ideal, real-world conditions. When possible, a safer alternative
to stationarity-improving transformations is to instead use adaptive algorithms that either
fit a model to locally-stationary windows of data (e.g., sliding-window AMVAR), estimate
model coefficients from spectral density matrices (e.g., minimum-phase factorization) or
utilize a state-space representation (e.g., Kalman Filter). SIFT allows the user to select from
several such adaptive algorithms and also provides methods for rigorously testing the
stationarity and quality of the fitted model.

6.5.1.6. Detrending

When only linear trend/drift is present in the data, an alternative to high-pass filtering is to
linearly detrend the time-series using a least-squares fit. This is a phase-preserving
operation. Detrending and centering (subtraction of the temporal mean) is implemented in
SIFT’s pre_detrend().

6.5.1.7. Normalization

SIFT allows you to perform two kinds of normalization, ensemble normalization and
temporal normalization. In section 3.4.1. we noted that ensemble normalization (pointwise
subtraction of an ensemble mean and division by ensemble standard deviation) is an
important preprocessing step when using multi-trial sliding-window AMVAR.

In contrast, when using short windows, temporal normalization (subtraction of mean of
each window and division by standard deviation) is not a good choice since the small-
sample estimate of the mean and variance within each small window will be highly biased
(inaccurate). As such, SIFT only allows you to perform temporal normalization across the
whole trial prior to segmentation. This should be performed prior to ensemble
normalization and ensures that all variables have equal weight (variance) across the trial.
This is important since the units of many of our derived VAR-based causal measures, like
any regression method, are not scale-free and depend highly on the units and variance of
the signals. Thus, severely unbalanced variances amongst the variables will likely lead to
model misspecification (e.g. the variables with the highest variance may be incorrectly
indicated as causal sources). It is worthwhile to note that scale-free measures such as
renormalized PDC (rPDC) are theoretically immune to this problem. Nonetheless, temporal
normalization, when possible and reasonable, is usually a good idea.

6.6. Model Fitting and Validation

Once the data has been pre-processed, we can proceed to Model Fitting and Validation.
SIFT 0.1a currently supports parametric VAR modeling using the Vieira-Morf (Marple,
1987), or ARFIT algorithm (Schneider and Neumaier, 2001). ARFIT must be downloaded
separately and installed in <SIFT directory>/external/arfit/). SIFT currently supports time-
varying parametric VAR modeling either through the use of sliding-window adaptive VAR
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modeling (est_£fitMVAR()) or recursive-least-squares Kalman filtering
(est_fitMVARKalman () ).

To model the data using a sliding-window AMVAR, select SIFT-> Model Fitting and
Validation—=> Fit AMVAR Model. This can also be started from the command-line:

>> EEG = pop_est fitMVAR (EEG) ;

You should now see a GUI similar to that displayed in Figure 12. Here we can select the
MVAR algorithm, choose the sliding window length and step size, and specify the model
order. ARFIT uses a modified least-squares approach while Vieira-Morf uses a multichannel
geometric-mean non-least-squares lattice approach to solve for the model coefficients.
ARFIT includes an additional term for the process mean, whereas Vieira-Morf assumes a
zero-mean process. The current implementation of ARFIT is faster than that of the Vieira-
Morf algorithm, although Vieira-Morf returns slightly better coefficient estimates. For a
detailed performance comparison between these and other estimators, see (Schlogl, 2006).
In this example we will use the Vieira-Morf algorithm. We will also use a window length of
0.4 sec (400 ms) with a step size of 0.1 sec (10 ms). This is approximately 1 cycle of a 2.5 Hz
oscillation and should allow us to adequately model information flow from the lowest
frequency band of interest (delta) up to our Nyquist frequency of 128 Hz. Consult the theory
section (6.6.1.) below for more details on selecting an appropriate window length. Your GUI
should appear as shown in Figure 10 with options set as in the table below:

Option Value

Select MVAR Algorithm Vieira-Morf
Window length (sec) 0.4

Step Size (sec) 0.01

Model Order [130]

Fit AMVAR Model

1. Select MVAR algorithm

[ Vieira-Morf )
2. Window length (sec) 04
[ StartWindow Length Assistant... |
3. Step size (sec) 0.01
4. Model order (1 30]
( Start Model Order Assistant... )
[ Help | (Cancel| [ Ok
V
Figure 10. AMVAR model fitting GUI generated by pop_est fitMVAR() . We have selected a window

length of 0.4 sec, step size of 0.01 sec and specified a model order range (for order selection) of 1 to 30.
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There are several important considerations that can aid us in choosing an appropriate
window length. An appropriate window length often requires a compromise between one
or more of the following considerations:

1. Local Stationarity

2. Temporal Smoothing

3. Sufficient amount of data

4. Process Dynamics and Neurophysiology
6.6.1.1. Local Stationarity

In section 3.4. we discussed issues surrounding non-stationary EEG data and introduced
the concept of using a sliding window to fit VAR models to locally stationary data. It is thus
important that our window be small enough to ensure local stationary. As we shall see in
the section 6.6.4. validating our model and plotting the stability index for a chosen window
size can give us a sense as to whether our window is sufficiently small to ensure local
stationarity.

6.6.1.2. Temporal Smoothing

A sliding-window analysis is inherently a temporal smoothing operation. Larger windows
result in model coefficients being aggregated over increasingly longer segments of data and
therefore results in increased temporal smoothing. If there are rapid transient changes in
process dynamics, choosing a too-large window may obscure the fine temporal structure of
information flow. When multiple trials are available, a useful heuristic proposed by (Ding et
al., 2000b) for obtaining a rough upper limit on the window length is to plot the bivariate
correlation for a few pairs of variables, across all trials, beginning with a 1-point window
and successively averaging correlation within trials and across the window for increasingly
larger windows. An illustration from (Ding et al., 2000b) is reproduced in Figure 11. Note
that with the 1-point window there are large fluctuations in correlation structure
(covariance non-stationarity). As we increase the window length, we get increased
temporal smoothing. In this case, a reasonable window length might be 10 points, since it
reduces local covariance non-stationarity (local fluctuations in cross-correlation) while still
preserving some of the temporal dynamics of interest (namely the changes in correlation
structure). Of course, this suggested window length is completely application-specific; one
should select a window tailored to their specific data.
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Figure 11. Cross-correlation between two intracranial EEG time-series, averaged over increasing window
lengths (1 point, 10 points, 20 points), and plotted as a function of time. Figure reproduced from (Ding et al,,
2000b).

6.6.1.3. Sufficient amount of data

In section 3.4.1. we noted that a minimum of M?p data points are required to fit an M-
dimensional VAR[p] model. We also stated that, in practice we would like to have 10 times
that many data points to ensure an unbiased fit. This leads us to the rule-of-thumb equation

1
M?*p < (—) NW
10

or, equivalently,

MZ
W210< p)
N

where W is the window length in points and N is the total number of trials available. SIFT
performs checks on parameters (est_checkMVARParams () ) and will let you know if the
selected window length is sub-optimal (as well as recommend a better window length).

6.6.1.4. Process dynamics and neurophysiology

In section 3.5. we discussed how, when selecting an appropriate model order, one should
take into account the temporal dynamics and neurophysiology of the data. The same
principles hold for window length selection. Although, with a large number of trials, we
could theoretically fit our model using a window length as short at p+1 sample points long,
we must consider that all interactions being modeled must occur within the selected
window. In general, if we expect a maximum interaction lag of 7 seconds between any two
brain processes, we should make sure to select a window length of W= 7.

Futhermore, if we are interested in frequency-domain quantities, we should consider the
time-frequency uncertainty principle, which states that every increase in temporal
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resolution leads to a concomitant decrease in frequency resolution. In general, a useful rule-
of-thumb is to ensure that the window is long enough to span approximately one cycle of
the lowest frequency of interest.

6.6.2. Selecting the model order

Now that we have chosen our VAR algorithm, window length and step size, we can proceed
to model order selection. Click Start Model Order Assistant. You should see a command-
window pop up indicating that some warnings were generated (Figure 12). The Matlab
command-window shows the results of a sanity check that evaluates the ratio of parameters
to datapoints, calculates the number of estimable frequencies, checks the time-frequency
product, and performs other relevant checks. Information is displayed for each condition,
along with suggestions on optimal parameters to use, if your parameter selections are sub-
optimal. Here, we are being warned that the ratio of free parameters to datapoints is greater
than 0.1, which may be a cause for concern. This is because our upper model order of 30 is
quite large. Let’s go ahead and ignore this error (we are likely to use a much lower model
order when we fit our final model). Click OK to continue to the model order selection GUI.

Fit AMVAR Model

1. Select MVAR algorithm
| Vieira-Morf s

2. Window length (sec) 04 (L XeNe) Checking MVAR
[ StatWindow Length Assistant... |

5 0.01
3. Step size (s60) o0 Some warnings were generated (see command-window for details), Continue?
4. Model order
[ Start Model Order ASSIStant...  =fs [ Cancel
2
[ Help Cancel | [ Ok |

2

Command Window
File Edit Debug Desktop Window Help

MVAR PARAMETER SUMMARY FOR CONDITION: RespWrong

WARNING Two model orders specified [1 30]
I assume you are providing a [min max] range for model order selection.
I will use p=(30) for the remaining checks...

WARNING Ratio of number of parameters to datapoints is 0.152.
For best results, ratio of number of parameters to datapoints should be < 0.1.
I recommend using window length of at least 0.610 sec

oK Time-Frequency Product is 1135.671. This should be greater than p=30

oK Given your model order of p=30, a maximum of p/2=15.0 frequency components (spectral peaks) can be estimated for each pair of variables

MVAR PARAMETER SUMMARY FOR CONDITION: RespCorr

WARNING Two model orders specified [1 30]
I assume you are providing a [min max] range for model order selection.
I will use p=(30) for the remaining checks...

WARNING Ratio of number of parameters to datapoints is 0.152.
For best results, ratio of number of parameters to datapoints should be < 0.1.
I recommend using window length of at least 0.610 sec

oK Time-Frequency Product is 1135.671. This should be greater than p=30
oK Given your model order of p=30, a maximum of p/2=15.0 frequency components (spectral peaks) can be estimated for each pair of variables B
~
i
fe >> K2
T <>l

Figure 12. Sanity check on the model parameters. Command-window shows the results of a sanity check
performed on the specified model parameters (this is always performed prior to model fitting).
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The model order selection GUI is shown in Figure 13. Here we can choose to calculate one
or more of the information criteria listed in section 3.5. over a range of model orders (pmin
to pmax)- If more than one window is available, the information criteria are calculated for
each window, and histograms will be generated showing the distribution of optimal model
orders for all windows. If we have a large number of windows and are pressed for time, we
can specify a random percentage of windows for which to calculate the criteria (%
windows to sample). Bear in mind, however, that increasing the number of windows used
will result in a better estimate of the empirical distribution of the information criteria
across windows. Additionally, for a fast, approximate estimate of the information criteria,
we can choose to downdate the model (Neumaier and Schneider, 2001). Rather than fitting
Pmax— Pmin VAR models of increasing order, this fits a single VAR[pmax] model, and downdates
the noise covariance matrix to obtain approximate estimates of the information criteria for
each model order p € {Pmin, - Pmax}-

For this example, set the parameters as shown in Figure 13 and in the table below:

Option Value

Order criteria select all
(hold down Ctrl (Win/Linux) or Command
(Mac) and click to select multiple criteria)

Downdate model checked
Model order range 1-30
% windows to sample 100

Click OK to continue.

™ M O Plot Information Criteria

Select order criteria to estimate
hold Ctrl to select multiple:

¥] Downdate model

model order range: L - 30
% windows to sample 1001

|CanoeIH Ok ‘

4

Figure 13. The Model Order Selection GUI generated by pop_est_selModelOrder ()
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A progress bar should now popup indicating our progress for each condition (RespCorr,
RespWrong). When this is complete, you should see the resulting figures shown in Figure 14.
On left is the result of model order selection for RespWrong and on the right is the result for
RespCorr. The top panel shows the information criteria (averaged across windows) plotted
versus model. The vertical lines indicates the average optimal model order (model order
that minimizes the information criterion) for a each criterion. The lower array of
histograms show the distribution of optimal model orders for all windows, for each
criterion. Note that, as mentioned in section 3.5. for many windows the AIC and FPE criteria
do not appear to exhibit a clear minimum across the specified model range. In contrast, SBC
shows a clear minimum peaking around p=>5 (which is likely too low given that we will only
be able to estimate 2.5 spectral peaks for each pair of variables) while HQ shows a clear
minimum around p=11 and p=13 for RespWrong and RespCorr, respectively. Note, however
that in both RespWrong and RespCorr, the upper limit on the model order selection criteria
is approximately p=15. If we click on the top panel of RespCorr, we get an expanded view of
the panel (Figure 15a). Likewise clicking on the histogram for HQ pops up an expanded
view of the histogram (Figure 15b). Note that although the minimum for HQ criterion
(turquoise) is at p= 13, the upper limit of the “elbow” for the HQ criterion is around p=15 or
p=16. It also appear that AIC/FPE begin to “flatten out” after p=15. From this we might
conclude that a suitable, safe model order for all windows and conditions is be p=15.

Figure 3: RespWrong - Model Order Selection Results Figure 4: RespCorr - Model Order Selection Results
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Figure 14. Results of model order selection for RespWrong (left) and RespCorr (right). The top panel plots
the information criteria versus model order and marks the average optimal model order for the selected criteria.
If multiple windows of data are available, the bottom panels show histograms of optimal model orders across
the selected data windows.
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Figure 5 Figure 6
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Figure 15. Left: Close-up view of SBC (red), HQ (turquoise), FPE (green), AIC (blue) information criteria
plotted versus model order. Note that FPE and AIC plots are almost identical. Right: Distribution over all
windows of optimal model order using HQ information criterion. Vertical markers denote distribution
mean. Note the distribution is somewhat bimodal with one peak around 9 and another around 14.

6.6.3. Fitting the final model

Returning to our model order selection GUI, we now set the model order option to 15 as per
the previous discussion. The final set of parameters should appear as in Figure 16 and the
table below:

Option Value

Select MVAR algorithm Vieira-Morf
Window length (sec) 0.4 (400 ms)
Step size (sec) 0.01 (10 ms)
Model order 15
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™ O O Fit AMVAR Model

1. Select MVAR algorithm

| Vieira-Morf 3 e~
2. Window length (sec) 04 fitting ¥AR[15] model [rr!ode=vieira-morf] (windowr 42!186)
| Start Window Length Assistant... | CEE e S el |
3. Step size (sec) 0.01
4. Model order 15 4
[ Start Model Order Assistant... ) /
' Help | Cancel ||| Ok |

W

Figure 16. Our final set of selected parameters for model fitting. Note that we have selected the Vieira-Morf
algorithm, a window length of 0.4 seconds with a step size of 0.01 sec, and a model order of 15. Upon clicking OK,
a progress bar will show us the status of the model-fitting algorithm.

Click OK to continue. Our sanity check should proceed and generate no warnings or errors
indicating we chosen a valid set of model parameters. For each condition, the VAR[15]
model will not be fit for each of the 186 windows. We should now see a progress bar
indicating the model fitting progress for each condition. Depending on the speed of your
computer, this may take a while, so you might want to get a coffee or do a little yoga or
something. If you have little computer memory or processor speed issues, you can increase
the step size to 0.03 sec. This will greatly reduce the computation time demands while still
producing similar results as in the remainder of this exercise.

6.6.4. Validating the fitted model

After you are refreshed from that Yoga session and the model has been fit for each
condition, we will need to validate our fitted model. Select SIFT->Model Fitting and
Validation - Validate Model from the EEGLAG menu. This can also be achieved from the
command-line using:

>> pop_est_validateMVAR (EEG) ;

You should now be presented with the GUI shown in Figure 17 (left). Here we have the
option to check the whiteness of the residuals, percent consistency, and model stability for
each (or a random subset) of our windows. As we discussed in section 3.6. , residual
whiteness tests include Portmanteau and autocorrelation tests for correlation in the
residuals of the model (which could indicate a poor model fit). Here we have the option to
choose from the Ljung-Box, Box-Pierce, and Li-McLeod multivariate portmanteau tests and
a simple autocorrelation function test. Percent consistency denotes the fraction of the
correlation structure of the original data that is captured by the model, while model
stability performs an eigenvalue test for stability/stationarity of the process. The options
for this GUI should be set as shown in Figure 17 and the table below:
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Option Value

Check Whiteness of Residuals checked and select all
significance level 0.05
Check percent consistency checked
Check model stability checked
% windows to sample 100
M M O Select Model Validation Methods 8.00

checking whiteness (11/186)...
Condition: Resp¥¥rong

[¥! Check Whiteness of Residuals m

NN
checking consistency (48!186)...
_ 7005 | Condition: Resprong
significance level: : [
¥ check percent consistency
¥ check model stability
% windows to sample 100 NN
checking stability (1131186)...
Condition: Respirong
| Cancel [| Ok | T —

V

Figure 17. Model Validation GUI generated by pop_est_validateMVAR() .Here we can choose to check
the whiteness of residuals, percent consistency, and model stability for all (or some random subset) of windows.
In this example, we have chosen a significance threshold of p<0.05 for our whiteness tests.

Click OK to continue. You should now see a sequence of progress bars for each condition as
shown in Figure 17 (right). This may take a while, so go ahead and have another coffee or
(preferably) finish that Yoga session.

Once model the model validation routines have completed, you should see the results
shown for each condition as in Figure 18. The top panel of each figure shows the results of
the whiteness tests as a function of window index (sorted in order of temporal precedence).
For the Portmanteau tests, we have plotted the p-value for acceptance of the null hypothesis
of correlated residuals (namely 1-p where p is the p-value for rejection of the null
hypothesis). Values greater than 0.05 (blue dashed line) indicates the residuals are white at
the p<0.05 level. For the ACF test (green) we have plotted the probability of an observed
ACF coefficient to be within the expected interval for white residuals. Values greater than
0.95 indicates the residuals are white at the p<0.05 level. The fraction of windows that pass
the whiteness test are noted in the legend. Note that the ACF tests classifies all windows as
having white residuals, while the Portmanteau tests (which are much more conservative)
indicate that the majority of windows are white. The fact that a range of windows near the
end of the epoch marginally fail the portmanteau tests may indicate that we may want to
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use a slightly larger model order (e.g., p=16) or perhaps a smaller window size (to improve

local stationarity).

The middle panel shows the percent consistency plotted versus increasing window index.

Note that the PC is reliably high (ux87%) suggesting a reasonable model fit.

The lower panel shows the stability index for each window. Values above or near 0 indicate
an unstable (and possibly nonstationary) model. In this case, we might try some additional
preprocessing or shorten the window length to improve local stationarity of the data. In our

example, the stability index is reliably low indicating a stable/stationary model.

The validation checks all indicate a reasonably fit model (although there may be room for
improvement of the fit). Assuming we are comfortable with this we can now proceed to
spectral/connectivity estimation and visualization.
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0606 Figure 5: RespCorr - Model Validation Results
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Figure 18. Results of model validation for RespWrong (top) and RespCorr (bottom) conditions. For each
condition a validation statistic is plotted versus window number (sorted in order of temporal precedence). If
only one window is available, bar plots are generated instead. The top panel shows the significance level for
rejection of the hypothesis of correlated residuals. For Portmanteau tests (LMP, Box-Pierce, Ljung-Box), a value
greater than 0.05 (dashed blue line) means we can reject the null hypothesis at the p < 0.05 level (the residuals
are white). For the ACF test (green line), a value greater than 0.95 indicates white residuals at the p < 0.05 level.
The middle panel shows the percent consistency. The bottom panel shows the stability index.

6.7. Connectivity Estimation

Now that our model has been fit, we'd like to calculate some frequency-domain measures,
such as the spectrum, coherence, and granger-causality. Bring up the Connectivity
Estimation GUI by selecting SIFT-> Connectivity. You can start this from the command-line
for a single dataset EEG using:

>> EEG.CAT.Conn = pop est mvarConnectivity (EEG) ;

You should now see the GUI shown in Figure 19 (left). Here we can compute all the
measures (and more) listed in Table 4 in section 4.3. We can specify a list of frequencies at
which to compute the measure(s) and we can do some simple conversions of complex
measures and spectral densities.
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For our example, let's compute the direct DTF (with full causal normalization, denoted
dDTF08), the complex coherence, the partial coherence, and the complex spectral density
over the frequency range 2-50 Hz (with 1 Hz resolution). Your options should be set as in
Figure 19 and the table below:

Option Value
Select connectivity measures Direct DTF (with full causal norm.)
Complex Coherence (Coh)
Partial Coherence (pCoh)
Complex Spectral Density (S)
return squared amplitude of complex measures checked
convert spectral density to decibels checked
Frequencies (Hz) 2:50

eNO Calculate Connectivity Measures

Select L]

(hold Ctrl to select
+ DIRECTED TRANSFER FUNCTION MEASURES
Directed Tranfer Funcﬁon (DTF)
Normalized DTF n
Duecl DTF (di
D causal no on) |
FuII -freque DTF (fDTF

+ PARTIAL DIRECTED COHERENCE MEASURES
Partial Directed Coherence (PDC)
Normalized PDC (nPDC; ® O O  Connectivity
Generalized Partial Dwedsd Coherence (GPDC)
Partial Directed Coherence Factor (PDCF)
Renormalized Partial Directed Coherence (RPDC)

OGRANGER—GEWEKE CAUSALITY MEASURES i i i i
er-Geweke Causality (GGC) This operation will require 8.9004 MB of memory.
+ SPEC RAL OOHEHENCE MEASURES Make sure you have enough memory available.
I he
maq na.ug renga .&%i Do you want to continue?
SPEE%‘%AL DeE:J"Smn-& Mi RES —r
" Eomplex Specral Densiy— ] L ok J (Cencel)

W return squared amplitude of complex measures

¥ convert spectral density to decibels \4
- - _ enN
Frequencies (Hz) 2:50
estimating connectivity for Respitrong (791186)...
Help Cancel Ok

Figure 19. Connectivity estimation GUI generated by pop_est_mvarConnectivity (). Here we have
chosen to estimate the Direct DTF (with full causal normalization; dDTF08), the Complex Coherence (Coh), the
Partial Coherence (pCoh), and the Spectral Density (S).

While selecting additional measures only marginally increases the computational time,
doubling the number of measures will generally double the memory demands. Click OK to
continue. You should now get a prompt notifying you of how much memory will be required
(for each condition). If you have enough memory to continue, click OK. A progress bar will
appear showing the status of the connectivity estimation for each condition.

6.8. Statistics

Once a model has been fit, and connectivity estimates computed, we often wish to compute
statistics for the dataset. As discussed in section 5. This can be achieved in SIFT using
several approaches, including asymptotic analytic tests (for PDC, RPDC, and DTF measures)
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and surrogate statistics (bootstrapping, phase randomization). The statistics module in SIFT
is currently undergoing major revisions to improve its compatibility with EEGLAB’s
statistics routines and the STUDY module in EEGLAB. Thus, support for statistics in SIFT has
been withdrawn pending the beta release.

6.9. Visualization

Once we’ve computed our connectivity estimates, and potentially computed some statistics,
we will want to visualize the results. SIFT currently provides three main visualization
programs for exploring results for a single dataset or a cohort of datasets: an Interactive
Time-Frequency Grid, an Interactive BrainMovie3D, and Causal Projection (to be released in
SIFT 1.0beta). For the next several sections, let’s start by visualizing the results for each
condition separately. Let’s begin by selecting only the RespWrong dataset as shown in
Figure 20.

800 EEGLAB v9.0.2.3b

File Edit Tools Plot Study BPEEHIEN Help
__#1: RespWrong v Dataset 1:RespWrong

Dataset 2:RespCorrect

Filename: ...lpha/Data/ebidresprd  Select multiple datasets

Channels per frame 152 T

Frames per epoch 576
Epochs 123
Events 496
sampling rate (Kz) 256
Epoch start (sec) -1.000
Epoch end (sec) 1.246
Reference unknown
Channel locations Yes

ights Yes

Dataset size (Mb) 105.5

Figure 20. Select only the RespWrong dataset to continue.

6.9.1. Interactive Time-Frequency Grid

Bring up the Interactive Time-Frequency Grid Options GUI by selecting
SIFT-> Visualization-> Time-Frequency Grid. This can also be achieved from the
command-line:

>> pop_vis TimeFrequencyGrid (EEG) ;

This should generate the GUI seen in Figure 21. This GUI has substantially more options
than we’ve previously seen, and we will only briefly introduce them here. Help text for each
option can be obtained by expanding the Help Pane at the bottom of the PropertyGrid. The
first step to creating a Time-Frequency Grid is to design the grid layout. We can plot time-
frequency images of different VAR-based measures on the upper triangle, lower triangle, or
diagonal of the grid. This is achieved by setting the MatrixLayout property to Partial and
selecting the measures to plot on the various grid components. Next we should decide
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which FrequenciesToPlot. Usually we want to visualize a subset of all frequencies, to make
interesting details more salient. We can also control how the color map is saturated, using a
priori color limits or adaptive ones based on percentiles of the data. Picking a good color
scaling is important for visual inspection of the data. If source localization has been
performed we can set SourceMarginPlot to dipole to plot the anatomical locations of the
sources on the column and row margins. If source locations are not available, but ICA has
been performed, we can set this property to topoplot to instead plot the scalp maps of the
ICs on the margins. We can provide a Baseline window (in seconds) for computing event-
related measures. We can also perform statistical Thresholding or use simple percentile or
absolute thresholds to establish significance. If the threshold is constant, contours can be
plotted around significant regions by enabling PlotContour. Finally, we can customize a
wide variety of display options, including placement of event and frequency markers, labels
and title strings, font colors and sizes, and more.

For this example, make sure your options are set as in Figure 21 and the table below:

Option Value Description

MatrixLayout Partial
UpperTriangle dDTFO08 Put the dDTFO08 on the upper triangle
LowerTriangle dDTFO08 Put the dDTFO08 on the lower triangle
Diagonal S Put the power spectra on the diagonal

ColorLimits 99.9 Saturation level for colormaps.

Providing a single number (as shown
here) indicates that we’'d like the
colormap to saturate at the 99.9th
percentile of all measured values

FrequenciesToPlot 2:50

Thresholding Simple If statistics are available, we can use
them, otherwise we get a rough sense of
significance by applying simple
percentile thresholding

PercentileThreshold [97.5, 3] For each frequency (dimension 3), plot

only values larger (in absolute value)
than 97.5% of all other measured
values at that frequency

Baseline [-1, -0.25] Subtract the average connectivity in the
pre-event baseline window (1 sec to %
sec prior to button-press event) from
each measured value. This produces an
event-related measure

FrequencyMarkers [3,7,10] This will place horizontal markers at
these frequencies (Hz).
FrequencyMarkerColor [0.7,0.7,0.7] Here we can determine the [R G B]

color(s) of the frequency markers.
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Figure 21. Interactive Time-Frequency Grid option GUI generated by
pop_vis_TimeFrequencyGrid () . Almost every aspect of the grid is customizable, and only the most
commonly-used options are represented in the GUL

Click OK to continue and generate the Time-Frequency Grid. After a few seconds, you
should see a figure similar to Figure 22. Here we have plotted an array of time-frequency
images, where frequency is on the y-axis and time on the x-axis. On the upper and lower
triangle of the grid (above and below the red-bordered diagonal) we have the dDTF
(conditional GC) between each pair of sources. Information flows from columns to rows.
Thus the time-frequency (TF) image at (row,col) = (3,1) shows information flow at different
times and frequencies from the source above column 1 (IC8) to the source on the left of row
3 (IC13). Note that we have vertical red lines indicating events of interest (here the time of
the button-press event) and horizontal gray lines denoting our frequencies of interest
(FrequencyMarkers). On the diagonal we have plotted the event-related spectral
perturbation (ERSP). Because we provided a baseline, each pixel shows the information
flow or spectrum relative to the baseline window. Red denotes more information flow than
in the baseline, while blue denotes less. The anatomical dipole locations for each source are
rendered on the margins. Clicking on this will expand an interactive 3D MRI plot (dipplot).
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Clicking on any time-frequency image generates a figure with more detail regarding the
interaction between the respective sources.

Note the large bursts of information flow and spectral power in the theta (3-7 Hz) and delta
(2-3 Hz) bands around, and just after, the erroneous button press. This suggests some kind
of transient network synchronization occurring around the time when the button press is
made in error. As a side note, observe that, although spectral power often increases with
information flow/granger-causality, it does not necessarily do so. Consider IC 38 (7t row
and column). It shows very little change in ERSP (cell (7,7)) around the button press, but
appears to exhibit large changes in information flow with ICs 11 and 8. As a rule, spectral
power modulation and phase synchronization/information flow can occur independently of
each other - one does not imply the other. Merely observing two regions concomitantly
increase their spectral amplitude does not necessarily suggest that they are communicating.
Conversely, observing a lack of event-related spectral power modulation in some putative
component of a brain network does not mean it is not critically participating in the network.

To explore one of these interactions further, let's go ahead and click on cell (3,1), which
corresponds to IC8>1C13.

(NeXe) Figure 2: Subj eb79. Cond (RespWr( d (RespWrong).
File Edit View )p Window Help

i | 7‘

o S : - - -

L
o

-
! T — \..g

Figure 22. Interactive Time-Frequency Grid.
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Clicking on cell (3,1) should generate an image similar to that in Figure 23a. Here we can
explore the interaction between these two processes in greater detail. On the top panel of
we have the dDTF flow from IC8>1C13 and on the bottom panel we have the feedback flow
(IC13->1C8). On the left marginals we have rendered the column-envelope of the matrix
(maximum and minimum dDTF across time), while on the bottom marginal we have the
row-envelope (maximum and minimum of the dDTF across frequency). The envelopes of
the two-sided thresholds for statistical significance (using the percentile threshold) are
plotted as green-black lines on the marginals. Values between the threshold lines are
considered non-significant and masked in the time-frequency plot. The purple shaded
region on the time-marginal indicates our baseline window. Every part of the image is
expandable. Clicking on the marginals generates images (b) and (c), while clicking on the
source anatomical images generates images (d) and (e).
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Figure 23. Expansion of the Time-Frequency Grid cell (3,1) corresponding to IC8>IC13. As with the Time-
Frequency Grid, each element of the Time-Frequency Cell (a, center) is also interactively expandable. On the top
panel of (a) we have the dDTF flow from IC82>IC13 and on the bottom panel we have the feedback flow
(IC13->1C8). The envelopes of the time-frequency matrix are plotted on the marginal (b, c). Here, two-sided
thresholds for statistical significance are plotted as green-black lines on the marginal. The purple shaded region
denotes the baseline interval [-1 -0.25] sec. Clicking on the source anatomical images will generate interactive
dipole plots of the sources (d, e).

By examining this time-frequency image we can see that there is a significant flow of
information from IC8 to IC13 in the theta-band around the time of the erroneous button-
press. There is also slightly delayed, and damped feedback from IC13->IC8. This
emphasizes the points made in section 4.5. regarding the importance of using an
asymmetric measure that can separate feedforward and feedback influences in closed-loop
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systems. Note that the early information flow is highly peaked around 5 Hz theta-band,
while we see later information flow around 250-600 ms shifting to the delta-band (2-3 Hz).
This is precisely in line with several observations regarding the functional role in error
processing (the so-called Error-Related Negativity (ERN) seen reported in ERP literature)
and electrophysiology of the cortical area to which IC8 is localized (Anterior Cingulate
Cortex (ACC)) (Holroyd and Coles, 2002; Yordanova et al., 2004; Luu et al.,, 2004; Roger et
al.,, 2010).

Returning to our Time-Frequency Grid in Figure 22, and turning our attention to the first
column, we note that IC8 (ACC) appears to be exerting a disproportionate amount of theta-
band causal influence on the rest of the network around the time of the erroneous button
press. IC8 appears to be some kind of hub, synchronizing and communicating with multiple
other brain areas when the error is being committed. In order to examine the full network
behavior in more detail, let’s generate a 3D BrainMovie.

6.9.2. Interactive Causal BrainMovie3D

The Interactive Causal BrainMovie3D (Mullen and Delorme et al, 2010; Delorme, 2005) is a
way of visualizing brain network activity across time, frequency and anatomical location in
the form of an anatomically localized directed graph. Directed graphs (graphical models)
are powerful constructs for representing causal network structure (Pearl, 2000; Eichler,
2006a). Graph-theoretic measures are being increasing used to study brain network
organization (Bullmore and Sporns, 2009). The BrainMovie3D provides a way to
interactively explore multiple dimensions of source-domain network dynamics and graph
structure in an intuitive and aesthetically pleasing manner.

To begin, let’s bring up the BrainMovie3D GUI by selecting SIFT-> Visualization-> Causal
BrainMovie3D. The command-line analogue is

>> pop_vis_causalBrainMovie3D(EEG);

You should now be presented with a control panel similar to that shown in Figure 24. This
GUI has the most options of any thus far, and we will, again, only explore a small subset of
the options for this example. The Help Pane (and some adventurous exploration) should
allow the user to deduce the function of many of the remaining options.

One of the interesting features of the BrainMovie is the ability to modulate the color and
size of nodes based on graph-theoretic measures such as inflow/outflow,
indegree/outdegree, causal flow, causal density, asymmetry ratio, and other such quantities
(Seth, 2005; Bullmore and Sporns, 2009). This is achieved through the NodeColorMapping,
and NodeSizeMapping properties.

Outflow Sum connectivity strengths over outgoing edges
Inflow Sum connectivity strength over incoming edges
Causal Flow Outflow - Inflow

Outdegree Number of significant outgoing edges

Indegree Number of significant incoming edges

Causal Degree Outdegree-Indegree
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Asymmetry Ratio

_Inflow — Outflow

AR
-1 <AR <1

~ Inflow + Outflow

AR = -1 indicates all connectivity related to that node is
inflowing (a causal sink)

AR = +1 indicates all connectivity related to that node is
outflowing (a causal source)

AR = 0 indicates either balanced flow or no significant

flow

Let’s begin by starting with the default options and setting the remaining options as shown

in Figure 24 and the table below:

Option Value
ConnectivityMethod dDTFO08
FrequenciesToCollapse 4:7
FreqCollapseMethod Integrate
EdgeColorMapping Connectivity
EdgeSizeMapping ConnMagnitude
NodeColorMapping AsymmetryRatio
NodeSizeMapping Outflow

Description

Which connectivity measure to use
Collapse frequencies across the
theta range

Which method to use to collapse
frequencies.

Integrate: integrate over the
selected frequencies

Mean: take the mean over
frequencies

Max: take the maximum

Peak: return the peak value over
frequencies (a monotonically
increasing or decreasing sequence
does not have a peak)

The color of the edges will be
mapped to connectivity strength
(amount of information flow along
that edge). Red = high connectivity,
Green = low connectivity.

The size of edges of the graph
(connecting “arrows”) will be
mapped to connectivity magnitude
(absolute value of connectivity
strength, useful if there are negative
values as with event-related
(baselined) or between-condition
analysis)

The color of a node (source) will be
mapped to the asymmetry ratio of
connectivity for that source. Red =
causal source, Blue = causal sink.
Green = balanced flow

The size of a node will be mapped to
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the amount of information outflow
from the source
FooterPanelDisplaySpec ICA_ERPenvelope This configures the footer panel at
the bottom of the brainmovie. Here
we’'ve chosen to display the ERP
envelope of some backprojected

components
icaenvelopevars 8 Backproject the ERP of IC 8 (ACC)
backprojectedchans B1; ... and compute the envelope only
for channel B1 (FCz)
RotationPath3d automatic This creates an automatic rotation

of the brainmovie when we create
the final movie

ProjectGraphOnMRI on This projects the 3D directed graph
onto the 2D anatomical slices
Thresholding If statistics are available, we can use

them, otherwise we get a rough
sense of significance by applying
simple percentile thresholding

PercentileThreshold 0.05 We will only render the top 5% of
all connections across all time

A useful feature of the Control Panel is that we can Preview frames from the brainmovie
before committing to render the movie. You can also save these preview frames allowing an
easy way to create a network image for any desired time point. Now that we have
configured our options, go ahead and click on the scrollbar in the Preview BrainMovie
panel. It may take a second or two for the brainmovie to render, so be patient and don’t click
multiple times in rapid succession. If you have graphics problems, try setting the
UseOpenGL option to off. If you move the slider to approximately -0.2 seconds (200 ms
before the button press) you should see a figure similar to Figure 25. We are looking at a 3D
rendering of the brain of this subject derived from MRI images. To be precise, here we have
coregistered (warped) this subject’s electrode montage to the 4-shell spherical head model
corresponding to the Montreal Neurological Institute (MNI) average brain. This accounts for
the low-resolution of the MRIs (and much of the error in the dipole localization). If
individual MRIs are available for the subject, an individualized head model can be
constructed. The outline of the cerebral spinal fluid (CSF) is rendered translucently
(RenderCorticalSurface option) to show us the outline of the cortical surface. As described
in the section above, node and edge color and size are modulated by one or more network
or graph-theoretic measures. Since we have mapped outflow to NodeColor and
AsymmetryRatio to NodeSize we can immediately see that IC8 (big red ball in center) is a
causal source hub here, driving many other brain areas in the theta frequency band. Note
the backprojected ERP from IC8 at the bottom of the screen shows a sharp negativity
around 40 ms followed by a late positive complex at around 350-400 ms. This is the well-
known ERN potential known to be associated with error-processing. Try scrolling to the
time point corresponding to the negative peak of the ERN (40 ms) and see what happens to
the network (particularly IC 8). Try rotating the graph to examine it from different angles.
Try scrolling through various stages of the epoch and exploring different mappings for node
and edge color and size.
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Figure 24. The Interactive BrainMovie3D Control Panel.
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Figure 25. A frame of the interactive BrainMovie3D at -0.2 seconds (-200 ms) relative to the event.

When you are ready, specify an output folder and format under OutputFormat-
- ImageOutputDirectory and click Make Movie! All frames of the movie will now be
rendered and saved to disk. This may take a while so you might want to pull out that Yoga
mat again (you can also choose a narrower MovieTimeRange if you don’t want to wait
around). If you selected BrainMovieOption-> Visibility = On then you should see each
frame rendered on your display. Setting visibility to off will replace the on-screen rendering
with a progress bar, which should speed up the movie-making process.

Now that we’ve made our movie, let’s take a look at some of our frames. Figure 26 shows
three of these frames, corresponding to the start (-523 ms), middle (40 ms), and end (606
ms) of our button-press task. Note that at the start of the epoch, the network is initially
quiescent, with some weak communication between sources in or near anterior rostral ACC
(RCZa; IC 11) and supplementary motor area (SMA/preSMA; IC 38).
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Moving to the time just following the button-press event (center frame) we see that now
IC8, located in posterior ACC (RCZp/CCZ), has become a central causal hub, exerting
significant influence on several areas of the network, but particularly posterior parietal
cortex (IC13) and RCZa. There is some bidirectional flow, but the flux is largely outward
from IC8, as indicated by the red hue of the node (indicating large positive asymmetry
ratio). Note that this corresponds precisely to the negative peak of the ERN. However, we
are not modeling dependencies in the event-locked ERN itself (which is an ERP and
subtracted during ensemble normalization) but rather in the ongoing oscillations
underlying the ERN complex.

Moving to the end of the epoch, around 606 ms, we see that the network has almost
returned to its initial decoupled state, and examining the last frames of the movie will reveal
the complete decoupling of IC8 from the rest of the network. This panel seems to implicate
RCZp/CCZ as some sort of causal hub in a cortical network for error-processing. As noted in
section 6.9.1. this is entirely consistent with the theoretical (and partly experimentally
verified) role of RCZp/CCZ in error processing.

0 500 00 0 500 Y 00 0
Time (ms) Time (ms) Time (ms)

Figure 26. Three frames of a causal BrainMovie3D showing transient theta information flow during
error commission. The frames are correspond to -523 ms (left), 40 ms (center), and 606 ms (right)
relative to the button press (0 ms).

Itis left as an exercise to the reader to do the following:

1. Try creating brainmovies for other frequency bands (e.g., delta). What is different
between the evolution of the delta-band cortical network and the theta-band
network? You can even have brainmovie find the peaks over some frequency range
(e.g., 2-9 Hz) and map the peak frequency onto edge color to color-code different
frequency-specific sub-networks (Hint: examine the FreqCollapseMethod and
EdgeColorMapping properties).

2. Select both RespWrong and RespCorr datasets and create TimeFrequencyGrid
images and BrainMovies for the between-condition differences (if more than one
datasets is selected TimeFrequencyGrid and BrainMovie3D automatically assume
you want to examine the between-condition difference. Is there more theta-band
information flow from RCZp during error commission than during correct button
presses? What about the delta band?
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6.9.3. Causal Projection

When we are interested in visualizing the anatomical distribution of univariate measures
such as ERSP and multiple coherence, as well as graph-theoretic measures such as causal
flow and asymmetry ratio, an alternative to creating a brainmovie is create a Causal
Projection (CP) image (Mullen et al, 2010a). CP is based on the dipole density concept
proposed by Delorme and Makeig in 2003. The basic assumption behind CP is that each
dipole located at coordinate ¢ = [x y z] has some spatial localization uncertainty which we
will (naively) approximate by a three-dimensional Gaussian distribution with mean y=c and
covariance X. Furthermore, each dipole has some functional measure (spectral modulation,
information outflow, etc) associated with its source process. We can then compute the
probability of observing a dipole at a given voxel, weighted by the amplitude of the specified
measure to obtain an estimate of the likelihood of observing a source in a particular brain
location, and that source having a significant value for the measure of interest.

Informally, the CP at a given voxel is a weighted sum of gaussian-projected distances to all
(neighboring) dipoles, each weighted by the amplitude of the specified measure (causal
outflow, ERSP, etc) for the source associated with that dipole.

Formally, if w; is the measure associated with the it source, c; is the coordinate of the it
dipole location and X;is the covariance matrix of the corresponding Gaussian (reflecting the
uncertainty in localization and/or inter-subject variability) then for a voxel with 3-
dimensional coordinate v we have that:

YiwigWw, e, %)

CP(v) = 7

where Z is an optional normalization term to ensure a total probability mass of 1 over the
brain volume and

1
g, w, %) = @iz &P (—%(17 - w)'E v - M))

is the multivariate gaussian p.d.f. evaluated at v.

This measure can easily be generalized to multi-subject datasets by simply combining all
dipoles, from all subjects in the same MNI volumetric space. Figure 27 shows the result of
applying Causal Projection to a cohort of 26 subjects performing the two-back task
described earlier. Here we have projected the delta-theta band outflows and inflows from
each source that exhibited a significant difference between RespWrong and RespCorr
conditions. Note the causal source hub in RCZp and sinks in RCZa and PPC following
erroneous button presses. We can simultaneously plot two measures (e.g., outflow and
inflow) or two conditions using gamma-corrected color mapping (lower panel). In this
manner red might represent increases in the first measure (outflow), and green represents
increases in second measure (inflow) with the sum of the two color (yellow) representing
no difference between measures (balanced flow) and transparency representing non-
significance (no flow).

Causal projection is currently being revamped for inclusion in SIFT 0.1b
(pop_vis_causalProjection()) .
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Figure 27. A frame (250 ms following button press) of a Causal Projection movie computed across a
cohort of 26 subjects performing the two-back CP task. Here we have projected the delta-theta outflows
and inflows from each source that exhibited a significant difference between RespWrong and RespCorr
conditions. Note the causal source hub in RCZp and sinks in RCZa and PPC.

6.10. Group Analysis

Cognitive experiments are typically carried out across a cohort of participants and it is
useful to be able to characterize difference in brain network activity within and between
groups of individuals for different conditions. The Group Analysis module in SIFT, currently
under development, will afford several routines for assessing group-level connectivity
networks with confidence intervals. While such analysis is relatively simple when
performing analyses on scalp channels, it become more complicated when estimating
connectivity in the source domain between dipolar IC processes. This is primarily due to the
fact that it is often difficult to equate IC sources between participants. While we typically
utilize clustering techniques to help equate dipolar sources across participants, in some
cases a subset of participants will still not exhibit one or more sources approximately
observed in all other participants. If one does not take into account these missing variables,
one may risk obtaining biased estimates of average connectivity across the subject
population. This missing variable problem is well-known in statistics, and several
approaches have been proposed for dealing with this. Currently, group analysis in the
source domain is implemented using two methods, disjoint clustering, which does not take
into account the missing variable problem but may still be useful for a general analysis,
particularly if there is high agreement across the cohort of datasets in terms of source
location, and a Bayesian mixture model approach which provides more robust statistics
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across datasets. A brief description of these methods is provided below, and a more detailed
description will be included with the beta release of SIFT.

6.10.1. Disjoint Clustering

This approach adopts a 3-stage process:

1. Identify K ROI's (clusters) by affinity clustering of sources across subject population
using EEGLAB’s Measure-Product clustering.

2. Average all incoming and outgoing individually statistically significant connections
between each pair of ROIs to create a [ KX K [x freq x time ] ] group connectivity matrix.

3. Visualize the results using any of SIFTs visualization routines. This method suffers from
low statistical power when subjects do not have high agreement in terms of source
locations (missing variable problem).

6.10.2. Bayesian Mixture Model

A more robust approach (in development with Wes Thompson and to be released in SIFT
1.0b) uses smoothing splines and Monte-Carlo methods for joint estimation of posterior
probability (with confidence intervals) of cluster centroid location and between-cluster
connectivity. This method takes into account the “missing variable” problem inherent to the
disjoint clustering approach and provides robust group connectivity statistics.

7. Conclusions and Future Work

In this paper we have introduced a new, open-source (Matlab-based) toolbox for
electrophysiological information flow analysis which functions as a plugin for the EEGLAB
environment. We sought to outline the theoretical basis for vector autoregressive (VAR)
model fitting of electrophysiological data as well as some VAR-based measures for
multivariate granger-causality and spectral analysis in the time and frequency domain. We
then demonstrated the applicability of these approaches through simulations and, using the
SIFT toolbox, the analysis of EEG data from an individual performing an error-inducing
cognitive task.

Although the current release of SIFT is alpha (and therefore lacking important several
features which are currently in development, such as group analysis and integrated
statistics), SIFT 0.1-beta, scheduled for released in January, will contain these features and
more.
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9. Appendix I: SIFT 0.1a Function Reference

The table below is a partial reference for SIFT 0.1a functions. Not all functions are
documented in this list.

Function Name

GUI functions

Preprocessing

Modeling

Description

pop_pre_prepData

generate GUI for data preprocessing

pop_est_fitMVAR

generate GUI for VAR/AMVAR model fitting

pop_est_selModelOrder

generate GUI for VAR model order selection

pop_est_validateMVAR

generate GUI for VAR model validation

pop_est_mvarConnectivity

generate GUI for computing connectivity measures

pop_vis_TimeFreqGrid

generate GUI for Interactive Time-Frequency Grid

pop_vis_causalBrainMovie3D

generate GUI for Interactive Causal BrainMovie3D

pre_detrend

linearly detrend or center an ensemble of data

pre_diffData

apply a difference filter to an ensemble of data

pre_normData

apply temporal or ensemble normalization to an
ensemble of data

pre_prepData

preprocess an ensemble of data (calls other

subfunctions)

pre_selectComps

select a set of independent components from the data

est_calcInvCovMat

compute inverse covariance matrix of a VAR process

est_calcInvCovMatFourier

compute frequency-domain transformation of the
inverse covariance matrix of a VAR process

est_calcInvCovMatFourierPDC

same as above, but a specific version used for analytic
PDC significance thresholds

est_checkMVARConsistency

check the percent consistency of a fitted VAR model

est_checkMVARParams

perform a sanity check on a set of specified MVAR
parameters - return recommendations on optimal
parameters, if relevant.

est_checkMVARStability

check the stability/stationarity of fitted VAR model

est_checkMVARWhiteness

check the whiteness of the residuals of a fitted VAR
model

est_eigenmode

return the eigenmodes of a VAR process (requires
ARFIT package)

est_fitMVAR

fit a VAR[p] model to the data using one of several
algorithms (Vieira-Morf, ARFIT, MLS, etc). Optionally
can use a sliding window to perform segmentation-
based adaptive MVAR analysis. Calls modified
routines from Alois Schloegl’s open-source TSA
package or from the ARFIT package.

est_fitMVARKalman

fit a VAR[p] model to continuous data using a Kalman
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Statistics

Visualization

Simulations

filter. Adapts code from Alois Schloegl’s open-source
TSA package

est MVARConnectivity

compute  spectral density, coherence, and
connectivity measures from a fitted VAR model

est_mvarResiduals

return the residuals of a fitted VAR model

est_mvtransfer

compute frequency-domain quantities from a VAR
model (spectrum, coherence, granger-causality, etc)

est_selModelOrder

evaluate and return model order selection criteria
(AIC, SBC, FPE, HQ) for a range of model orders

stat_bootSignificanceTests

perform bootstrap significance tests on connectivity
structure

stat_analyticSignificanceTests

perform asymptotic analysis significance tests on
connectivity structure

stat_phaserand

return a distribution satisfying the null hypothesis of
no connectivity using a phase-randomization
approach (Theiler, 1997)

stat_bootstrap

return a  bootstrapped distribution of a
spectral/connectivity estimator

stat_prctileTest

perform one- or two-sided percentile tests to
compare an observed value with the quantiles of a
(null) distribution.

vis_TimeFreqGrid

low-level function to create an interactive Time-
Frequency Grid

vis_TimeFreqCell

low-level function to render an expanded (detailed)
version of a single cell of the Time-Frequency Grid

vis_causalBrainMovie3D

low-level function to generate a causal BrainMovie3D

vis_causalProjection

in development - low-level function to generate a
Causal Projection image or movie

sim_genVARModelFromEq

generate an arsim()-compatible VAR specification
from a text-based equation

hlp_*

A large number of helper functions (to be
documented later)

65




10. References

Anderson BDO, Moore JB (1979) Optimal Filtering. Englewood Cliff, N]: Prentice-Hall.

Arranz MA Portmanteau Test Statistics in Time Series. packages.tol-project.org Available at:
http://packages.tol-project.org/docs/ndmtest.pdf.

Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccala L a, Vico Fallani F de, Salinari S, Ursino
M, Zavaglia M, Ding L, Edgar JC, Miller G a, He B, Babiloni F (2007) Comparison of
different cortical connectivity estimators for high-resolution EEG recordings. Human
brain mapping 28:143-57

Baccala LA, Sameshima K (2001) Partial directed coherence: a new concept in neural
structure determination. Biological cybernetics 84:463-74

Baccald LA, Sameshima K (2007) Generalized partial directed coherence In Digital Signal
Processing, 2007 15th International Conference on IEEE, p. 163-166.

Barone P (1987) A method for generating independent realizations of a multivariate normal
stationary and invertible ARMA(p,q) process. ]. Statist. Comput. Simulat. 8:273-83

Bell AJ, Sejnowski T] (1995) An information-maximization approach to blind separation and
blind deconvolution. Neural computation 7:1129-1159

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B
(Methodological) 57:289-300

Blinowska K, Kaminski M (2006) Multivariate Signal Analysis by Parametric Models In B.
Schelter, M. Winterhalder, & J. Timmer, eds. Handbook of Time Series Analysis Wiley,
Wienheim.

Bressler SL, Richter CG, Chen Y, Ding M (2007) Cortical functional network organization
from autoregressive modeling of local field potential oscillations. Statistics in medicine
26:3875-3885

Bressler SL, Seth AK (2010) Wiener-Granger Causality: A well established methodology.
Neurolmage

Brillinger DR (2001) Time series: data analysis and theory. SIAM.

Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of
structural and functional systems. Nature reviews. Neuroscience 10:186-98

Burg JP (1967) Maximum entropy spectral analysis In 37th Ann. Int. Meet., Soc.
Explor.Geophys. Oklahoma City, OK, USA.

Burg JP (1975) Maximum entropy spectral analysis. Stanford, CA, USA: Stanford University
Press.

Buzsaki G (2006) Rhythms of the Brain. Oxford University Press, USA.

Chatfield C (1989) The Analysis of Time Series: An Introduction 4th ed. Chapman & Hall.

Chen Y, Bressler SL, Ding M (2006) Frequency decomposition of conditional Granger
causality and application to multivariate neural field potential data. Journal of
neuroscience methods 150:228-37

Deshpande G, LaConte S, James GA, Peltier S, Hu X (2009)(a) Multivariate Granger causality
analysis of fMRI data. Human brain mapping 30:1361-73

Deshpande G, Sathian K, Hu X (2009)(b) Effect of hemodynamic variability on Granger
causality analysis of fMRI. Neurolmage

Dhamala M, Rangarajan G, Ding M (2008) Analyzing information flow in brain networks
with nonparametric Granger causality. Neurolmage 41:354-62

Ding MZ, Bressler SL, Yang WM, Liang HL (2000)(a) Short-window spectral analysis of
cortical event-related potentials by adaptive multivariate autoregressive modeling: Data

66



preprocessing, model validation, and variability assessment. Biological Cybernetics
83:35-45

Ding M, Bressler SL, Yang W, Liang H (2000)(b) Short-window spectral analysis of cortical
event-related potentials by adaptive multivariate autoregressive modeling: data
preprocessing, model validation, and variability assessment. Biol. Cybern. 83:35-45

Ding M, Chen Y, Bressler SL (2006) Granger causality: Basic theory and application to
neuroscience In B. Schelter, M. Winterhalder, & J. Timmer, eds. Handbook of Time Series
Analysis Wiley, Wienheim.

Efron B, Tibshirani R] (1994) An Introduction to the Bootstrap: Monographs on Statistics &
Applied Probability. Chapman and Hall/CRC.

Eichler M (2006)(a) Graphical Modeling of Dynamic Relationships in Multivariate Time
Series In B. Schelter, M. Winterhalder, & J. Timmer, eds. Handbook of Time Series
Analysis Wiley, Wienheim.

Eichler M (2006)(b) On the evaluation of information flow in multivariate systems by the
directed transfer function. Biological cybernetics 94:469-82

Fitzgibbon SP, Powers DMW, Pope K], Clark CR (2007) Removal of EEG noise and artifact
using blind source separation. Journal of clinical neurophysiology : official publication of
the American Electroencephalographic Society 24:232-43

Florian G, Pfurtscheller G (1995) Dynamic spectral analysis of event-related EEG data.
Electroencephalography and clinical neurophysiology 95:393-396

Florin E, Gross ], Pfeifer ], Fink GR, Timmermann L (2010) The effect of filtering on Granger
causality based multivariate causality measures. Neurolmage 50:577-88

Geweke ] (1982) Measurement of linear dependence and feedback between multiple time
series. Journal of the American Statistical Association 77:304-313

Granger CW] (1969) Investigating causal relations by econometric models and cross-
spectral methods. Econometrica: Journal of the Econometric Society 37:424-438

Haufe S, Tomioka R, Nolte G (2010) Modeling sparse connectivity between underlying brain
sources for EEG/MEG. Biomedical Engineering:1-10

Holroyd CB, Coles MGH (2002) The Neural Basis of Human Error Processing: Reinforcement
Learning, Dopamine, and the Error-Related Negativity. Psychological Review 109:679 -
709

Hui HB, Leahy RM (2006) Linearly Constrained MEG Beamformers for MVAR Modeling of
Cortical Interactions In 3rd IEEE International Symposium on Biomedical Imaging:
Macro to Nano IEEE, p. 237-240.

Jansen BH, Bourne JR, Ward JW (1981) Autoregressive estimation of short segment spectra
for computerized EEG analysis. IEEE transactions on bio-medical engineering 28:630-8
Kaminski M (1997) Multichannel Data Analysis in Biomedical Research In Understanding
Complex Systems, Handbook of Brain Connectivity series Berlin/Heidelberg: Springer, p.

327-355.

Kaminski M, Ding M, Truccolo WA, Bressler SL (2001) Evaluating causal relations in neural
systems: Granger causality, directed transfer function and statistical assessment of
significance. Biological Cybernetics 85:145-157

Kaminski M, Blinowska K (1991) A New Method of the description of the information flow
in the brain structures. Biological Cybernetics 65:203-210

Kenet T, Arieli A, Tsodyks M, Grinvald A (2005) Are Single Cortical Neurons Soloists or Are
They Obedient Members of a Huge Orchestra? In ]. L. van Hemmen & T. ]. Sejnowski, eds.
23 Problems in Systems Neuroscience Oxford University Press, USA.

Korzeniewska A (2003) Determination of information flow direction among brain
structures by a modified directed transfer function (dDTF) method. Journal of
Neuroscience Methods 125:195-207

67



Korzeniewska A, Crainiceanu M, Kus R, Franaszczuk P, Crone N (2008) Dynamics of Event-
Related Causality in Brain Electrical Activity. Human brain mapping 29:1170-1192

Luu P, Tucker DM, Makeig S (2004) Frontal midline theta and the error-related negativity:
neurophysiological mechanisms of action regulation. Clinical neurophysiology : official
journal of the International Federation of Clinical Neurophysiology 115:1821-35

Litkepohl H (2006) New Introduction to Multiple Time Series Analysis. Berlin, Germany:
Springer.

Marple S (1987) Digital Spectral Analysis with Applications. Englewood Cliff, NJ: Prentice
Hall.

Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave De Peralta R (2004) EEG
source imaging. Clinical Neurophysiology 115:2195-2222

Mognon A, Jovicich ], Bruzzone L, Buiatti M (2010) ADJUST: An automatic EEG artifact
detector based on the joint use of spatial and temporal features. Psychophysiology:1-12

Mullen, T. Delorme, A., Kothe, C., Makeig, S (2010) An Electrophysiological Information

Flow Toolbox for EEGLAB. Society for Neuroscience 2010, San Diego, CA

Neumaier A, Schneider T (2001) Estimation of parameters and eigenmodes of multivariate
autoregressive models. ACM Transactions on Mathematical Software (TOMS) 27:27-57
Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain
interaction from EEG data using the imaginary part of coherency. Clinical
neurophysiology : official journal of the International Federation of Clinical

Neurophysiology 115:2292-307

Onton ], Makeig S (2009) High-frequency Broadband Modulations of
Electroencephalographic Spectra. Frontiers in human neuroscience 3:61

Pearl ] (2000) Causality: Models, Reasoning, and Inference. Cambridge University Press.

Pearl ] (2009) Causality: Models, Reasoning and Inference 2nd ed. New York, New York,
USA: Cambridge University Press.

Pereda E, Quiroga RQ, Bhattacharya ] (2005) Nonlinear multivariate analysis of
neurophysiological signals. Progress in neurobiology 77:1-37

Roger C, Bénar CG, Vidal F, Hasbroucq T, Burle B (2010) Rostral Cingulate Zone and correct
response monitoring: ICA and source localization evidences for the unicity of correct-
and error-negativities. Neurolmage 51:391-403

Schelter B, Winterhalder M, Eichler M, Peifer M, Hellwig B, Guschlbauer B, Lucking CH,
Dahlhaus R, Timmer ] (2005)(a) Testing for directed influences among neural signals
using partial directed coherence. J. Neurosci. Methods 152:210-219

Schelter B, Winterhalder M, Timmer ] eds. (2006) Handbook of Time Series Analysis: Recent
Theoretical Developments and Applications 1st ed. Wiley.

Schelter B, Timmer ], Eichler M (2009) Assessing the strength of directed influences among
neural signals using renormalized partial directed coherence. Journal of neuroscience
methods 179:121-30

Schelter B, Winterhalder M, Eichler M, Peifer M, Hellwig B, Guschlbauer B, Liicking CH,
Dahlhaus R, Timmer ] (2005)(b) Testing for directed influences among neural signals
using partial directed coherence. Journal of neuroscience methods 152:210-9

Schlogl A (2000) The electroencephalogram and the adaptive autoregressive model: theory
and applications. Doctoral Thesis.

Schlogl A (2006) A comparison of multivariate autoregressive estimators. Signal processing
86:2426-2429

Schlogl A, Supp G (2006) Analyzing event-related EEG data with multivariate autoregressive
parameters. Progress in brain research 159:135-147

68



Schneider T, Neumaier A (2001) Algorithm 808: ARfit---a matlab package for the estimation
of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions
on Mathematical Software 27:58-65

Seth AK (2005) Causal connectivity of evolved neural networks during behavior. Network
(Bristol, England) 16:35-54

Seth AK (2010) A MATLAB toolbox for Granger causal connectivity analysis. Journal of
neuroscience methods 186:262-73

Sommerlade L, Henschel K, Wohlmuth |, Jachan M, Amtage F, Hellwig B, Lucking CH, Timmer
], Schelter B (2009) Time-variant estimation of directed influences during Parkinsonian
tremor. Journal of Physiology-Paris

Supp GG, Schlégl A, Trujillo-Barreto N, Muller MM, Gruber T (2007) Directed Cortical
Information Flow during Human Object Recognition: Analyzing Induced EEG Gamma-
Band Responses in Brain’s Source Space. PLoS One 2:684

Theiler ] (1992) Testing for nonlinearity in time series: the method of surrogate data.
Physica D: Nonlinear Phenomena 58:77-94

Valdés-Sosa P a, Sdnchez-Bornot JM, Lage-Castellanos A, Vega-Hernandez M, Bosch-Bayard ],
Melie-Garcia L, Canales-Rodriguez E (2005) Estimating brain functional connectivity
with sparse multivariate autoregression. Philosophical transactions of the Royal Society
of London. Series B, Biological sciences 360:969-81

Wang X, Chen Y, Bressler SL, Ding M (2007) Granger Causality Between Multiple
Interdependent Neurobiological Time Series: Blockwise Versus Pairwise Methods.
International Journal of Neural Systems 17:71

Wang X, Chen Y, Ding M (2008) Estimating Granger causality after stimulus onset: a
cautionary note. Neurolmage 41:767-76

Weiner N (1956) The Theory of Prediction In E. F. Beckenbach, ed. Modern Mathematics for
Engineers New York, New York, USA: McGraw-Hill.

Yordanova ], Falkenstein M, Hohnsbein ], Kolev V (2004) Parallel systems of error
processing in the brain. Neurolmage 22:590-602

Zetterberg LH (1969) Estimation of Parameters for a Linear Difference Equation with
Application to EEG Analysis. Mathematical Biosciences 5:227-275

69



