The Dynamic Brain I: Modeling Neural Dynamics and Interactions from M/EEG

Tim Mullen, PhD

Theoretical Foundations I
Functional Connectivity Measures (PLV, PAC, Coherence)
Linear Dynamical Systems and the VAR model
Granger Causality and Effective Connectivity Measures
Scalp versus Source
Adapting to Time-Varying Dynamics
Practicum: Hands-On Walkthrough of SIFT

Preview Outline (Sunday)

Theoretical Foundations II

Model Validation

Multivariate vs. Bivariate
Imposing Constraints
Single-trial Estimation and State-Space Models
Statistical Testing
Practicum: Hands-On Simulation-based training

Source Information Flow

 Toolbox (SIFT)

 Toolbox (SIFT)}

* Requirements: EEGLAB, MATLAB 2008b+
- Some functions leverage: Signal Processing Toolbox, Statistics Toolbox

DOWNLOAD SIFT FROM THE EEGLAB EXTENSION MANAGER (File - >Manage EEGLAB Extensions - >Data Processing Extensions)

Model fitting and validation Connectivity
Statistics
Visualization
Group Analysis Help

$\Theta \bigcirc O$	EEGLAB v12.0.0.0b			
File Edit Tools Plot Study Datasets Help				

-No current dataset

```
```

- Create a new or load an existing

```
```

- Create a new or load an existing
Use "File > Imbort data"
Use "File > Imbort data"
Or "Eile > Load existinq dataset"
Or "Eile > Load existinq dataset"
- If new,
- If new,
"Eile> Imbort edoch info" Idata
"Eile> Imbort edoch info" Idata
"File > Import event info" (continuous
"File > Import event info" (continuous
"Edit > Dataset info" (add/edit
"Edit > Dataset info" (add/edit
"File > Save dataset" (save dataset)
"File > Save dataset" (save dataset)
- Prune data: "Edit > Select data"
- Prune data: "Edit > Select data"
- Refect data: "Tools > Reject
- Refect data: "Tools > Reject
- Edoch data: "Tools > Extract edochs"
- Edoch data: "Tools > Extract edochs"
- Remove baseline: "Tools > Remove
- Remove baseline: "Tools > Remove
- Run ICA: "Tools > Run ICA"

```
```

- Run ICA: "Tools > Run ICA"

```
```


The Dynamic Brain

* A key goal: To model temporal changes in neural dynamics and information flow that index and predict task-relevant changes in cognitive state and behavior
* Open Challenges:
- Non-invasive measures (source inference)
* Robustness and Validity (constraints \& statistics)
- Scalability (multivariate)
- Temporal Specificity / Nonstationarity / Single-trial (dynamics)
* Multi-subject Inference
* Usability and Data Visualization (software)

Modeling Brain Connectivity

- Model-based approaches mitigate the 'curse of dimensionality' by making some assumptions about the structure, dynamics, or statistics of the system under observation

Box and Draper (1987):
> "Essentially, all models are wrong, but some are useful [...] the practical question is how wrong do they have to be to not be useful"

Categorizations of Large-Scale Brain Connectivity Analysis

(Bullmore and Sporns, Nature, 2009)

Structural

state-invariant, anatomical

Functional

dynamic, state-dependent, correlative, symmetric

Effective

dynamic, state-dependent, asymmetric, causal, information flow

Temporal Scale

Estimating Functional Connectivity

Popular measures

* Cross-Correlation
- Coherence
- Phase-Locking Value
- Phase-amplitude coupling

Issue: Linear coherence is biased by auto-power (just as the crosscorrelation is biased by strong autocorrelation in individual time series)

Phasers

Phasors

If we want to examine oscillatory dynamics or relationships between oscillatory signals, analysis in the time domain (i.e. cartesian coordinates) is equivalent to (simpler) operations involving phasors in Fourier space (i.e. polar coordinates).

(Axis rotated $90^{\circ} \mathrm{CCW}$ for display)

The Mean Phasor

The average of k phasors is a new phasor constructed by adding up the original vectors and dividing the length of the resultant vector by k.

If all phasors have similar angles, then vectors will "point" in the same direction and the length of the mean phasor will be comparatively large.

If phasor angles are random, then vectors will point in random directions and the length of the mean phasor will be close to zero

Phase-Locking Value (PLV)

Lachaux, J.P., et al (1999) HBM

Phase-Locking Value (PLV)

Lachaux, J.P., et al (1999) HBM

Computing PLV ("phase coherence") in EEGLAB:
pop_newcrossf(....,'type', 'phase')

Phase-Amplitude Coupling

- May present a functional role in execution of cognitive functions (Axmacher et al. 2010; Cohen et al. 2009a,b; Lakatos et al. 2008; Tort et al. 2008, 2009; Canolty et al, 2006).
- Suggested involvement in sensory signal detection (Handel and Haarmeier 2009), attentional selection (Schroeder and Lakatos 2009), memory processes (Axmacher et al. 2010; Tort et al. 2009; and neurodegenerative disorders (Swann et al, 2015)

Phase-Amplitude Coupling

'burst-suppress' oscillators

$+$

Local Field Potential (Slow + Fast cells)

PAC may reflect non-stationary or non-linear network dynamics

Time-varying $\mathrm{X} 1 \rightarrow \mathrm{X} 3$ coupling (1 Hz modulation)

$\underbrace{\overbrace{0}^{0.6}}_{1 \text { trial }(5 \mathrm{sec})}$

Amplitude Modulation

 10 Hz amplitude coupled to 1 Hz Phase
Phase-Amplitude Coupling: PLV Method vanhatalo, setal (2004) PNAs

Phase-Amplitude Coupling: PLV Method Vanhatalo, Setal (2004) PNAS

Compute PLV between LFO timeseries (f_{p}) and amplitude envelope of HFO time-series ($A_{f A}$).

Significant PLV indicates that the central frequency of f_{p} modulates the amplitude of the central frequency of f_{A}

AVERAGE difference phasors across trials

Phase-Amplitude Coupling: PLV Method vanhatalo, setal (2004) PNAs

Problem:

PLV is invariant to differences in amplitude between the two time-series (it only considers phase). Thus PLV-PAC doesn't take into account the amplitude of the co-modulation.

In the example below, X_{1} and X_{2} both would produce the same PAC, even though the high-frequency amplitude of X_{2} clearly is more strongly modulated by the low-frequency rhythm.

$$
\underset{\sim}{>} \text { Same PLV-PAC }
$$

Phase-Amplitude Coupling: Modulation Index Method

Canolty et al, (2006) Science
gilter X_{1} at HFO band (e.g. gamma)

Phase-Amplitude Coupling: Modulation Index Method

Canolty et al, (2006) Science
build complex phasor with instantaneous amplitude and phase

$A_{f_{A}}$

Phase-Amplitude Coupling: Modulation Index Method

Canolty et al, (2006) Science

Computing PAC in EEGLAB:

pac (IC1,IC2, . . ., 'method', 'mod')

PAC can also be applied between sources/channels (e.g. determine whether the phase of oscillation at freq. w_{p} in IC1 modulates the amplitude of oscillation at freq. w_{A} in IC2. This leads to a measure of crossfrequency (non-linear) functional connectivity.

(Cross)-Correlation \neq Causation

Coherence/CC/PLV indicate functional, but not effective connectivity

Non-Invasive

* Post-hoc analyses applied to measured neural activity
- Confirmatory
* Dynamic Causal Models
* Structural Equation Models
- Exploratory
* Granger-Causal methods
- Data-driven
- Rooted in conditional predictability
- Scalable Naddes:Sosa, 2005)
- Extendable to nonlinear and/or nonstationary systems (Freiwald, 1999; Ding, 2001; Chen, 2004; Ge, 2009)
- Extendable to non-parametric representations (Dhamala, 2009a,b)
- Can be (partially) controlled for (unobserved) exogenous causes (Guo, 2008a, b; Ge, 2009)
- Equivalent to Transfer Entropy for Gaussian Variables (seth, 2009)
- Flexibly allows us to examine timevarying (dynamic) multivariate causal relationships in either the time or frequency domain

Linear Dynamical Systems

Vector Autoregressive (VAR / MAR / MVAR) Modeling

VAR Modeling: Assumptions

* "Weak" stationarity of the data
* mean and variance do not change with time
* An EEG trace containing prominent evoked potentials is a classic example of a non-stationary time-series
* Stability
* All eigenvalues of the system matrix are ≤ 1
- A stable process will not "blow up" (diverge to infinity)
* A stable model is always a stationary model (however, the converse is not necessarily true). If a stable model adequately fits the data (white residuals), then the data is likewise stationary

Selecting a VAR Model Order

* Model order is typically determined by minimizing information criteria such as Akaike Information Criterion (AIC) for varying model order (p):
$\operatorname{AlC}(\mathrm{p})=2 \log (\operatorname{det}(\mathbf{V}))+\mathrm{M}^{2} \mathrm{p} / \mathrm{N}<$ Penalizes high model orders (parsimony)
optimal order

model order

Model Order Selection Criteria

More
Conservative

Intermediate Conservative

Estimator	Formula
Schwarz-Bayes Criterion (Bayesian Information Criterion)	$S B C(p)=\ln \|\tilde{\Sigma}(p)\|+\frac{\ln (\hat{T})}{\hat{T}} p M^{2}$
Akaike Information Criterion	$A I C(p)=\ln \|\tilde{\Sigma}(p)\|+\frac{2}{\hat{T}} p M^{2}$
Akaike's Final Prediction Error	$F P E(p)=\|\tilde{\Sigma}(p)\|+\left(\frac{\hat{T}+M p+1}{\hat{T}-M p-1}\right)^{M}$
and its logarithm (used in SIFT)	
$\ln (F P E(p))=\ln \|\tilde{\Sigma}(p)\|+M \ln \left(\frac{\hat{T}+M p+1}{\hat{T}-M p-1}\right)$	
Hannan-Quinn Criterion	$H Q(p)=\ln \|\tilde{\Sigma}(p)\|+\frac{2 \ln (\ln (\hat{T}))}{\hat{T}} p M^{2}$

Model Order Selection Criteria

Selecting a VAR Model Order

- Other considerations:
* A M-dimensional VAR model of order p has at most Mp/2 spectral peaks distributed amongst the M variables. This means we can observe at most $p / 2$ peaks in each variables' spectrum (or in the cross spectrum between each pair of variables)

- Optimal model order depends on sampling rate. Higher sampling rate often requires higher model orders.

Model Validation

- If a model is poorly fit to data, then few, if any, inferences can be validly drawn from the model. There a number of criteria which we can use to determine whether we have appropriately fit our VAR model. Here are three commonly used categories of tests:
* Whiteness Tests: checking the residuals of the model for serial and cross-correlation
* Consistency Test: testing whether the model generates data with same correlation structure as the real data
* Stability Test: checking the stability/stationarity of the model.

We'll discuss these further in Part 2 (Sunday)

Granger Causality

* First introduced by Wiener (1958). Later reformulated by Granger (1969) in the context of linear stochastic autoregressive models
- Relies on two assumptions:

Granger Causality Axioms

1. Causes should precede their effects in time (Temporal Precedence)
2. Information in a cause's past should improve the prediction of the effect, above and beyond the information contained in past of the effect (and other measured variables)

Granger Causality

 Does \mathbf{X}_{4} granger-cause $\mathbf{X}_{\mathbf{1}}$? (conditioned on $\mathbf{X}_{2}, \mathbf{X}_{3}$)prediction error for X_{1} (variance of residuals E_{1})

$$
=?
$$

$$
\mathbf{X}_{-4}(t)=\sum_{k=1}^{p} \tilde{\mathbf{A}}^{(k)} \mathbf{X}_{-4}(t-k)+\tilde{\mathbf{E}}(t)
$$

Granger Causality

』 Granger (1969) quantified this definition for bivariate processes in the form of an F-ratio:

```
reduced model
```

$$
F_{X_{1} \leftarrow X_{2}}=\ln \left(\frac{\operatorname{var}\left(\tilde{E}_{1}\right)}{\operatorname{var}\left(E_{1}\right)}\right)=\ln \left(\frac{\operatorname{var}\left(X_{1}(t) \mid X_{1}(\cdot)\right)}{\operatorname{var}\left(X_{1}(t) \mid X_{1}(\cdot), X_{2}(\cdot)\right)}\right.
$$

full model

- Alternately, for a multivariate interpretation we can fit a single VAR model to all channels and apply the following definition:

Definition 1

> X_{j} granger-causes X_{i} conditioned on all other variables in \mathbf{X} if and only if $\mathbf{A}_{i j}(k) \gg 0$ for some lag $k \in\{1, \ldots, p\}$

Granger Causality Quiz

* Example: 2-channel VAR process of order 1

$$
\binom{X_{1}(t)}{X_{2}(t)}=\left(\begin{array}{cc}
-0.5 & 0 \\
0.7 & 0.2
\end{array}\right)\binom{X_{1}(t-1)}{X_{2}(t-1)}+\binom{E_{1}(t)}{E_{2}(t)}
$$

Granger Causality - Frequency Domain

$$
\mathbf{X}(t)=\sum_{k=1}^{p} \mathbf{A}^{(k)} \mathbf{X}(t-k)+\mathbf{E}(t)
$$

Fourier-transforming $\mathbf{A}^{(k)}$ we obtain

Likewise, $\mathbf{X}(f)$ and $\mathbf{E}(f)$ correspond to the fourier transforms of the data and residuals, respectively

$$
\mathbf{A}(f)=-\sum_{k=0}^{p} \mathbf{A}^{(k)} e^{-i 2 \pi f k} ; \mathbf{A}^{(0)}=I
$$

We can then define the spectral matrix $\mathbf{X}(f)$ as follows:
$\mathbf{X}(f)=\mathbf{A}(f)^{-1} \mathbf{E}(f)=\mathbf{H}(f) \mathbf{E}(f)$
Where $\mathbf{H}(t)$ is the transfer matrix of the system.

Definition 2

X_{j} granger-causes X_{i} conditioned on all other variables in \mathbf{X}
leads to PDC

$$
\begin{aligned}
\mathbf{X}(t) & =\sum_{k=1}^{p} \mathbf{A}^{(k)}(t) \mathbf{X}(t-k)+\mathbf{E}(t) \\
\mathbf{A}(f, t) & =-\sum_{k=0}^{p} \mathbf{A}^{(k)}(t) e^{-i 2 \pi / k} ; \mathbf{A}^{(0)}=I \\
\mathbf{X}(f, t) & =\mathbf{A}(f, t)^{-1} \mathbf{E}(f, t)=\mathbf{H}(f, t) \mathbf{E}(f, t)
\end{aligned}
$$

Ground Truth

Functional

Multivariate
Partial
Coherence
$P_{i j}(f)=\frac{S_{i j}^{-1}(f)}{\sqrt{S_{i i}^{-1}(f) S_{j j}^{-1}(f}}$
(Bendat and Piersol, 1986; Dalhaus, 2000)

Effective

$$
\pi_{i j}^{2}(f)=\frac{\left|A_{i j}(f)\right|^{2}}{\sum_{k=1}^{M}\left|A_{k j}(f)\right|^{2}}
$$

(Baccalá and Sameshima, 2001)

	Estimator	Formula
	Normalized Partial Directed Coherence (PDC)	$\begin{aligned} & \pi_{i j}(f)=\frac{A_{i j}(f)}{\sqrt{\sum_{k=1}^{M}\left\|A_{k j}(f)\right\|^{2}}} \\ & 0 \leq\left\|\pi_{i j}(f)\right\|^{2} \leq 1 \\ & \sum_{j=1}^{M}\left\|\pi_{i j}(f)\right\|^{2}=1 \end{aligned}$
	Generalized PDC (GPDC)	$\begin{aligned} & \bar{\pi}_{i j}(f)=\frac{\frac{1}{\sum_{i i}} A_{i j}(f)}{\sqrt{\sum_{k=1}^{M} \frac{1}{\sum_{i i}^{2}}\left\|A_{i j}(f)\right\|^{2}}} \\ & 0 \leq\left\|\bar{\pi}_{i j}(f)\right\|^{2} \leq 1 \\ & \sum_{j=1}^{M}\left\|\bar{\pi}_{i j}(f)\right\|^{2}=1 \end{aligned}$
	Renormalized PDC (rPDC)	$\lambda_{i j}(f)=Q_{i j}(f)^{*} V_{i j}(f)^{-1} Q_{i j}(f)$ where $\begin{aligned} & Q_{i j}(f)=\binom{\operatorname{Re}\left[A_{i j}(f)\right]}{\operatorname{Im}\left[A_{i j}(f)\right]} \text { and } \\ & V_{i j}(f)=\sum_{k, l=1}^{p} R_{j j}^{-1}(k, l) \Sigma_{i i} Z(2 \pi f, k, l) \end{aligned}$ $Z(\omega, k, l)$ $=\left(\begin{array}{ll} \cos (\omega k) \cos (\omega l) & \cos (\omega k) \sin (\omega l) \\ \sin (\omega k) \cos (\omega l) & \sin (\omega k) \sin (\omega l) \end{array}\right.$ \boldsymbol{R} is the $\left[(M p)^{2} \times(M p)^{2}\right]$ covariance matrix of the $\operatorname{VAR}[p]$ process (Lütkepohl, 2006)
	Granger- Geweke Causality (GGC)	$F_{i j}(f)=\frac{\left(\Sigma_{i j}-\left(\Sigma_{i j}^{2} / \Sigma_{i i}\right)\right)\left\|H_{i j}(f)\right\|^{2}}{S_{i i}(f)}$

	Estimator	Formula
NormalizedDirectedTransfirFunction(DTF)		$\begin{aligned} & \gamma_{i j}(f)=\frac{H_{i j}(f)}{\sqrt{\sum_{k=1}^{M}\left\|H_{i k}(f)\right\|^{2}}} \\ & 0 \leq\left\|\gamma_{i j}(f)\right\|^{2} \leq 1 \\ & \sum_{j=1}^{M}\left\|\gamma_{i j}(f)\right\|^{2}=1 \end{aligned}$
童	Full- Frequency DTF (ffDTF)	$\eta_{i j}^{2}(f)=\frac{\left\|H_{i j}(f)\right\|^{2}}{\sum_{f} \sum_{k=1}^{M}\left\|H_{i k}(f)\right\|^{2}}$
$\begin{array}{ll} \text { Direct } & \text { DTF } \\ (\mathrm{dDTF}) \end{array}$		$\delta_{i j}^{2}(f)=\eta_{i j}^{2}(f) P_{i j}^{2}(f)$
	$\begin{aligned} \mathbf{X}(t) & =\sum_{t}^{t} \\ \mathbf{A}(f, t) & =-\sum \\ \mathbf{X}(f, t) & =\mathbf{A}(t \end{aligned}$	$\begin{aligned} & \mathbf{A}^{(k)}(t) \mathbf{X}(t-k)+\mathbf{E}(t) \\ & p \\ & p=0 \\ & \mathbf{A}^{(k)}(t) e^{-i 2 \pi f k} ; \mathbf{A}^{(0)}=I \\ & , t)^{-1} \mathbf{E}(f, t)=\mathbf{H}(f, t) \mathbf{E}(f, t) \end{aligned}$

$H(f)$ Transfer Function

$A(f)$ System Matrix

$\Sigma \quad$ Noise Covariance Matrix

For additional details, see SIFT Handbook (sccn.ucsd.edu/wiki/SIFT)

Scalp or Source?

Scalp or Source?

Solution? Source Separation
 $$
S(t)=\sum_{k=1}^{p} A^{(k)}(t) S(t-k)+E(t)
$$

Forward/Inverse Modeling

A Recipe for Reducing Errors:

- Realistic Forward Model
- Appropriately Constrained Inverse Model

Akalin Acar and Makeig, 2009

Forward/Inverse Modeling

Method	Smoothness	Sparsity	Independence/Orthogonality
MNE	X		
LORETA	X		
dSPM	X		X
Beamforming			
Sparse Bayesian Learning	X	X	
S-FLEX	X	X	
FOCUSS		X	X

Source reconstruction with ICA+SBL

Makeig, Ramirez, Weber, Wipf, Dale, Simpson, 15th Inter. Conf on Biomagnetism (2006)

Estimating Dependency of

Independent Components?

* Isn't it a contradiction to examine dependence between Independent/ Uncorrelated Components?
* Instantaneous (e.g., Infomax) ICA only explicitly seeks to maximize instantaneous independence. Time-delayed dependencies may be preserved.
* Infomax ICA seeks to maximize global independence (over entire recording session), transient dependencies may be preserved.
- Independence is a very strict criterion that cannot be achieved in general by a linear transformation (such as ICA). Instead, dependent variables will form a dependent subspace.

However, the best approach is to use an inverse model that explicitly preserves time-delayed dependencies or jointly estimates sources (de-mixing matrix) and connectivity (VAR parameters). See the Sparsely Coupled Sources Analysis method (Haufe, 2008 IEEE TBME), available in SIFT.

Estimating Dependency of Independent Components?

Haufe et al, IEEE TBME 2008

Adapting to Non-Stationarity

* The brain is a dynamic system and measured brain activity and coupling can change rapidly with time (nonstationarity)
- event-related perturbations (ERSP, ERP, etc)
* structural changes due to learning/feedback
* How can we adapt to non-stationarity?

Adapting to Non-Stationarity

* Many ways to do adaptive VAR estimation
* Two popular approaches (adopted in SIFT):
* Segmentation-based adaptive VAR estimation (assumes local stationarity)
- State-Space Modeling

Adapting to Non-Stationarity

- Many ways to do adaptive VAR estimation
* Two popular approaches (adopted in SIFT):
* Segmentation-based adaptive VAR estimation (assumes local stationarity)
- State-Space Modeling

Analogous to shorttime Fourier transform

From

time

