The Dynamic Brain I: Modeling Neural
Dynamics and Interactions from M/EEG
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The Source Information Flow Toolbox

Source Information Flow
Toolbox (SIFT)

x Requirements: EEGLAB, MATLAB 2008b+

®x Some functions leverage: Signal Processing Toolbox,
Statistics Toolbox

DOWNLOAD SIFT FROM THE EEGLAB EXTENSION
MANAGER (File—>Manage EEGLAB Extensions—>Data
Processing Extensions)




The Source Information Flow Toolbox

Locate dipoles using DIPFIT 2.x
Peak detection using EEG toolbox

FMRIB Tools
Locate dipoles using LORETA

EEGLAB v12.0.0.0b

Simulation

Pre-processing

Model fitting and validation
Connectivity

Statistics

Visualization

Group Analysis
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Intro

The Dynamic Brain

Nes v mens
Tim Mullen

® A key goal: To model temporal changes in neural dynamics
and information flow that index and predict task-relevant
changes in cognitive state and behavior

= Open Challenges:

x Non-invasive measures
(source inference)

= Robustness and Validity
(constraints & statistics)

= Scalability (multivariate)

= Temporal Specificity / Non-
stationarity / Single-trial
(dynamics)

= Multi-subject Inference

= Usability and Data
Visualization (software)

s BAd LWV * BASISMA)

. AM5( 591

o BAZL ACD

o RATH (L Viswal s BAET (R. Fusitorm)

o [&Td (R Visual)

APNoae)-AA 0]
Fack-gropcted FRPS ICS == Chanrels

Mullen, 2011

autiow

ADHD (Ne=148)

AP(nogo) = AA(ga)
1.7 Hz

dDTFOB




Intro

Modeling Brain Connectivity

» Model-based approaches mitigate the ‘curse of
dimensionality’ by making some assumptions about the
structure, dynamics, or statistics of the system under

observation

Box and Draper (1987):

“Essentially, all models are wrong, but some
are useful [...] the practical question is how
wrong do they have to be to not be useful”
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Categorizations of Large-Scale
Brain Connectivity Analysis

Intro

(Bullmore and Sporns, Nature, 2009)

Structural Functional Effective

state-invariant, ~ dynamic, state-dependent} dynamic, state-dependent,

anatomical correlative, symmetric asymmetric, causal,
Information flow

Hours-Years milliseconds-seconds

Temporal Scale
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=stimating Functional
Connectivity

Theory

Popular measures

x Cross-Correlation
. Coherence
®= Phase-l.ocking Value

= Phase-amplitude coupling




Theory

1

Coherence

0 .
Frequency
DFET  C(N=2  P.sk)e™"
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5.0, ()

Coherence (|Casl?)

1
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Issue: Linear coherence is biased by auto-power (just as the cross-
correlation is biased by strong autocorrelation in individual time series)

cross-correlation

time lag
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Phasers

phase shift angular frequency #
O=rm/2 ® =271 f =21 rad/sec

1.2 Euler's Formula tells us that any sinusoid can be
?{ expressed as the sum of two complex exponentials
< A . A
i A-cos(wt +¢)=—e" " + = "
= 2 2
1.2 = R@{Ael(a)tﬂb}} =Re{S(w,?)}
-T1/2 0 /2 T 311/2
) oy f ... or (if real-valued_) as
€i 4 the real part of a single
- JUPETY ERON complex exponential
Phasor Im
:. ... (Polar Coords) . ¢ — / S( , t)
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== (Axis rotated 90° CCW for dgplay) time Shorthand notation: Aei¢
Polar animation courtesy Wikipedia
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Phasors

If we want to examine oscillatory dynamics or relationships between
oscillatory signals, analysis in the time domain (i.e. cartesian coordinates) is

equivalent to (simpler) operations involving phasors in Fourier space (i.e.
polar coordinates).

Purple = Red + Blue

.......

Wi

(Axis rotated 900 CCW for display)

Polar animation courtesy Wikipedia
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The Mean Phasor

The average of k phasors is a new phasor constructed by adding up the
original vectors and dividing the length of the resultant vector by k.

Im (+)

Purple = Red + Blue

If all phasors have similar angles, then vectors will “point” in the same direction
and the length of the mean phasor will be comparatively large.

If phasor angles are random, then vectors will point in random directions and the
length of the mean phasor will be close to zero



Phase-Locking Value (PLV)

Lachaux, J.P., et al (1999) HBM ( difference )

phasor
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: 1L) —
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Phase-Locking Value (PLV)

Lachaux, J.P., et al (1999) HBM

Computing PLV (“*phase coherence”) in EEGLAB:

pop newcrossf(...., ‘type’, ‘phase’)



Phase-Amplitude Coupling

 May present a functional role in execution of
cognitive functions (Axmacher et al. 2010; Cohen et
al. 2009a,b; Lakatos et al. 2008; Tort et al. 2008, 2009;
Canolty et al, 2006).

* Suggested involvement in sensory signal detection
(Handel and Haarmeier 2009), attentional selection
(Schroeder and Lakatos 2009), memory processes
(Axmacher et al. 2010; Tort et al. 2009; and
neurodegenerative disorders (Swann et al, 2015)
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Phase-Amplitude Coupling
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Local Field Potential (Slow + Fast cells)



Graphical Model

10 Hz ,
nonstatlonary

coupling
.. (1Hz)

10 Hz 10 Hz

PAC may reflect non-stationary or
non-linear network dynamics

| T —
Tim Mullen
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Phase-Amplitude Coupling:
PLV Meth Od Vanhatalo, S et al (2004) PNAS

original raw signal

filter X4 at LFO band (e.g. theta)

filter X4 at HFO band (e.g. gamma)

get amplitude envelope of filtered signal



Phase-Amplitude Coupling:
PLV Meth Od Vanhatalo, S et al (2004) PNAS

to “\q)fp(l,to) |
E mq)AfA(l,tO) (/A
AfA : Q — ¢AfA(19to)_¢fp(l’t0)
Compute PLV between LFO time- . Tff/v
. . other trials ™ |
series (fp) and amplitude envelope _
of HFO time-series (Ar). AVERAGE difference
phasors across trials
Significant PLV indicates that the v

central frequency of f, modulates
the amplitude of the central
frequency of fa

complex phasor

N
u(t,) = izem% (ko) (kdo))
3u(t0) N k

g/;/ PLV(to)=abs(u)
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Phase-Amplitude Coupling:
PLV Meth Od Vanhatalo, S et al (2004) PNAS

Problem:

PLV is invariant to differences in amplitude between the two time-series (it only
considers phase). Thus PLV-PAC doesn’t take into account the amplitude of the
co-modulation.

In the example below, X1 and X2 both would produce the same PAC, even though
the high-frequency amplitude of Xo clearly is more strongly modulated by the
low-frequency rhythm.

AW X~

Same PLV-PAC
w/\/\“ v\«/\ﬁf\/\ \n/‘w\/\/”\f/\/w\/ [\ [l Xo /




Phase-Amplitude Coupling:
Modulation Index Method

Canolty et al, (2006) Science

original raw signal

/)

ap
9y, 0{ / / / / extract the instantaneous phase of 7,
—TT

filter X1 at HFO band (e.g. gamma)

filter X4 at LFO band (e.g. theta)

Ja

get amplitude envelope of filtered signal

Ja



Phase-Amplitude Coupling:
Modulation Index Method it metntneons

Canolty et al, (2006) Science \amp”wde and Phase)

Trial 1 (1) = AfAei¢fp

& {// T 7w Y,
b, (1))

~
o

AfA :
i1
other trials = |
— AVERAGE complex
Comparison: phasors across trials
PLV-PAC

mean
complex phasor

Ju(to)




Phase-Amplitude Coupling:
Modulation Index Method

Canolty et al, (2006) Science

r )
S’
-
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—
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Computing PAC in EEGLAB:
pac (IC1,IC2, ..., ‘method’, ‘mod’)

A |
" PAC can also be applied\
between sources/channels (e.g.
determine whether the phase of
oscillation at freq. wp in IC1
modulates the amplitude of \
oscillation at freq. wain IC2. This
leads to a measure of cross-
frequency (non-linear) functional
\_connectivity. y

4 N
For Modulation Index method
(other modes also available)

J

Also see PACT plugin for EEGLAB by

Miyakoshi et al
(http://sccn.ucsd.edu/wiki/PACT)
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Theory

Estimating Effective

Connectivity

Non-lnvasive

= P0oSst-hoc analyses
applied to measured
neural activity

= Confirmatory

» Dynamic Causal Models

» Structural Equation Models
= EXxploratory

®x Granger-Causal methods

......
Corpnsatons

Tim Mullen

® Data-driven

® Rooted in conditional predictability
® Scalable (Valdes-Sosa, 2005)

® Extendable to nonlinear and/or non-

stationary systems (rreiwald, 1999; Ding,
2001; Chen, 2004; Ge, 2009)

® Extendable to non-parametric
representations (hamala, 2009a,b)
® Can be (partially) controlled for

(unobserved) exogenous causes
(Guo, 2008a,b; Ge, 2009)

® Equivalent to Transfer Entropy for
Gaussian Variables (setn, 2009)

® Hexibly allows us to examine time-
varying (dynamic) multivariate
causal relationships in either the
time or frequency domain

26
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Linear Dynamical Systems

€, ()
Stochastic Linear Dynamical System j\/'/ \(tzﬂ b 0x
X, (H)=a(t), X,t—D+a@),X,t—1)+¢(@) X1 At = )
X,(t)=a(t),,X,(t—1D+a(t), X,(t—1)+¢€,(2) a(t)n CZ%\ /

(1) N~

e (1) e(n—2) e(n—1) €,(n)
r a(1)11 \ y an-1h- Xt- a(n)11 y
g T X0 —> X4(1) — 10 —> X‘Q(;‘ —> —> Xi(n)
< (C
§ <2E, a(1)12 an-1) a(n)12
¥ % 8(1)21 a(n—1)21 a(n)21
5 8 Xo(n-
9 O ) C1(0)) > Xo(1) p = — X22(;1- — 21) —p  Xo(N)
O | -

an a(1)z2 4 4 a(n-1)z2 4 ()
e, (1) € (n—2) 6(n—1) €, (n)
t=0 t=1 t=n-2 t=n-1 t=n

time step



Theory

Vector Autoregressive
(VAR / MAR / MVAR) Modeling

Granger Causality Coherence Spectrum

Corpratons

Tim Mullen
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VAR Modeling: Assumptions

Theory

x “Weak” stationarity of the data
= mean and variance do not change with time

x An EEG trace containing prominent evoked potentials is a
classic example of a non-stationary time-series

= Stability
» All eigenvalues of the system matrix are <1

x A stable process will not “blow up” (diverge to infinity)

® A stable model is always a stationary model (however, the
converse is not necessarily true). If a stable model adequately
fits the data (white residuals), then the data is likewise stationary
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The Linear VAR Model

Ordinary Least-Squares
Lattice Filters
Kalman Filtering
Bayesian Methods
Sparse methods

Theory

t
o) ERY E——wy

6 model order

O

O D random noise process
= X()=) AP®OX(-k)+E®)

m M-channel data vector M x M matrix of (possibly time-varying) multichannel data k
<E at current time t model coefficients indicating variable samples in the past

> dependencies at lag k

( )
a® @) ... a® @

AP ()= E(z)=N(0,V)

\ a(k>M1(t) a(k)MM(t) y,
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Selecting a VAR Model Order

Theory

= Model order is typically determined by minimizing information criteria
such as Akaike Information Criterion (AlIC) for varying model order (p):

A|C(p) — 2|Og(de’[(V)) + |\/|2p/N Penalizes high model orders (parsimony)

entropy rate (amount of prediction error)

optimal order

£ N L I P IR BN I | . I |

model order
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Model Order Selection Criteria

Theory

More Schwarz-Bayes Criterion In T)

)l!“

SBC(p) = in '2 | =1

Conservative (Bayesian Information Criterion)

Less ) A
Conservative PE(p) = i T'+Mp+1
T—-Mp-1
Akaike’s Final Prediction Error and its logarithm (used in SIFT)
; T+ Mp+1
In(FPE = in |X(p)| + Min | —m
(FPE®)) = in|S(p) (T_Mp_l)
Intermediate g ae _ - 2in(in(T)) ,
Conservative Hannan-Quinn Criterion HQ(p) = In 'g(p)l _T—p M2




Model Order Selection Criteria

I(o) = [Prediction Error] + [Overfitting Penalty]

]
Al (A
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Selecting a VAR Model Order

Theory

» Other considerations:

= A M-dimensional VAR model of order p has at
most Mp/2 spectral peaks distributed
amongst the M variables. This means we can
observe at most p/2 peaks in each variables’
spectrum (or in the cross spectrum between
each pair of variables)

x Optimal model order depends on sampling rate. Higher
sampling rate often requires higher model orders.
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Model Valigation

Theory

= |[f 2 model is poorly fit to data, then few, if any, inferences can be
validly drawn from the model. There a number of criteria which
we can use to determine whether we have appropriately fit our
VAR model. Here are three commonly used categories of tests:

= Whiteness Tests: checking the residuals of the model for serial
and cross-correlation

»x Consistency Test: testing whether the model generates data
with same correlation structure as the real data

x Stability Test: checking the stability/stationarity of the model.

We’ll discuss these further in Part 2 (Sunday)
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Granger Causality

Theory

Granger (1969) in the
autoregressive mode

® [irst introduced by Wiener (1958). Later reformulated by

context of linear stochastic
S

®x Relies on two assumptions:

Granger Causality Axioms

1. Causes should precede their effects in time (Temporal

Precedence)

2. Information in a cause’s past should improve the

contained In past of
variables)

orediction of the effect, above and beyond the information

the effect (and other measured

36



Corpratons

Granger Causality

Does X4 granger-cause X17? L it 1
(conditioned on X2, Xs)
X 1 (t) f \J‘I\ \ﬁ.fﬁ\xhaﬁg\f‘ww&

X, (¢) A e WA VL
? andl /AR Emmdh U210
X.(1) P ET———— /AR var(E(t))

X, (1) X(0)= " AYX(t—k)+E(1) l

Theory

=

X (1) % V‘\ 'V\,,f"‘\\.s'v\ﬁﬂf-””\f'ﬁ' T
X, (7) WOV —» BV/N=" —> var(Ei())

X;(t) Sy W\/“J A VM aflens R N
X,0=2 AYX  (t-k)+E@)
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Granger Causality

Theory

B Granger (1969) quantified this definition for bivariate processes in the
form of an F-ratio: £ \equced model

. . (var(El)]_ ( var(X (1) [ X,(1)) \
Yex, =In
) Va’”(E1) var(Xl(t) \ Xl(°),X2(')),

1

full model

B Alternately, for a multivariate interpretation we can fit a single VAR
model to all channels and apply the following definition:

Definition 1

Xj granger-causes X; conditioned on all other variables in X
if and only if A (k)>>0 forsomelag ke {1, ..., p}




Theory

Granger Causality Quiz

» Example: 2-channel VAR process of order 1

/

N

Xl(f)
X0

X 1(t):

(56

—0.5X,(¢-1

X (= 0.7X,(t-1) |+ 02X (t-

0.2

) +

J

/

N

X (-

0X (¢-1

)
X, (t—1

) [ E@

)/\

) |+ E,(2)

1) + E (¢)

Which causal structure does this model correspond to?

2) @— O

b) @ «— O

c) @ — O

\

E(0)
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Granger Causality — Frequency Domain

Theory

X(H)=), AYX(t-k)+E()
k=1 Likewise, X(f) and E(f) correspond to

Fourier-transforming A% we obtain the fourier transforms of the data
and residuals, respectively

_ _\"? (k) —i2rfl, A (0) _
A(f)=-), AW A0 =]
We can then define the spectral matrix X(f) as follows:

X(f)=A(f) E(f)=H(f)E(f)

Where H(/) is the transfer matrix of the system.

Definition 2
Xj granger-causes X; conditioned on all other variables in X

if and only if |A(f)| >> O for some frequency f

leads to
PDC




xliti NWWWW X(1) = Zz IA(k)(l‘)X(t —k)+E®) Ground Truth
X, (1) | P AN y .
5 : A(f,t)= —25;0 AN @) A =T Kus, 2004
X () PRt | X(f,0) = A0 E(f,0) = H(f,OE(f 1)

g /\ [ :_._..._._.- iS:olIJi:ch’irue flow

§ S(f)= X(f)X(f)* % / \ —— direct true flow

& =H(HZH(f) — T n |

Frequency (Hz) NOTE: time index (t) dropped for convenience

(Brillinger, 2001)

e T

>
o s S, U
Ry % C.(f)= /) g% = e X —(Z I Z)IH (O
S JS. (NS, () S = 8 FU)= S ()
all o ORORS :

(Bendat and Piersol, 1986) (Geweke, 1982; Bressler et al., 2007)

s BE 57,0 5 2

N £ p(f)= ] T8 S, [ 4,(f)]
A2 JsnsT £88 G 7
=r 05 i(f Ji J LS C 2 ‘Ak(f)|

= © (Bendat and Piersol, 1986; Dalhaus, 2000) = 8 (Baccala and ];:almesiima 2001)
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Spectral M.

Coherence Measures

Estimator

Formula

Spectral S(H=X(NHX()*
Density Matrix =H(XH(f)*
G, ()= ,—S /)

Coherency ' Si (f )SJJ (f)

0<|Cy( f)| <1
Imaginary
Coherence iCoh,(f)=1Im(C,(f))
(iCoh)

$,(/)

F,(f)=
Partial \/SU (f)S,, (f)
Coherence .
(pCoh) S(ESU)

o<|p () <1

det(S(/f))

G. = [l -——————
Multiple ) J S, OM, ()
?;k(ljir}f)nce M..(f)is the minor of S(f) obtained

by removing the ith row and column of
S(f) and returning the determinant.

Estimator

Formula

Partial Directed Coherence Measures

Granger-Geweke

A,(f)
Normalized < (f)= I 2
Partial \/2k=l|Alg' f )|
Directed 5
Coherence 0< |7L',.j (f)| <1
(PDC) w i
AR
1
7,(f)=
Generalized \/Zk 122 | k’(f)|
PDC (GPDC)
0 <| (| <1
Z,(N)| =1
=1
A, (N)=0,(N*V, (/)" G, (/)
where
4,(1)]
a= [Imm (f)]]
Renormalized V.(f)= ZR; (k,DZ,Z2r f,k,1)
PDC (rPDC) k=1
Z(w, k1)
_ [ cos(@k)cos(al) cos(wk)sin(al)
- sin(wk)cos(w!) sin(wk)sin (wl)
R is the [(Mp)? x (Mp)?] covariance
matrix of the VAR[p] process
(Litkepohl, 2006)
Granger- (22 /5 | (f)|2
Geweke -
Causality F:J(f) - S (f)
(GGC) i

Formula

Estimator

H,(f)
Normalized ¥y (f)= ~ - >
Directed \/Zkzl |Hik (f)|
Transfer

o<l ([ <1
> =1

Function
(DTF)

Full-
Frequency
DTF (ffDTF)

5,
Zf Zkle |Hik (f)|2

(/)=

Directed Transfer Function Measures

Direct DTF

(dDTF) &, (N)=m;(NE;(f)

X(0)=)," AY@OX(—k)+E()
A(f.)==) AP AV =1
X(f.0)= A(f.0) E(f,t)=H(f,0)E(f,1)

H(f) Transfer Function
A(f) System Matrix
Y. Noise Covariance Matrix

Variance Stabilization

For additional details, see SIFT Handbook (sccn.ucsd.edu/wiki/SIFT)
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Scalp or Source?

Theory

dDTFROB

olf
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I8 me £L0C «0C L2200 0 20 200 50 s00
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Scalp or Source?

X(t)=HS(t) = iHA“‘)(t)H-IX(z —k)+ HE(¢)

k=1

SENSOrs

g
X(¢)= HS(t)

Volume
Conduction

ICA
SBL
Beamforming

Minimum-norm sources

Solution? Source Separation 5= @9@)s( - k) + E)
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S()= M X(¢) Akalin Acar, et al, 2010

11— | solutions
A Recipe for Reducing Errors: ll-posed!
e Realistic Forward Model

e Appropriately Constrained I
|ﬂverse MOdel independence ImpOse

Akalin Acar and Makeig, 2009 ity constraints!




Tim Mullen

Theory

Forward/Inverse Modeling

Method Smoothness Sparsity Independence/Orthogonality
\INI= X
LORETA X
dSPM X
Beamforming X
Sparse Bayesian Learning X X
S-FLEX X X
FOCUSS X
ICA/PCA/SOBI X

Source reconstruction with ICA+SBL
simulated reconstructed

Makeig, Ramirez, Weber, Wipf, Dale, Simpson, 15th Inter. Conf on Biomagnetism (2000)
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Corpratons

Estimating Dependency of ==
Independent Components 7

® |SN’t it a contradiction to examine dependence between Independent/
Uncorrelated Components?

® |[nstantaneous (e.g., Infomax) ICA only explicitly seeks to maximize
instantaneous independence. Time-delayed dependencies may be preserved.

x [nfomax ICA seeks to maximize global independence (over entire recording
session), transient dependencies may be preserved.

® [ndependence is a very strict criterion that cannot be achieved in general by a
linear transformation (such as ICA). Instead, dependent variables will form a
dependent subspace.

However, the best approach is to use an inverse model that explicitly
preserves time-delayed dependencies or jointly estimates sources (de-mixing
matrix) and connectivity (VAR parameters). See the Sparsely Coupled Sources
Analysis method (Haufe, 2008 IEEE TBME), available in SIFT.
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Estimating Dependency of ==
Independent Components 7

SCSA EM
SCSA
o CSA . .
Z CICAAR Connectivity Error
MVARICA | + +
ICA o + — — —
01 02 03 04
SCSA_ EM>—+ — — — —=+++ + +

Theory

SCSA_EM
SCSA

oy CSA

< CICAAR

ICA

SCSA_EM
SCSA

on CSA

< CICAAR

0.3
1-AUC

SCSA_EM
SCSA

1 CSA
Z CICAAR

SCSA_EM
SCSA

o CSA

< CICAAR
MVARICA

Haufe et al, IEEE TBME 2008
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Adapting to Non-Stationarity

® [he brain is a dynamic system and measured brain
activity and coupling can change rapidly with time (non-
stationarity)

= cvent-related perturbations (ERSP, ERP, etc)

= structural changes due to learning/feedback

= How can we adapt to non-stationarity?

_|_

mV

time



Adapting to Non- Statlonarlty

= Many ways to do adaptive VAR estimation

Theory

= WO popular approaches (adopted in SIFT):

®x Segmentation-based adaptive VAR estimation
(assumes local stationarity)

x State-Space Modeling
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Adapting to Non-Stationarity

= Many ways to do adaptive VAR estimation

Theory

= WO popular approaches (adopted in SIFT):

= Segmentation-based adaptive VAR estimation
(assumes local stationarity)

x State-Space Modeling
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Segmentation-based VAR =

(Jansen et al., 1981; Florian and Pfurtscheller, 1995; Ding et al, 2000)
/‘

Theory
Y./
3
/

Analogous to short-
time Fourier transform
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ensemble normalization
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