
Tim Mullen, PhD

+

+ +
+

+

+

y(t) = Hs(t) + !(t)

s(t) = f s(t ! ),u(t ! )( ) + v(t)
u(t)

The Dynamic Brain II: Modeling Neural 
Dynamics and Interactions from M/EEG

Fr
eq

ue
nc

y 
(H

z)

Time (sec)

CAUSALITY FROM

C
A

U
SA

LI
T

Y
  T

O



Review
Theoretical Foundations I

Functional Connectivity Measures (PLV, PAC, Coherence) 

Effective Connectivity Measures and Granger Causality 

Scalp versus Source 

Adapting to Time-Varying Dynamics 

Practicum: Hands-On Walkthrough of SIFT
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Outline
Theoretical Foundations II

Model Validation 

Multivariate vs. Bivariate 

Imposing Constraints 

Single-trial Estimation and State-Space Models 

Statistical Testing 

Practicum: Hands-On Simulation-based training
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Review: The VAR model

VAR

Granger Causality Coherence Spectrum ...

M
/E

EG

X1(t)
X2 (t)
!

XM (t)
!
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X(t) = A(k )
k=1

p∑ (t)X(t − k)+E(t)

The Vector Autoregressive (VAR) model as a basis for dynamical estimation

Stochastic Linear Dynamical System

Δt = 1

ε1(t)

X1(t) = a(t)11X1(t −1) + a(t)12 X2 (t −1) + ε1(t)

ε2 (t)

a(t)12a(t)11

a(t)21 a(t)22

X2 (t) = a(t)22 X2 (t −1) + a(t)21X1(t −1) + ε2 (t)
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Model Validation
If a model is poorly fit to data, then few, if any, inferences can be 
validly drawn from the model.  

There a number of criteria which we can use to determine whether 
we have appropriately fit our VAR model. Here are three commonly 
used categories of tests: 

Whiteness Tests: checking the residuals of the model for serial 
and cross-correlation 

Consistency Test: testing whether the model generates data with 
same correlation structure as the real data 

 Stability Test: checking the stability/stationarity of the model.
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We can regard the VAR[p] model coefficients A(k) as a filter which 
transforms random (white) noise E(t), into observed, structured data X(t):  

For coefficient estimates Â(k), we can obtain the residuals  

If we have adequately modeled the data, the residuals should be 
indistinguishable from a white noise process. Correlation structure in the 
residuals means there is still correlation structure in the data that has not 
been explained by the model.   

Checking the whiteness of residuals typically involves testing whether the 
residual auto- and cross-correlation coefficients up to some desired 
lag h are sufficiently small to ensure that we cannot reject the null 
hypothesis of white residuals at some desired significance level.
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Ê(t) = X(t)− Â(k ) (t)
k=1

p∑ X(t − k)

X(t) = f (L)E(t) , f (L) = I − A(k )Lk
k=1

p∑( )−1 , LkZ(t) = Z(t − k)L is a “lag operator”

Whiteness Tests Tim Mullen
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   E(t) = N (0,V)

Cl = Ê(t) ˆ ′E (t − l)

Rh = (R1,…,Rh ) set of autocorrelations up to lag h

autocovariance at lag l ...
Rl = D

−1ClD
−1 with correponding autocorrelation R

D = diag diag(C0 )( )

   H0  : Rh = (R1,…, Rh ) = 0We want to test the null hypothesis 

against the alternative:    H1  : Rh ≠ 0

Two possible ways to do this:  
• Autocorrelation function test 
• Portmanteau tests

Tim Mullen
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  +2 / T̂

  −2 / T̂

ρ =
count Rh > 2 / T̂( )

count Rh( ) =
count Rh > 2 / T̂( )
M 2 (h+1)− M

Under the null hypothesis that Ê(t) is Gaussian white noise, we 
expect approximately 1/20=5% of a.c.f. coefficients to exceed 
the threshold    ±2 / T̂ This gives us a  p-value for rejecting H0

If p<0.05 (1-p > .95) then we cannot 
reject H0 at the 5% level and we 
accept that residuals Ê(t) are white 

  Rl (k)

Not whiteSignificant autocorrelation
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Problem:  

Confidence intervals apply to individual coefficients and assume 
coefficients are asymptotically independent. This may not be the 
case for multivariate models. 

In small sample conditions (small T), this test may cause us to 
reject the null hypothesis (residuals indicated as non-white) less 
often than we should for the chosen significance level (Lutkepohl, 
2006) -- in other words, we may have a higher false positive 
rate for accepting that the model fits the data. 

This motivates the use of alternate multivariate tests

Tim Mullen
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These test statistics are asymptotically χ2 distributed with M2(h-p) d.f.
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A well-fit model should be able to generate data that has the same 
correlation structure as the original data. 

One test of this is percent consistency (Ding et al, 2000) 

Here we generate simulated data from our fitted model (feeding it white 
noise) and calculate auto- and cross-correlations up to a fixed lag for 
both simulated data (Rs) and real data (Rr).  

The percent consistency (PC) is then given by 

A PC value near 100% indicates that the model is able to generate data 
that has a nearly identical correlation structure as the original data. A PC 
value near 0% indicates a complete failure to model the data.  

PC = 1−
R s −R r 2

R r 2

⎛

⎝
⎜

⎞

⎠
⎟ ×100
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Stability 

All eigenvalues of the system matrix are ≤1 

A stable process will not “blow up” (diverge to infinity) 

A stable model is always a stationary model (however, 
the converse is not necessarily true). If a stable model 
adequately fits the data (white residuals), then the data is 
likewise stationary

Tim Mullen



Multivariate versus Bivariate

Multivariate approaches are generally 
superior to bivariate approaches  

allow detection of direct versus indirect 
dependence, reducing false positives 

allow us to partially control for 
exogenous/unobserved causes (e.g. Guo, et 
al., J. Neuro. Methods, 2008)

M=2M>2
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In the absence of a priori knowledge concerning causal structure, 
it is advisable to include as many processes as possible in a causal 
model (within data/modeling limitations)

Exclusion of processes that may exert causal influence on modeled 
processes increases the risk of causal mis-identification. (c.f. Pearl, 
Causality: Models, Inference and Reasoning, 2009) 

Tim Mullen
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x1(t)
x2 (t)
!

xM (t)

spurious

direct true flow
indirect true flow•

Functional Effective

KUŚ et al.: DETERMINATION OF EEG ACTIVITY PROPAGATION: PAIR-WISE VERSUS MULTICHANNEL ESTIMATE 1503

A. Surrogate Data

To estimate levels of confidence for DTF, dDTF, and Granger
causality the procedure proposed by Theiler et al. [22] was
used. It consists of the following steps. First, the data are
transformed by FFT to the frequency domain, then their phases
are replaced by the phases drawn from a random distribution of
the range , and finally, the surrogate data are obtained
by transforming the randomized data back to the time domain.
The datasets generated in such a way should have the same
spectrum as the original data, but should not exhibit any
phase relation between signals. This is strictly true only for
infinite-length data epochs. In reality, we may expect some
nonzero values of the DTF, dDTF, and PDC functions even in
this case, coming from some random correlations [23]. In order
to estimate the thresholds for the functions values indicating
lack of transmission, the procedure of surrogate data generation
was repeated many (250) times, and the above-mentioned
functions were calculated.

III. SIMULATIONS

The simulations included construction of patterns of flows,
with the aim of understanding the effects observed for experi-
mental data. In order to make our simulations similar to real sit-
uations, as an input signal we used EEG from scalp electrode P3,
of 20 s duration (2560 points), high-pass filtered with a cutoff
frequency at 3 Hz. In each step, the signal was successively de-
layed by one sample; also in each step a random Gaussian noise
was added and obtained in this way time series were transmitted
to another channel with a weight 0.8. The amplitude of noise,
added in each step, was 0.5 of the amplitude of the original
EEG signal. The scheme of the simulation is shown in Fig. 1.
The signal from channel 1 was propagated to channel 3 through
channel 2 and to channels 5 and 6 through channel 4. Channel
7 was uncoupled to the other channels.

In Fig. 2(a), the ordinary coherences calculated pair-wise are
shown; their amplitude spectra are presented at the upper tri-
angle of the picture and phases at the lower triangle. From the
phase spectrum of coherences, we have chosen values corre-
sponding to the frequency of the maximum of amplitude spec-
trum, namely 11 Hz. Then we have found the corresponding
delays (in samples)1 . The obtained effective pattern of propaga-
tions together with the input diagram of flows are illustrated in
Fig. 2(c). We can observe that besides the simulated flows we
obtain some additional propagations, e.g., from channel 2 to 6,
from 2 to 5, and from 4 to 3. This result comes from the fact, that
in a case of the difference in the delays for bivariate estimates
we obtain a flow from a less-delayed channel to a channel more
delayed, even if they are not connected [Fig. 2(d)]. This effect
is absent for multivariate estimates.

Fig. 3 presents the results obtained by means of the Granger
causality measure calculated pair-wise. Again, we obtain too
many flows. In the case of pair-wise estimates, we have high
values of Granger causality for each pair of electrodes differing
in the delay value between them.

1Phases can be determined also in the time domain. Pairwise estimation of
phases e.g., by the Hilbert transform gives the same results as the ones obtained
from (pairwise) coherences.

Fig. 1. Scheme of simulation I. Signal in channel 1 is generated by addition of
white noise to the experimental EEG signal. denotes time delay of 1 sample.

Fig. 2. Pair-wise coherences and resulting flow scheme for simulation I.
(A) Coherence amplitude (solid filled graphs above diagonal) and coherence
phase (graphs below diagonal). Each graph represents the function for pair of
channels marked on the left of the row and above the column. Horizontal axis:
frequency . Vertical axis: coherence amplitudes ( range) or
phases ( range). Delay values (in samples) are estimated from phases,
marked by the numbers shown over the phase graphs. (B) Simulated pattern of
flows. (C) Pattern of flows estimated from coherence values (strength of the
connection) and phases (direction). (D) Pattern of flows obtained from bivariate
coherence estimate for different delays between channels. Black arrows: true
(simulated) flows. Gray arrows: indirect flows revealed by the applied method.
Dotted arrows: false flows found by the applied method.

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on June 15,2010 at 13:07:27 UTC from IEEE Xplore.  Restrictions apply. 
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Kus, 2004

ηij
2( f ) =

Hij ( f )
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f∑ Hik ( f )
2

k=1

M∑

1504 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 9, SEPTEMBER 2004

Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on June 15,2010 at 13:07:27 UTC from IEEE Xplore.  Restrictions apply. 
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δ ij
2( f ) =ηij

2( f )Pij
2( f ) 

KUŚ et al.: DETERMINATION OF EEG ACTIVITY PROPAGATION: PAIR-WISE VERSUS MULTICHANNEL ESTIMATE 1505

Fig. 6. (A) PDC functions for simulation I. (B) Resulting pattern of flows.
Organization of the picture is the same as in Fig. 3.

since they reveal the direct coupling between them [20]. For
scalp electrodes, the overall picture of propagations found
by DTF is usually sufficient. Both estimators can be easily
computed from the MVAR transfer matrix. Inspection of both
gives unequivocal information about the pattern of propagation
and makes the distinction between direct and indirect flows
possible.

In Fig. 6, the results obtained by the PDC method for the
same simulation scheme (Fig. 1) are illustrated. One can see that
they are quite similar to those obtained by dDTF. The spectral
properties of PDC and DTF are different—the PDC measure
depends on frequency very weakly.

However, there are situations where PDC results may be mis-
leading to a certain extent. In order to clarify the differences be-
tween DTF and PDC, the series of simulations were performed.
In simulation II (Fig. 7), the signal in channel 1 is the same as
the signal in channel 1 of simulation I. This signal is transmitted
with the weight 0.8 and the delay of 1 sample to channels 2,
3, and 4, but with the noise components drawn from different
distributions. The time series in channel 5 is constructed in the
same way as channel 1 in the simulations I and II, but the input
EEG comes from a different subject. This signal plus a noise
component is transmitted with the delay of one sample and vari-
ance four times smaller than the variance of signal 1: in simu-
lation II to channel 4 and in the simulation III to channels 2,
3, and 4 (with different noise components). In simulation IV,
the scheme is similar to simulation III, except that the strengths
of all the transmitted activities are equal. The results of these
simulations are illustrated in Fig. 7. It is easy to see that DTF
and PDC show the same correct directions of flows, however
there are differences in their intensities. For simulation II, the
pattern of flows is well reproduced by DTF; however, for PDC,

Fig. 7. DTF (left) and PDC (right) results for simulations II, III, IV
(described in the text). Below the pictures representing the DTF and PDC
functions, deduced flows are presented for each simulation. The schemes of
the simulations are shown in the middle column.

the weak propagation from channel 5 becomes predominant in
the absence of other flows from that channel. In simulation III,
PDC shows similar intensities of flows from electrodes 1 and 5,
although originally the flows from electrode 5 are much weaker.
In the case of simulation IV, when the intensities of flows are the
same for both sources, the results for DTF and PDC are very
similar. These results follow from the different normalizations
in DTF and PDC. DTF is normalized in respect of the inflows to
the destination channel and PDF in respect to the outflows from
a given channel. Therefore, for PDC, it is difficult to estimate the
strengths of the flows. As the authors of the PDC method [19]
admit, PDC portrays the relative strengths of direct pair-wise
structure interactions, while DTF represents a balance of signal
power that spreads from one structure to different destinations.
Simulations II, II, and IV will help to understand some discrep-
ancies obtained by application of different methods to the same
experimental data.

IV. RESULTS FOR EXPERIMENTAL DATA

A. Alpha Rhythm

A MVAR model was fitted simultaneously to 21 channels
of EEG (10– 20 system) of a normal adult in an awake state
with their eyes closed. The epoch length was 20 s. The signal
was high-pass filtered above 3 Hz. The filtering procedure in-
volved filtering forward and backward in order to avoid any
phase disturbance. The model order found by means of the AIC
criterion was 4. The estimates describing transmissions DTF,

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on June 15,2010 at 13:07:27 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Fig. 3. (A) Granger causality calculated pair-wise. Each graph represents the
function describing transmission from the channel marked above the column
to the channel marked on the left of the row. Horizontal axis: frequency (

range). Vertical axis: Granger causality in arbitrary units. Graphs on
the diagonal contain power spectra. (B) Resulting flow scheme. Convention
concerning drawing of arrows the same as in Fig. 2.

Fig. 4. (A) Nonnormalized multichannel DTFs for the simulation I (Fig. 1).
Picture organization similar to Fig. 3 (on the diagonal power spectra). (B) DTFs
obtained from surrogate data. (C) Resulting flow pattern. Plots A and B are in
the same scale in arbitrary units. Horizontal axes: frequency ( range).

Inspecting Figs. 2 and 3, we observe that the channels, which
are more delayed than the others, became “sinks” of activity.
It is quite common for pair-wise estimates that they show
sinks rather than sources of activity. This effect appears also in
pair-wise estimates of experimental data.

The nonnormalized DTFs (equivalent to the multivariate
Granger causality measures), obtained by means of MVAR
fitted simultaneously to all the channels, are shown in Fig. 4(a).
We can see that, in this case, the pattern of flows is fairly well
reproduced. Although the indirect cascade flows are present,
there are practically no flows between the different chains of
our scheme.

Fig. 5. (A) Ordinary (graphs above diagonal), partial (graphs below diagonal),
and multiple coherences (graphs on the diagonal) for the simulation I. Vertical
axes: amplitude in range. Horizontal axes: frequency in range.
(B) dDTFs for the simulated data (power spectra shown on the diagonal). (C)
Pattern of direct connections estimated from partial coherences. (D) Pattern of
direct flows estimated from dDTFs.

The accuracy of the results can be estimated by means of the
surrogate data test. The results are shown in Fig. 4(b). On the
diagonal of Fig. 4(b), the power spectra are illustrated; we can
see that they correspond well to the spectra from Fig. 3. The
DTF values from Fig. 4(a) corresponding to “leak flows”—the
flows which should not exist according to our scheme—are of
the order of the values obtained by means of the surrogate data
test. However, this is not the case for the “cascade” flows.

In order to find only direct flows, one can use the dDTF in-
troduced in [20]. This function is a combination of ffDTF and
partial coherence. In the definition of ffDTF (7), the normaliza-
tion factor in the denominator does not depend on the frequency.
This kind of normalization is better when number of electrodes
is small and signals are not very coherent. In such a case, one of
the channels might be transmitting strong activity at frequency

to channel . Then the denominator in (6) shall have a large
value at the frequency , and consequently, the DTF (showing
the propagation from the other electrode to channel ) may have
a “dip” in the spectrum. The ffDTF was introduced in [20] to
avoid the situation described above, which is unlikely for sur-
face electrodes, but it could occur for electrodes implanted in
specific brain structures.

The second term in the definition of dDTF—partial coher-
ence—contains only this part of the signals’ variance, which is
common to the two signals excluding the influence of all the
other signals from the set. Partial coherences obtained for the
set of signals generated according to the scheme shown in Fig. 1
are illustrated in Fig. 5(a), together with multiple and ordinary
coherences. We can observe that contrary to the ordinary co-
herences, the partial coherences reveal dependencies only for
directly coupled signals.

The results obtained by means of dDTF for the simulation
scheme I (Fig. 1) are shown in Fig. 5(b). The scheme of flows is
reproduced correctly, some small “leak flows” are of the order
of magnitude of accuracy determined from the surrogate data
test. These “leak flows” come from the fact that even in the
uncorrelated signals some small correlations in the noise are
always present.

According to our experience, the use of dDTF may be
important for the electrodes implanted in brain structures,
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Frequency	(Hz)
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erS( f ) = X( f )X( f )*

       = H( f )ΣH( f )*
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(Brillinger, 2001)

M=2

M=2

M>2

M>2

M>2

M>2

M=1

X(t) = A(k )
k=1

p∑ (t)X(t − k)+E(t)
A( f ,t) = − A(k ) (t)e− i2π fk

k=0

p∑ ;   A(0) = I
X( f ,t) = A( f ,t)−1E( f ,t) = H( f ,t)E( f ,t)

NOTE: time index (t) dropped for convenience 
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A( f ,t) = − A(k ) (t)e− i2π fk
k=0

p∑ ;   A(0) = I
X( f ,t) = A( f ,t)−1E( f ,t) = H( f ,t)E( f ,t)

X(t) = A(k )
k=1

p∑ (t)X(t − k)+E(t)

  H ( f )

  A( f )

Σ

Transfer Function
System Matrix
Noise Covariance Matrix

For additional details, see SIFT Handbook (sccn.ucsd.edu/wiki/SIFT)
Variance Stabilization



However, multivariate methods come with a cost: 

More parameters + limited data = higher risk of over-
fitting or worse yet.... 

...the problem becomes ill-posed or under-determined. 
There are insufficient observations to uniquely determine 
a solution to the system of equations defining our model.

Multivariate Models: 
Limitations
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How many samples do we need? 

N = number of samples required 

M = number of variables/sources 

T  = number of trials/realizations 

p  = model order 

We have M2p  model coefficients to estimate. So our ordinary least-
squares solution requires a minimum of M2p samples. 

N ≥ M2p

Back-of-envelope: M=20, p=10, T=1 We need 202x10 = 4000 samples 
-- 20 second epoch at sampling rate of 200Hz! 

Ensemble aggregation (T > 1)? 

M=20, p=10, T=50:  4000/50 samples/trial → 20/50 = 0.4 sec epoch

Multivariate Models: 
Limitations
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Multivariate Models: 
Constraints
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Make assumptions (impose constraints)

M>2

We want to a priori restrict the range of allowable 
values for our parameters -- transforming the problem 
from one with infinite number of solutions in the original 
parameter space to one with a unique (“best”) solution 
in the new parameter space 

In a Bayesian context, this corresponds to making 
assumptions about the prior distribution of the 
parameters (Gaussian, Laplacian, ...)

Solutions?

Tim Mullen



Â = argmax
A

p(A D) ≅ p(D A)p(A){ }

Multivariate Models: ConstraintsIn
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prior

0A

p(A)

p(A)=U(a,b)

p(A) = N(0,Σ)

p(A) = L(0,ß)

Unconstrained (all values equally 
probable). e.g. Uniform distribution

Smoothness constraints 
• large differences in values unlikely 
• small (non-zero) values most 
probable. e.g. Normal (gaussian) prior.

Sparsity constraint 
• many values small or exactly zero 
with occasional large values e.g. 
Laplacian prior

likelihoodposterior M>2

Tim Mullen



Standard least-squares solution

A(t) = argmin
Â

Y − Z !A
2

2( )
prediction error

 
!A = [A(1)(t),…,A( p)(t)]T

Z = [X1,…,Xp ]
Xk = [X(p +1− k),…,X(N − k)]T

X(t) = A(k ) (t)
k=1

p∑ X(t − k)+E(t)

Y = X0  

In
tro

Th
eo

ry
SI

FT
Ap

ps
To

-D
o

Fi
n

Rewrite VAR[p] as VAR[1]

Smoothness Constraints Tim Mullen



Ridge Regression  
(Tikhonov Regularization, Minimum-(L2)-Norm 

A(t) = argmin
Â

Y − Z !A
2

2
+ λ !A

2

2( )
prediction error

Equivalent to assuming a Gaussian prior with variance determined by λ 

Large values of A are penalized. The range of allowable values for 
coefficients is restricted, reducing the effective degrees of freedom and 
allowing us to estimate VAR coefficients with fewer observations.

penalty term, 
enforces smoothness

regularization
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Smoothness Constraints

M>2

Tim Mullen



Sparsity Constraints

structural  
network

functional  
network

Sporns and Honey, PNAS, 2006

It’s a small world...
Sporns, Frontiers in Computational 

Neuroscience, 2011

Sparsity 
Relatively low probability of a 
direct connection between 
any two anatomical functional 
units. This probability 
decreases with distance

Structural Connectivity
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Standard least-squares solution

A(t) = argmin
Â

Y − Z !A
2

2( )
prediction error

 
!A = [A(1)(t),…,A( p)(t)]T

Z = [X1,…,Xp ]
Xk = [X(p +1− k),…,X(N − k)]T

X(t) = A(k ) (t)
k=1

p∑ X(t − k) + E(t)

Y = X0  
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Rewrite VAR[p] as VAR[1]

Sparsity Constraints Tim Mullen



Group Lasso (L1,2 norm)

A(t) = argmin
Â

Y − Z !A
2

2
+ λ !Aij

(1),…, !Aij
( p)

2
ij
∑

⎛

⎝⎜
⎞

⎠⎟

prediction error

group sparsity (L1)

smoothness (L2)
(preserves spectrum)

regularization
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ADMM 
DAL

Sparsity Constraints

Equivalent to assuming a Gaussian prior over coefficients within groups 
and a Laplacian prior over the groups themselves 

Entire groups of coefficients are jointly pruned (set exactly to zero) while 
remaining groups assumed to have a Gaussian prior (ridge penalty). 
Allows us to estimate VAR coefficients with fewer observations.

M>2
Tim Mullen



Compressive Sensing 

The process of acquiring and reconstructing a 
quantity that is underdetermined but known to be 
sparse (compressible) in some basis

How many samples do we need? 
N = number of samples required 
M = number of variables/sources, p = model order 

N =O K log(M 2p /K )( ) ≈O logM 2p( ) ≤ c log M 2p( )

S
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(unconstrained)

M>2Sparsity Constraints Tim Mullen



Significant improvements using smoothness or sparsity assumptions 

(e.g. Haufe et al, 2009, Valdez-Sosa et al, 2009)

Haufe, 2009
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(if prior assumptions are correct)
Tim Mullen



Many ways to do adaptive VAR estimation 

Two popular approaches (adopted in SIFT): 

Segmentation-based adaptive VAR estimation 
(assumes local stationarity) 

State-Space Modeling
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+

y(t) = Hs(t) + !(t)

s(t) = f s(t ! ),u(t ! )( ) + v(t)
u(t)

Kalman Filtering and extensions

Adapting to Non-Stationarity Tim Mullen



+

+ +
+

+

+

Discrete State-Space Model (SSM) for 
Electrophysiological Dynamics

•Dynamical system may be linear or nonlinear, dense or sparse, non-stationary, high-
dimensional, partially-observed, and stochastic 

•Subsumes discrete Delay Differential Equation (DDE) and Vector Autoregressive (VAR) 
methods and closely related to Dynamic Causal Modeling (DCM)
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observation equation 
(e.g. noisy sensor observations)
y(t) = Hs(t)+ ε(t)

s(t) = A(t)s(t −1)+ v(t)Linear VAR[1]

state transition equation 
(e.g. latent source and/or coupling dynamics)

s(t) = f s(t − ),u(t − ),θ(t)( )+ v(t)

known 
deterministic inputs

u(t)

Tim Mullen



Kalman Filtering
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Time Update   
(“Predict”) 

Measurement Update 
(“Correct”) 

ẑt = ẑ
−
t +Gtε

ε = yt − ŷt

Pt = (I −GtH )P
−
t

yt

P−
t = APt−1A

T +Q

ẑ−t = f ẑt−1,ut−1( )+ vt

optimal estimator (in terms of minimum variance) for the state of a 
linear dynamical system

new observation

ŷt = Hẑ
−
t

zt  :=
unknown state vector at time t  
e.g. delay-embedding of sources and/or coupling (VAR) parameters

f (z,u) is linear in 
{z,u} for classic 
Kalman Filtering 

t→ t +1

Initialize
ẑ0 = E(z0 )
P0 = cov(z0 )

ŷ(t)

updated model

ut

Tim Mullen
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Nonlinear Modeling
Interactions in brain are generally non-linear 

Purely linear models (e.g. high-order VAR models) can 
sometimes provide an approximation sufficient for 
correct detection of directed dependencies

B. Schelter et al. / Journal of Neuroscience Methods 179 (2009) 121–130 127

Fig. 6. Renormalized partial directed coherence (off-diagonal) for the example of the
VAR[2] process of section “vector autoregressive process III”. The results are sorted as
a matrix: in the ith row and the jth column the influence from process j onto process
i is displayed. The black line represents the renormalized partial directed coherence
values while the gray areas mark the corresponding 95% confidence intervals. (a) The
entire system is correctly revealed by the renormalized partial directed coherence.
(b) Only the directed influence between process x4 and x3 remains constant, all the
others are zero.

coupling. We like to stress that prior to any application we recom-
mend testing renormalized partial directed coherence tailored to
the problem.

3.4. Coupled van-der-Pol oscillators

As demonstrated above, renormalized partial directed coher-
ence analysis is able to detect the network structure underlying
linear vector autoregressive processes, for which it has been devel-
oped. To demonstrate its wide-spread applicability we applied it to
a system of coupled stochastic van-der Pol oscillators:

ẍi = !(1 − x2
i )ẋi + ω2

i xi + #i$i +
∑

j /= i

%ij(xj − xi) (35)

for i = 1, . . . , 4. The non-linearity parameter was chosen to be ! = 5
for all oscillators, the standard deviation of the Gaussian white noise
$i was #i = 1.5. The frequency of the four oscillators was slightly
detuned around ω = 2&f = 1.5 Hz by setting ω1 = 1.5 Hz, ω2 =
1.53 Hz, ω3 = 1.48 Hz, and ω4 = 1.44 Hz. The coupling scheme
ensures that oscillators 1 and 2 are mutually coupled while the cou-
pling from oscillator 2 onto 4 and from 3 onto 1 was unidirectional.
The parameters were %12 = %21 = 0.4, %13 = 0.4, and %42 = 0.4. In
Fig. 7 the results of renormalized partial directed coherence analysis

Fig. 7. Results of the renormalized partial directed coherence analysis for a network
of four coupled van-der-Pol oscillators. The coupling is bidirectional between oscil-
lators 1 and 2 and unidirectional from oscillator 2 to oscillator 4 and from oscillator
3 to oscillator 1. The dashed horizontal line marks the 5% significance level, while
the gray area represents the 95% confidence intervals.

for 10,000 data points for each oscillator and a model order p = 200
are depicted. The dotted horizontal line marks the 5%-significance
level, while the gray area represents the 95% confidence imtervals.
At the oscillation frequency of approximately 0.2 Hz only those
renormalized partial directed coherence values are significant that
correspond to the true interaction structure.

To further substantiate this finding we varied the coupling
between two van-der-Pol oscillators. As it is visible from Fig. 8 the
renormalized partial directed coherence values evaluated at the
oscillation frequency increase for increasing coupling between the
oscillators. Thus, renormalized partial directed coherence does not
only detect the true interaction structure but provides addition-
ally a measure for the strength of the interaction also in non-linear
stochastic systems.

3.5. Coupled Rössler oscillators

To demonstrate that renormalized partial directed coherence is
capable in providing the actual interaction structure also for chaotic

Fig. 8. Coupled van-der-Pol oscillators. Renormalized partial directed coherence for
various coupling strengths %12. The dashed horizontal line marks the 5% significance
level.
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i is displayed. The black line represents the renormalized partial directed coherence
values while the gray areas mark the corresponding 95% confidence intervals. (a) The
entire system is correctly revealed by the renormalized partial directed coherence.
(b) Only the directed influence between process x4 and x3 remains constant, all the
others are zero.

coupling. We like to stress that prior to any application we recom-
mend testing renormalized partial directed coherence tailored to
the problem.

3.4. Coupled van-der-Pol oscillators

As demonstrated above, renormalized partial directed coher-
ence analysis is able to detect the network structure underlying
linear vector autoregressive processes, for which it has been devel-
oped. To demonstrate its wide-spread applicability we applied it to
a system of coupled stochastic van-der Pol oscillators:

ẍi = !(1 − x2
i )ẋi + ω2

i xi + #i$i +
∑

j /= i

%ij(xj − xi) (35)

for i = 1, . . . , 4. The non-linearity parameter was chosen to be ! = 5
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detuned around ω = 2&f = 1.5 Hz by setting ω1 = 1.5 Hz, ω2 =
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ensures that oscillators 1 and 2 are mutually coupled while the cou-
pling from oscillator 2 onto 4 and from 3 onto 1 was unidirectional.
The parameters were %12 = %21 = 0.4, %13 = 0.4, and %42 = 0.4. In
Fig. 7 the results of renormalized partial directed coherence analysis

Fig. 7. Results of the renormalized partial directed coherence analysis for a network
of four coupled van-der-Pol oscillators. The coupling is bidirectional between oscil-
lators 1 and 2 and unidirectional from oscillator 2 to oscillator 4 and from oscillator
3 to oscillator 1. The dashed horizontal line marks the 5% significance level, while
the gray area represents the 95% confidence intervals.

for 10,000 data points for each oscillator and a model order p = 200
are depicted. The dotted horizontal line marks the 5%-significance
level, while the gray area represents the 95% confidence imtervals.
At the oscillation frequency of approximately 0.2 Hz only those
renormalized partial directed coherence values are significant that
correspond to the true interaction structure.

To further substantiate this finding we varied the coupling
between two van-der-Pol oscillators. As it is visible from Fig. 8 the
renormalized partial directed coherence values evaluated at the
oscillation frequency increase for increasing coupling between the
oscillators. Thus, renormalized partial directed coherence does not
only detect the true interaction structure but provides addition-
ally a measure for the strength of the interaction also in non-linear
stochastic systems.

3.5. Coupled Rössler oscillators

To demonstrate that renormalized partial directed coherence is
capable in providing the actual interaction structure also for chaotic

Fig. 8. Coupled van-der-Pol oscillators. Renormalized partial directed coherence for
various coupling strengths %12. The dashed horizontal line marks the 5% significance
level.
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Fig. 9. Results of the renormalized partial directed coherence analysis for a network
coupled Rössler oscillators. The coupling is bidirectional between oscillators 1 and 2
and unidirectional from oscillator 2 to oscillator 4 and from oscillator 4 to oscillator
3. The dashed horizontal line marks the 5% significance level, while the gray area
represents the 95% confidence intervals.

systems, four coupled stochastic Rössler oscillators

!̇j =

(
Ẋj

Ẏj

Żj

)
=

⎛

⎜⎜⎜⎝

−ωj Yj − Zj +

⎡

⎣
∑

i,i /= j

εj,i

(
Xi − Xj

)
⎤

⎦ + $j%j

ωj Xj + a Yj
b + (Xj − c) Zj

⎞

⎟⎟⎟⎠
,

i, j = 1, . . . , 4 (36)

have been simulated with 50,000 data points with a sampling rate
of 10 Hz. The integration step was 0.004. The parameters are set to
a = 0.15, b = 0.2, c = 10, ω1 = 2&f1 = 1.01, ω2 = 2&f2 = 0.99, ω3 =
2&f3 = 0.97, and ω4 = 2&f4 = 1.03 ensuring a chaotic behavior in
the deterministic case. For the noise term $j %j a standard deviation
of $j = 1.0 is chosen and %j is standard Gaussian distributed. The
bidirectional coupling ε12 = ε21 = 0.04 between oscillator !1 and
oscillator !2 and the unidirectional coupling between oscillators !3
and oscillator !1, ε31 = 0.04, and between oscillators !4 and oscilla-
tor !3, ε34 = 0.04, corresponds to phase synchronization between
the oscillators.

The X-components of the individual oscillators enter the renor-
malized partial directed coherence analysis with a model order
p = 250. From the results in Fig. 9 the true interaction structure
can be reproduced. This demonstrates that renormalized partial
directed coherence is capable in revealing the actual interaction
structure also for non-linear chaotic systems.

4. Application to Parkinsonian tremor

Indications for the pathophysiological basis of Parkinsonian
tremor, a common neurological disease, have been found from ani-
mal experiments and some human studies (Hellwig et al., 2000).
Parkinsonian tremor manifests itself mainly in the upper limbs,
usually when the hands are in a relaxed position. Parkinsonian
tremor is a unilateral form of tremor, i.e. in general the trembling
occurs on one side. The trembling frequency of the hand is 4–10
Hz. To elucidate the tremor generating mechanisms in Parkinsonian
tremor, relationships between the brain and trembling muscles are
of particular interest. Tremor correlated cortical activity has been
observed by coherence analysis of simultaneously recorded elec-
troencephalography and electromyography (Hellwig et al., 2000).
Within that study it was not possible to differentiate whether the
cortex imposes its oscillatory activity on the muscles via the corti-

cospinal tract or whether the muscle activity is just reflected in the
cortex via proprioceptive afferences. No consistent results could be
detected by analyzing the phase spectra. Moreover, interactions at
the tremor frequency and at the first higher harmonic have been
detected. It stands to elucidate which of the two frequencies is of
particular importance for Parkinsonian tremor. Therefore, to get
deeper insights into tremor generation, partial directed coherence
analysis and renormalized partial directed coherence analysis is
applied to data recorded from patients suffering from Parkinsonian
tremor.

For one illustrative patient with Parkinsonian tremor, the
EMG from the right wrist extensor as well as the EEG recorded
over the left sensorimotor cortex are analyzed. Unilateral pos-
tural tremor was recorded for 300 s using a sampling rate of
1000 Hz. EEG data were band-pass filtered between 0.5 Hz and
200 Hz. To avoid movement artifacts, EMG data were band-pass
filtered between 30 Hz and 200 Hz and rectified afterwards.
Since the raw EMG is essentially modulated noise, taking the
absolute value after subtracting the mean, which is referred to
as rectification, is mandatory. It ensures to get the modula-
tion function of the noise which constitutes the physiologically
meaningful signal. The filters applied are to avoid movement
artifacts and to avoid aliasing and are therefore essential for a
reasonable analysis of the data. The hardware filter itself has
been proven not to introduce unwanted delays between the time
series.

In Fig. 10 a, results of the partial directed coherence analysis
for the EMG and the EEG channel are shown. On the diagonal the
spectra of the processes are given. The tremor frequency indicated
by the sharp peak in the right EMG-spectrum is almost 5 Hz. Sig-
nificant partial directed coherences at the corresponding tremor
frequency and its higher harmonics are detected for the direc-
tion from the right EMG to the left, contralateral EEG, and vice
versa.

The partial directed coherence indicating a causal influence from
the right EMG to the left EEG is much higher than the partial
directed coherence indicating a causal influence from the left EEG to
the right EMG (Fig. 10). Moreover the influence at the double tremor
frequency appears to be almost as strong as the one at the tremor
frequency. The significance level increases at the tremor frequency
for the influence from the EMG to the EEG; this might already indi-
cate that the influences are not of equal importance. This, however,
cannot be investigated using partial directed coherence.

In Fig. 10 b, the results of the renormalized partial directed
coherence are displayed in the same way as for the ordinary par-
tial directed coherence. It is now visible that the influence at the
first higher harmonic frequency from the EMG onto the EEG is
higher than the one at the tremor frequency. The afferent influ-
ence is more pronounced at the double tremor frequency than at
the tremor frequency itself even though both contribute. Interac-
tions at the double tremor frequency seem to be important for
the afferent interactions between cortical signals and the muscle
activity.

The results found for directed influences from the cortex to the
muscles and in the opposite direction are comparable under the
assumption that the signal-to-noise ratio is similar for both pro-
cesses. This is hardly expected in the case of EEG and EMG. While
the EMG represents a signal with very high signal-to-noise ratio
the EEG is expected to be contaminated with a lot of noise. Thus,
we can only state that there is influence from the cortex onto the
muscles.

In summary, since causal influences from the EEG to the corre-
sponding contralateral EMG are present, participation of the motor
cortex in tremor generation is strongly indicated. Moreover, there
is also a significant partial directed coherence from the EMG to
the contralateral EEG at the tremor frequency. This corresponds

Stochastic coupled Rössler oscillatorsvan-der-Pol coupled oscillators
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Fig. 9. Results of the renormalized partial directed coherence analysis for a network
coupled Rössler oscillators. The coupling is bidirectional between oscillators 1 and 2
and unidirectional from oscillator 2 to oscillator 4 and from oscillator 4 to oscillator
3. The dashed horizontal line marks the 5% significance level, while the gray area
represents the 95% confidence intervals.

systems, four coupled stochastic Rössler oscillators
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have been simulated with 50,000 data points with a sampling rate
of 10 Hz. The integration step was 0.004. The parameters are set to
a = 0.15, b = 0.2, c = 10, ω1 = 2&f1 = 1.01, ω2 = 2&f2 = 0.99, ω3 =
2&f3 = 0.97, and ω4 = 2&f4 = 1.03 ensuring a chaotic behavior in
the deterministic case. For the noise term $j %j a standard deviation
of $j = 1.0 is chosen and %j is standard Gaussian distributed. The
bidirectional coupling ε12 = ε21 = 0.04 between oscillator !1 and
oscillator !2 and the unidirectional coupling between oscillators !3
and oscillator !1, ε31 = 0.04, and between oscillators !4 and oscilla-
tor !3, ε34 = 0.04, corresponds to phase synchronization between
the oscillators.

The X-components of the individual oscillators enter the renor-
malized partial directed coherence analysis with a model order
p = 250. From the results in Fig. 9 the true interaction structure
can be reproduced. This demonstrates that renormalized partial
directed coherence is capable in revealing the actual interaction
structure also for non-linear chaotic systems.

4. Application to Parkinsonian tremor

Indications for the pathophysiological basis of Parkinsonian
tremor, a common neurological disease, have been found from ani-
mal experiments and some human studies (Hellwig et al., 2000).
Parkinsonian tremor manifests itself mainly in the upper limbs,
usually when the hands are in a relaxed position. Parkinsonian
tremor is a unilateral form of tremor, i.e. in general the trembling
occurs on one side. The trembling frequency of the hand is 4–10
Hz. To elucidate the tremor generating mechanisms in Parkinsonian
tremor, relationships between the brain and trembling muscles are
of particular interest. Tremor correlated cortical activity has been
observed by coherence analysis of simultaneously recorded elec-
troencephalography and electromyography (Hellwig et al., 2000).
Within that study it was not possible to differentiate whether the
cortex imposes its oscillatory activity on the muscles via the corti-

cospinal tract or whether the muscle activity is just reflected in the
cortex via proprioceptive afferences. No consistent results could be
detected by analyzing the phase spectra. Moreover, interactions at
the tremor frequency and at the first higher harmonic have been
detected. It stands to elucidate which of the two frequencies is of
particular importance for Parkinsonian tremor. Therefore, to get
deeper insights into tremor generation, partial directed coherence
analysis and renormalized partial directed coherence analysis is
applied to data recorded from patients suffering from Parkinsonian
tremor.

For one illustrative patient with Parkinsonian tremor, the
EMG from the right wrist extensor as well as the EEG recorded
over the left sensorimotor cortex are analyzed. Unilateral pos-
tural tremor was recorded for 300 s using a sampling rate of
1000 Hz. EEG data were band-pass filtered between 0.5 Hz and
200 Hz. To avoid movement artifacts, EMG data were band-pass
filtered between 30 Hz and 200 Hz and rectified afterwards.
Since the raw EMG is essentially modulated noise, taking the
absolute value after subtracting the mean, which is referred to
as rectification, is mandatory. It ensures to get the modula-
tion function of the noise which constitutes the physiologically
meaningful signal. The filters applied are to avoid movement
artifacts and to avoid aliasing and are therefore essential for a
reasonable analysis of the data. The hardware filter itself has
been proven not to introduce unwanted delays between the time
series.

In Fig. 10 a, results of the partial directed coherence analysis
for the EMG and the EEG channel are shown. On the diagonal the
spectra of the processes are given. The tremor frequency indicated
by the sharp peak in the right EMG-spectrum is almost 5 Hz. Sig-
nificant partial directed coherences at the corresponding tremor
frequency and its higher harmonics are detected for the direc-
tion from the right EMG to the left, contralateral EEG, and vice
versa.

The partial directed coherence indicating a causal influence from
the right EMG to the left EEG is much higher than the partial
directed coherence indicating a causal influence from the left EEG to
the right EMG (Fig. 10). Moreover the influence at the double tremor
frequency appears to be almost as strong as the one at the tremor
frequency. The significance level increases at the tremor frequency
for the influence from the EMG to the EEG; this might already indi-
cate that the influences are not of equal importance. This, however,
cannot be investigated using partial directed coherence.

In Fig. 10 b, the results of the renormalized partial directed
coherence are displayed in the same way as for the ordinary par-
tial directed coherence. It is now visible that the influence at the
first higher harmonic frequency from the EMG onto the EEG is
higher than the one at the tremor frequency. The afferent influ-
ence is more pronounced at the double tremor frequency than at
the tremor frequency itself even though both contribute. Interac-
tions at the double tremor frequency seem to be important for
the afferent interactions between cortical signals and the muscle
activity.

The results found for directed influences from the cortex to the
muscles and in the opposite direction are comparable under the
assumption that the signal-to-noise ratio is similar for both pro-
cesses. This is hardly expected in the case of EEG and EMG. While
the EMG represents a signal with very high signal-to-noise ratio
the EEG is expected to be contaminated with a lot of noise. Thus,
we can only state that there is influence from the cortex onto the
muscles.

In summary, since causal influences from the EEG to the corre-
sponding contralateral EMG are present, participation of the motor
cortex in tremor generation is strongly indicated. Moreover, there
is also a significant partial directed coherence from the EMG to
the contralateral EEG at the tremor frequency. This corresponds

Schelter B, Timmer J, Eichler M., J. Neuro. Methods 2009
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A more general approach is to transform the non-linear 
system to a linear representation and apply the linear 
model there. 

e.g. local-linearization, kernel methods, etc. 

Nonlinear extensions of Kalman filtering provide efficient 
ways to model the time-evolving states and parameters 
of nonlinear processes 

(Dual) Extended Kalman Filtering

Nonlinear Modeling

Time Update   
(“Predict”)

Measurement Update 
(“Correct”)

Linearize about the 
current state est.

•  Linearize about the current state (first-
order Taylor approximation). 
•  Apply the Kalman Filter update rules 
using the linearized model 
•Apply Granger-Geweke Causality to the 
linearized coefficient matricesInitialize

Tim Mullen
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Linear Kalman Filter:     est_fitMVARKalman.m 

Nonlinear Kalman Filter:  est_fitMVAR_DEKF.m

Kalman Filtering in SIFT Tim Mullen
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Different ways to do statistics in SIFT 

Phase Randomization 

Bootstrapping 

Analytic Tests

Statistics

C(i,j) is the measured information flow from process j --> i.  
Cnull is the expected measured information flow when there is no true information flow. 
Cbase is the expected information flow in some baseline period.

Tim Mullen
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Statistics

Hnull : Cij = 0         Hbase: Cij = Cbaseline             HAB: CAij = CBij

Statistical Approach Test Parametric Nonparam.

Asymptotic analytic estimates of confidence 
intervals.  
    Applies to: PDC, nPDC, DTF, nDTF, rPDC

Hnull, 
Hbase, 
HAB

☑

Theiler phase randomization  
 Applies to: all Hnull ☑

Bootstrap, Jacknife, Cross-Validation 
Applies to: all

HAB, 
Hbase

☑

Confidence intervals using Bayesian smoothing 
splines 

Applies to: all

Hbase, 
HAB

☑ ☑

Tim Mullen



In
tro

Th
eo

ry
SI

FT
Ap

ps
To

-D
o

Fi
n

Bootstrap Statistics

sample = X1, ..., Xn 
for k=1:R (number of bootstrap resamples/iterations) 

resample n observations (trials) with replacement X* = {X*1, .... X*n} 
compute estimator Ek (fit model, obtain connectivity) based on X* 
repeat 

with R large enough PE = {E1, ..., ER} provides a good approximation to the true distribution 
of the estimator (connectivity, power, etc) 

Tim Mullen
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Bootstrap Statistics Tim Mullen
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Bootstrap Statistics

2.5% 97.5% 

bootstrap

sorted values 
(cdf)

thresholds 
(ci)

Tim Mullen
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Bootstrap Differences

a6 
a5 
a7 

a2 a4 

a3 
a1 

b3 
b2 

b4 b6 

b1 

b5 

analyze 

analyze 

difference Dorg 

Suppose we have two conditions  
A = {a1,...a7} 
B = {b1,...,b6} 
We want to estimate the distributions of connectivity estimator 
applied to A and B separately, as well as the difference 
distribution (for testing H0: A=B)

A

B

CA

CB

Tim Mullen
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Bootstrap Differences

a3 
a4 
a7 

a2 a4 

a3 
a2 

b3 
b2 

b4 b5 

b3 

b5 

analyze 

analyze 

difference D1 

For k=1:R  (number of bootstrap iterations) 
Resample with replacement from both groups to get Ak and Bk 
Fit models and obtain connectivity CAk, CBk 
Compute difference Dk = CAk-CBk 

Repeat

A1

B1

CA1

CB1

Tim Mullen
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Bootstrap Differences

a7 
a5 
a7 

a2 a5 

a3 
a2 

b3 
b2 

b6 b6 

b1 

b6 

analyze 

analyze 

difference D2 

For k=1:R  (number of bootstrap iterations) 
Resample with replacement from both groups to get Ak and Bk 
Fit models and obtain connectivity CAk, CBk 
Compute difference Dk = CAk-CBk 

Repeat

A2

B2

CA2

CB2

Tim Mullen
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Difference distribution can take any shape 

The procedure above also provides estimates of the individual 
distributions of CA and CB yielding confidence intervals for H1

Bootstrap Statistics

2.5% 97.5% 

Signif. value 

Non signif. value 

2.5% 97.5% 2.5% 97.5% 

0

The procedure yields a distribution  

If 0 lies in the right (or left) tail of this “difference distribution”, 
then we reject the null hypothesis that A=B at the chosen 
confidence level (below: alpha=0.05 for a two-sided test)

non. signif. diff.

signif. diff.
0

PD = {D1, .... DR}

PD

Tim Mullen
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Phase Randomization Procedure (Theiler, 1992) 

Method for testing whether there is non-zero 
information flow (Hnull)

Phase-Randomization

FFT

FFT θ

A

Extract (random) phase

Extract signal amplitude

iFFT

Phase-randomized  
data

Random data

Original data

combine

θ
A

Tim Mullen
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Phase-Randomization

2.5% 97.5% 

Signif. value 

Non signif. value 

Pnull

Start with an n-trial sample:  X = {X1, ..., Xn} 
for k=1:R  (number of resamples) 

randomize phases for all trials 
compute connectivity estimate Ck 
repeat 

With B large enough the B estimates provide a good approximation of the null 
distribution of the connectivity estimator 
Compare connectivity CX from original  (non-randomized) samples X to quantiles of 
Pnull = {C1, ..., CR}

CX

CX

Tim Mullen



Issue 2 is exacerbated in connectivity analysis due to the combinatorial 
explosion of variables associated with a given source

In many cases of source analysis involving focal/point sources 
(e.g. BSS + dipole fitting, sparse patch-based estimation) we 
encounter two key problems w.r.t. multi-subject inference: 

1. Identification/Co-registration 

2. Missing Data

Multi-Subject InferenceIn
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S1

Sn

Group

...Conventional approaches utilizing 
disjoint clustering do not suitably 
address Issue 2 and generally 
lack means for rigorously 
quantifying statistical uncertainty 
in addressing Issue 1 

?

Tim Mullen



Bayesian Hierarchical Model
Perform multi-subject (second-level) inference via hierarchical 
(mixture) model, approximating the posterior distribution of source 
locations and connectivity surfaces.
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!"#$%&'()

!

!"#$%#

&'($)*$+G = {S ,B}

P(Z1 |G) P(ZN |G)

Z1 ZN

S1 B1 SN BN

P(S1 | Z1) P(B1 | Z1) P(SN | ZN ) P(BN | ZN )

Advantages: 

Handles multivariate measures such as 
connectivity 

Yields posterior distributions allowing 
robust statistics and increased range of 
hypothesis testing (incl. analysis of 
individual variability) 

Hierarchical structure can be adapted to 
obtain conditional probability distribution 
w.r.t. other metrics (ERSP, genetics, 
morphometry, behavior, etc)

Tim Mullen

See:  Mullen, T. “The Dynamic Brain: Modeling Neural Dynamics and Interactions 
From Human Electrophysiological Recordings” Chapter 3.



Subject	1

…

Latent

ObservedG = {S ,B}

P(Z1 |G) P(ZN |G)

Z1 ZN

S1 B1 SN BN

P(S1 | Z1) P(B1 | Z1) P(SN | ZN ) P(BN | ZN )
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MVAR

Conn

B-spline

 ! Y(t) = A(k )
k=1

p∑ (t)Y(t − k)+E(t)

C( f ,t) = q(A(k ) (t),E(t))

C( f ,t) = g( f ,t,b)+η( f ,t)

B = E{b}
Bayesian FPCA Smoothing (Parameterization)

Y(t)

Source	
LocalizaFon

S ∈{x, y, z}

Source	
SeparaFon

Group-Level Network

Indicator variables 
assigning subject-
level sources to 

group-level clusters

Observed Data

GeneraFve		
Model

P(G,Z | {S,B})
Goal:

Tim Mullen
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Target Distribution    P(G,Z |D)

D = {{Si},{Bi},{Σ s},{σ b
2}}

!"#$%&'()

!

!"#$%#

&'($)*$+G = {S ,B}

P(Z1 |G) P(ZN |G)

Z1 ZN

S1 B1 SN BN

P(S1 | Z1) P(B1 | Z1) P(SN | ZN ) P(BN | ZN )

G = {S ,B,Σ s ,σ b
2}

P(G* | Z *,D)∝ P(D | Z *,G*)P(G*)
P(Z * |G*,D)∝ P(D | Z *,G*)P(Z *)

1) Initialize G*, Z* from initial clustering (e.g. k-means) solution 

3) Sample Z* from posterior 
2) Sample G* from posterior

4) Repeat (2-3) many times: P(G*,Z*|D) → P(G,Z|D)

Gibbs Sampling Scheme:

P(Si | Zi ,G) = N(sij | sk ,Σ s,k )⎡⎣ ⎤⎦
zijk

k=1

M

∏
j=1

Mi

∏
P(Bi | Zi ,G) = [

k2=1

M

∏
k1=1

M

∏
j2=1

Mi

∏
j 1=1

Mi

∏ N(bij1 j2 | bk1k2 ,σ b ,k1k2
2 I )] zij1k1zij2k2Li

ke
lih

oo
d
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MV-HBL

Est. 95% CIEst = True (p < 0.05)

Sim: 10 Subjects, 30% missing dipoles
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Figure 3.7 Ground truth (right) and MV-HBL estimated (left) cluster centroids and 
covariance matrices following application of MV-HBL. Source locations for all 
subjects are superimposed and color-coded by ground truth cluster membership. 
Simulation dataset is the same as in preceding figures (10% missing sources). Bottom 
panel plots markers indicating cluster centroids for ground truth (G), MV-HBL (X), 
and AP initial clustering (I). Note that MV-HBL centroids were consistently closer to 
(and never further from) ground truth than for AP clustering.   
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Figure 3.4 MV-HBL performance metrics for varying amounts of missing dipoles and 
connectivity edges. (Top) Proportion of non-zero connectivity estimates for which the 
estimated 95% credible interval contained ground truth connectivity and did not 
contain zero. (Middle) Area under the ROC curve for correctly detecting 
presence/absence of connectivity. Non-zero connectivity is indicated if the lower edge 
of the 95% credible interval about the posterior mean of estimated connectivity is 
greater than zero. Horizontal dashed line indicates chance detection level (AUC=0.5). 
(Bottom) mean Euclidean distance (mm) between spatial locations of Ground Truth 
centroids and those estimated by MV-HBL and AP clustering, with the mean taken 
over all centroids. Note that, for up to 50% missing sources, MV-HBL consistently 
yielded a smaller average localization error than AP.   

Estimated 95% CI (gray) with  
Ground Truth Superimposed (white)

Mullen, T., 2014 “The Dynamic Brain”; Mullen & Thompson, in prep
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A Bayesian Spatiotemporal Model for Multi-Subject 
EEG Source Dynamics and Effective Connectivity!

Wesley Thompson1,2*, Tim Mullen1,3, !
Julie Onton1, Scott Makeig1!

1 Swartz Center for Computational Neuroscience/INC, 2 Dept. of Psychiatry, 3 Dept. of Cognitive Science, University of California, San Diego!

EEG has millisecond temporal resolution, necessary for analysis of transient cortical dynamics. However, the 
poor spatial resolution of scalp EEG combined with the confounding effects of volume conduction and non-brain 
artifacts complicates interpretation of neural dynamics when examined at the level of scalp electrodes. Accurate 
localization of sources of EEG activity is a difficult, ill-posed problem. One approach is to apply Independent 
Component Analysis (ICA) to scalp EEG recordings to obtain time courses and scalp maps of maximally-
independent sources of EEG activity with projections resembling single or dual symmetric equivalent dipoles. 
These sources can then be localized using appropriate forward and inverse models, while adaptive vector 
autoregressive models may be fit to the source time series to model transient information flow. Applied to 
different subjects, this typically results in varying numbers and locations of source dipoles across subjects which 
complicates efforts to obtain robust group-level statistics. Here we develop a Bayesian spatiotemporal model for 
multi-subject source-localized EEG which provides group inferences on the spatial locations and causal 
relationships among localized sources. Each subject's localized sources are modeled as arising from a mixture 
distribution of spatial coordinates and time-varying multivariate granger causality. Model inference is obtained via 
a Markov Chain Monte Carlo algorithm. This approach can be generalized to other non-ICA approaches for 
separation and localization of dipolar sources, such as beamforming. The utility of this method is initially 
demonstrated by application to a large multi-subject EEG dataset, where we examine network dynamics 
underlying error commission in an ERN-producing task. 

Theory!

Results!

MULTI-SUBJECT INFERENCE!
!
Group-level inferences of multi-subject source-localized (dipolar) independent components (ICs) can be 
problematic. Two or more subjects performing the same task may end up with differing numbers of retained IC 
sources and different source locations. Thus, unlike scalp channel recordings or region-of-interest (ROI) source 
analysis there is an inherent uncertainty in matching IC sources across subjects, and therefore in obtaining 
reliable group inferences regarding functional connectivity between these sources. While various disjoint 
clustering methods can be used to identify similar sources across subjects, these methods often suffer from poor 
statistical properties as the number of missing variables increases. It is thus preferable to employ a method which 
propagates uncertainty regarding source identification to inferences regarding group-level effective connectivity 
(EC) estimates.!
 !
MIXTURE MODEL!
!
Let the Mi x T matrix of IC time series for the ith subject be denoted by Yi and let the estimated Mi corresponding 
dipole spatial locations be denoted by Si. Let M be the total number of group-level sources (e.g. clusters or ROIs) 
under consideration for all N subjects (currently M is chosen by a preliminary a priori decision, though in the future 
we will determine this automatically within the inferential framework as in [1]).!
!
The data are modeled as coming from a mixture distribution [2]. To implement this mixture model, for each subject 
we augment the observed data {Yi, Si} with an Mi x M matrix of latent indicators Zi. The jth row of Zi consists of 
zeros with exactly one entry equal to one in column k: this indicates that the jth source for subject i corresponds to 
the kth cluster.!
!
Conditional on the Zi we assume!
!

  Pr( Si  | Zi ) = !j=1:Mi!k=1:M [ N(Sij | µk, !k) ]zijk         (1) 
 !

In addition to the spatial information, we want to incorporate information regarding the dynamics of the source-
localized times series Yi into the mixture model. Suppose we summarize the EC information contained in the 
source time series Yi via time-varying EC estimates Fi(t). We include this information in the mixture model via!
!

  Pr( Fi  | Zi ) = !j=1:Mi!k=1:M [ Pr(Fi | "k) ]zijk                 (2) 

!
where  βk are parameters which determine the distribution of Fi conditional on Zi.   !
!
In the following example, we obtain Fi(t) by computing the graph-normalized Direct Directed Transfer Function 
(dDTF, [3]) – a frequency-domain measure of multivariate Granger-causal relationships – for each pair of IC 
sources. We obtain time-varying dDTF estimates using a sliding-window vector autoregressive (VAR) model with 
a 500 ms window length and 30 ms step size producing 80 time points. The dDTF is integrated over the theta 
band (3-7 Hz) and modeled as a smooth function of time via a penalized B-spline; the βk are the fixed effects 
group level of the coefficients bi of the spline basis functions.!
!

 Pr( bi  | Zi ) = N(bi | "k, "2
bkI)                  (3) 

!
BAYESIAN INFERENCE!
!
We place Dirichlet(αi) prior distributions on the allowable patterns of the latent indicator matrices Zi. Along with the 
augmented likelihood derived from Eq. (1)-(3), we complete the Bayesian specification of the model by placing 
Inverse Wishart (IW) prior distributions on the Σk , Inverse Gamma distributions on the σ2

bk , and diffuse normal 
distributions on the  μk and βk. !
!
Model inference proceeds via a Markov Chain Monte Carlo (MCMC) algorithm. Full conditional posterior 
distributions are standard. In particular, the allowable patterns of the indicator matrices Zi are multinomial. 
Allowable patterns have exactly one nonzero element in each row and at most one non-zero element in each 
column. Since the number of allowable patterns is too large to sample from directly (in general Mi ! / (M-Mi)!), we 
sample a subset of the allowable patterns at each iteration of the MCMC algorithm as follows:!
!

(i)  For subject i, randomly sample two distinct row indices j1 and j2 between 1 and Mi. !
(ii)  Keeping all other indices fixed, compute the conditional posterior over all allowable patterns permuting the 

column indices k1 and k2 for which the j1 and j2 rows are nonzero. !
(iii)  Sample Zi from the conditional distribution keeping other rows fixed.!

Sampling of all other parameters conditional on the latent data Zi  is straightforward. !
!
!
!
!
!
 !
 !
!
!

We have demonstrated a preliminary application of a novel Bayesian spatiotemporal model for obtaining group-
level inferences and confidence intervals on expected dipolar source locations and dynamics (e.g. connectivity). 
In this application we demonstrated the emergence of statistically significant causal relationships between dorsal 
MCC and several cortical and cingulate structures during error commission. This is commensurate with theoretical 
and experimental evidence for a significant causal role of MCC in error processing [6]. We realize this model 
represents a first step which can be further improved upon. We are currently working on expanding this to the 2D 
time-frequency plane using a tensor product of 1D splines (allowing different degrees of smoothing across time or 
frequency). We also plan to use a Dirichlet hyperprior to automatically select the optimal number of clusters as in 
[1]. The method also can be adapted to gracefully handle outliers, which should help improve the confidence 
interval estimates from those shown above. Finally, while in this example prior distribution parameters were 
determined using mean and covariance information from an initial k-means clustering step, it is straightforward to 
incorporate biologically-plausible priors for source locations and dispersion, which can be determined via existing 
numerical simulation data as well as task-specific prior expectations. The method can also be extended naturally 
to modeling statistical interactions between multiple experimental conditions via hierarchical modeling, which is a 
current avenue of research for us. !
!
Once fully developed, we expect this approach will have a significant impact on the ability to flexibly obtain robust 
group-level inferences and statistics on the spatiotemporal dynamics and/or interactions of point-process (dipolar) 
sources. The approach may also have utility when used with distributed source localization algorithms and we are 
currently exploring the use of source spatial distributions obtained from Sparse Bayesian Learning.!
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Color-coded clustering of all 246 dipoles

128-channel (256 Hz) EEG data were collected from 24 subjects 
performing a visual letter two-back task with auditory feedback [4]. Trials 
were segregated based on response type (Incorrect vs. Correct). 
Following zero-phase FIR high-pass filtering (1 Hz), response-locked 
datasets were subjected to Infomax Independent Component Analysis 
(ICA). ICA is effective at separating source components that are maximally 
instantaneously independent, which can be further analyzed for transient 
dependencies [5]. A single (or dual symmetric) equivalent dipole model 
was then fit to each independent component (IC) using EEGLABʼs 
DIPFIT2 function. We rejected ICs corresponding to artifacts such as eye 
blinks and muscle activity, and those with a poor dipole fit (> 15% r.v., or 
lying outside brain volume).!

Data!

Below: All retained dipolar sources from 
all subjects color-coded by cluster 
membership (k-means clustering). !
R i g h t : F r a m e s f r o m a C a u s a l 
BrainMovie3D showing group inferences 
on source locations and effective 
connectivity (integrated over 3-7 Hz theta 
band) as obtained from Bayesian mixture 
model. K-means cluster centroids and 
spatial dispersion used as initial values 
and priors for MCMC algorithm. A cluster 
is retained if more than 33% of subjects 
have greater than 50% probability of 
cluster membership. We retain only 
connectivity that deviates significantly 
from [-750 -500 ms] baseline (p<0.01).!

Below: Time-varying theta-band (3-7 Hz) dDTF group-level inferences with 99% confidence intervals. Mean source 
locations with Talairach coordinates and anatomical designations (Talairach Daemon) are shown on the marginals. 
Translucent regions indicate time intervals that deviate significantly from the [-750 to -500] ms baseline (p<0.01, 
uncorrected). Note the significant outflow from a source in the dorsal middle cingulate cortex (BA24/MCC) – likely the 
rostral cingulate zone (RCZ) – immediately before, during, and following responses made in error. All connectivity 
analysis and visualizations are produced using the EEGLAB-compatible Source Information Flow Toolbox [7].!
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EEG has millisecond temporal resolution, necessary for analysis of transient cortical dynamics. However, the 
poor spatial resolution of scalp EEG combined with the confounding effects of volume conduction and non-brain 
artifacts complicates interpretation of neural dynamics when examined at the level of scalp electrodes. Accurate 
localization of sources of EEG activity is a difficult, ill-posed problem. One approach is to apply Independent 
Component Analysis (ICA) to scalp EEG recordings to obtain time courses and scalp maps of maximally-
independent sources of EEG activity with projections resembling single or dual symmetric equivalent dipoles. 
These sources can then be localized using appropriate forward and inverse models, while adaptive vector 
autoregressive models may be fit to the source time series to model transient information flow. Applied to 
different subjects, this typically results in varying numbers and locations of source dipoles across subjects which 
complicates efforts to obtain robust group-level statistics. Here we develop a Bayesian spatiotemporal model for 
multi-subject source-localized EEG which provides group inferences on the spatial locations and causal 
relationships among localized sources. Each subject's localized sources are modeled as arising from a mixture 
distribution of spatial coordinates and time-varying multivariate granger causality. Model inference is obtained via 
a Markov Chain Monte Carlo algorithm. This approach can be generalized to other non-ICA approaches for 
separation and localization of dipolar sources, such as beamforming. The utility of this method is initially 
demonstrated by application to a large multi-subject EEG dataset, where we examine network dynamics 
underlying error commission in an ERN-producing task. 

Theory!

Results!

MULTI-SUBJECT INFERENCE!
!
Group-level inferences of multi-subject source-localized (dipolar) independent components (ICs) can be 
problematic. Two or more subjects performing the same task may end up with differing numbers of retained IC 
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(EC) estimates.!
 !
MIXTURE MODEL!
!
Let the Mi x T matrix of IC time series for the ith subject be denoted by Yi and let the estimated Mi corresponding 
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!
The data are modeled as coming from a mixture distribution [2]. To implement this mixture model, for each subject 
we augment the observed data {Yi, Si} with an Mi x M matrix of latent indicators Zi. The jth row of Zi consists of 
zeros with exactly one entry equal to one in column k: this indicates that the jth source for subject i corresponds to 
the kth cluster.!
!
Conditional on the Zi we assume!
!

  Pr( Si  | Zi ) = !j=1:Mi!k=1:M [ N(Sij | µk, !k) ]zijk         (1) 
 !

In addition to the spatial information, we want to incorporate information regarding the dynamics of the source-
localized times series Yi into the mixture model. Suppose we summarize the EC information contained in the 
source time series Yi via time-varying EC estimates Fi(t). We include this information in the mixture model via!
!

  Pr( Fi  | Zi ) = !j=1:Mi!k=1:M [ Pr(Fi | "k) ]zijk                 (2) 

!
where  βk are parameters which determine the distribution of Fi conditional on Zi.   !
!
In the following example, we obtain Fi(t) by computing the graph-normalized Direct Directed Transfer Function 
(dDTF, [3]) – a frequency-domain measure of multivariate Granger-causal relationships – for each pair of IC 
sources. We obtain time-varying dDTF estimates using a sliding-window vector autoregressive (VAR) model with 
a 500 ms window length and 30 ms step size producing 80 time points. The dDTF is integrated over the theta 
band (3-7 Hz) and modeled as a smooth function of time via a penalized B-spline; the βk are the fixed effects 
group level of the coefficients bi of the spline basis functions.!
!

 Pr( bi  | Zi ) = N(bi | "k, "2
bkI)                  (3) 

!
BAYESIAN INFERENCE!
!
We place Dirichlet(αi) prior distributions on the allowable patterns of the latent indicator matrices Zi. Along with the 
augmented likelihood derived from Eq. (1)-(3), we complete the Bayesian specification of the model by placing 
Inverse Wishart (IW) prior distributions on the Σk , Inverse Gamma distributions on the σ2

bk , and diffuse normal 
distributions on the  μk and βk. !
!
Model inference proceeds via a Markov Chain Monte Carlo (MCMC) algorithm. Full conditional posterior 
distributions are standard. In particular, the allowable patterns of the indicator matrices Zi are multinomial. 
Allowable patterns have exactly one nonzero element in each row and at most one non-zero element in each 
column. Since the number of allowable patterns is too large to sample from directly (in general Mi ! / (M-Mi)!), we 
sample a subset of the allowable patterns at each iteration of the MCMC algorithm as follows:!
!

(i)  For subject i, randomly sample two distinct row indices j1 and j2 between 1 and Mi. !
(ii)  Keeping all other indices fixed, compute the conditional posterior over all allowable patterns permuting the 

column indices k1 and k2 for which the j1 and j2 rows are nonzero. !
(iii)  Sample Zi from the conditional distribution keeping other rows fixed.!

Sampling of all other parameters conditional on the latent data Zi  is straightforward. !
!
!
!
!
!
 !
 !
!
!

We have demonstrated a preliminary application of a novel Bayesian spatiotemporal model for obtaining group-
level inferences and confidence intervals on expected dipolar source locations and dynamics (e.g. connectivity). 
In this application we demonstrated the emergence of statistically significant causal relationships between dorsal 
MCC and several cortical and cingulate structures during error commission. This is commensurate with theoretical 
and experimental evidence for a significant causal role of MCC in error processing [6]. We realize this model 
represents a first step which can be further improved upon. We are currently working on expanding this to the 2D 
time-frequency plane using a tensor product of 1D splines (allowing different degrees of smoothing across time or 
frequency). We also plan to use a Dirichlet hyperprior to automatically select the optimal number of clusters as in 
[1]. The method also can be adapted to gracefully handle outliers, which should help improve the confidence 
interval estimates from those shown above. Finally, while in this example prior distribution parameters were 
determined using mean and covariance information from an initial k-means clustering step, it is straightforward to 
incorporate biologically-plausible priors for source locations and dispersion, which can be determined via existing 
numerical simulation data as well as task-specific prior expectations. The method can also be extended naturally 
to modeling statistical interactions between multiple experimental conditions via hierarchical modeling, which is a 
current avenue of research for us. !
!
Once fully developed, we expect this approach will have a significant impact on the ability to flexibly obtain robust 
group-level inferences and statistics on the spatiotemporal dynamics and/or interactions of point-process (dipolar) 
sources. The approach may also have utility when used with distributed source localization algorithms and we are 
currently exploring the use of source spatial distributions obtained from Sparse Bayesian Learning.!
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128-channel (256 Hz) EEG data were collected from 24 subjects 
performing a visual letter two-back task with auditory feedback [4]. Trials 
were segregated based on response type (Incorrect vs. Correct). 
Following zero-phase FIR high-pass filtering (1 Hz), response-locked 
datasets were subjected to Infomax Independent Component Analysis 
(ICA). ICA is effective at separating source components that are maximally 
instantaneously independent, which can be further analyzed for transient 
dependencies [5]. A single (or dual symmetric) equivalent dipole model 
was then fit to each independent component (IC) using EEGLABʼs 
DIPFIT2 function. We rejected ICs corresponding to artifacts such as eye 
blinks and muscle activity, and those with a poor dipole fit (> 15% r.v., or 
lying outside brain volume).!
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Below: All retained dipolar sources from 
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membership (k-means clustering). !
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BrainMovie3D showing group inferences 
on source locations and effective 
connectivity (integrated over 3-7 Hz theta 
band) as obtained from Bayesian mixture 
model. K-means cluster centroids and 
spatial dispersion used as initial values 
and priors for MCMC algorithm. A cluster 
is retained if more than 33% of subjects 
have greater than 50% probability of 
cluster membership. We retain only 
connectivity that deviates significantly 
from [-750 -500 ms] baseline (p<0.01).!

Below: Time-varying theta-band (3-7 Hz) dDTF group-level inferences with 99% confidence intervals. Mean source 
locations with Talairach coordinates and anatomical designations (Talairach Daemon) are shown on the marginals. 
Translucent regions indicate time intervals that deviate significantly from the [-750 to -500] ms baseline (p<0.01, 
uncorrected). Note the significant outflow from a source in the dorsal middle cingulate cortex (BA24/MCC) – likely the 
rostral cingulate zone (RCZ) – immediately before, during, and following responses made in error. All connectivity 
analysis and visualizations are produced using the EEGLAB-compatible Source Information Flow Toolbox [7].!
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Conventional Statistics
An alternative approach:  
For each subject… 

1. Perform distributed source localization (possibly after separating a 
subspace of brain components using ICA) 

2. Select M regions of interest (ROIs) e.g. from a standardized anatomical 
atlas (e.g. Desikan-Killiany, Destrieux, etc) and integrate current density 
within each ROI. This yields M source time-series for each subject 

3. Store results in EEG.srcpot 

4. Obtain connectivity estimates for sources using SIFT with the ‘Sources’ 
option set in pre-processing. Resulting [M x M x Nfreq x Ntimes] connectivity 
matrices are stored in EEG.CAT.Conn. 

5. Apply your favorite mass-univariate or multivariate statistical approach (e.g. 
GLM, t-test, (M)ANOVA, etc) to the collection of connectivity estimates from all 
subjects to obtain desired statistics. See LIMO-EEG Toolbox and EEGLAB’s 
statcond(). Beware of multiple comparisons issues! FDR may not be suitable.
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