The Dynamic Brain II: Modeling Neural Dynamics and Interactions from M/EEG

Tim Mullen, PhD

Review

Intro

Fin

Theoretical Foundations I

Functional Connectivity Measures (PLV, PAC, Coherence)

Effective Connectivity Measures and Granger Causality

Scalp versus Source

Adapting to Time-Varying Dynamics

Practicum: Hands-On Walkthrough of SIFT

Outline

SIFT

Apps

Intro

Theoretical Foundations II				
	Model Validation			
	Multivariate vs. Bivariate			
	Imposing Constraints			
	Single-trial Estimation and State-Space Models			
	Statistical Testing			
Prac	ticum: Hands-On Simulation-based training			

To-Do

Review: The VAR model

Intro

Theory

N F

Apps

• The Vector Autoregressive (VAR) model as a basis for dynamical estimation

Model Validation

Theory Intro

SIFT

Apps

To-Do

- If a model is poorly fit to data, then few, if any, inferences can be validly drawn from the model.
- There a number of criteria which we can use to determine whether we have appropriately fit our VAR model. Here are three commonly used categories of tests:
- Whiteness Tests: checking the residuals of the model for serial and cross-correlation
- Consistency Test: testing whether the model generates data with same correlation structure as the real data
- Stability Test: checking the stability/stationarity of the model.

Whiteness Tests

• We can regard the VAR[p] model coefficients $\mathbf{A}^{(k)}$ as a filter which transforms random (white) noise $\mathbf{E}(t)$, into observed, structured data $\mathbf{X}(t)$:

$$\mathbf{X}(t) = f(L)\mathbf{E}(t) , \quad f(L) = \left(I - \sum_{k=1}^{p} A^{(k)} L^{k}\right) , \quad L^{k} Z(t) = Z(t-k)$$

• For coefficient estimates $\hat{\mathbf{A}}^{(k)}$, we can obtain the residuals

$$\hat{\mathbf{E}}(t) = \mathbf{X}(t) - \sum_{k=1}^{p} \hat{\mathbf{A}}^{(k)}(t) \mathbf{X}(t-k)$$

- If we have adequately modeled the data, the residuals should be indistinguishable from a white noise process. Correlation structure in the residuals means there is still correlation structure in the data that has not been explained by the model.
- Checking the whiteness of residuals typically involves testing whether the residual auto- and cross-correlation coefficients up to some desired lag *h* are sufficiently small to ensure that we cannot reject the null hypothesis of white residuals at some desired significance level.

Whiteness Tests

 $\mathbf{E}(t) = N(0, \mathbf{V})$

Intro

Theory

Apps

 $\overline{\text{To-D}}$

 $C_{l} = \left\langle \hat{\mathbf{E}}(t) \hat{\mathbf{E}}'(t-l) \right\rangle$ $R_{l} = D^{-1}C_{l}D^{-1}$ $D = diag\left(\sqrt{diag(C_{0})}\right)$

autocovariance at lag / ...

with correponding autocorrelation R

 $R_h = (R_1, ..., R_h)$ set of autocorrelations up to lag h

We want to test the null hypothesis H_0 : $\mathbf{R}_h = (R_1, \dots, R_h) = 0$ against the alternative: H_1 : $\mathbf{R}_h \neq 0$

Two possible ways to do this:

- Autocorrelation function test
- Portmanteau tests

Whiteness Tests: ACF

Under the null hypothesis that $\hat{\mathbf{E}}(t)$ is Gaussian white noise, we expect approximately 1/20=5% of a.c.f. coefficients to exceed the threshold $\pm 2/\sqrt{\hat{T}}$ This gives us a p-value for rejecting H₀

$$\rho = \frac{\operatorname{count}\left(\left|\mathbf{R}_{h}\right| > 2 / \sqrt{\hat{T}}\right)}{\operatorname{count}\left(\mathbf{R}_{h}\right)} = \frac{\operatorname{count}\left(\left|\mathbf{R}_{h}\right| > 2 / \sqrt{\hat{T}}\right)}{M^{2}(h+1) - M}$$

If p < 0.05 (1-p > .95) then we cannot reject H₀ at the 5% level and we accept that residuals $\hat{\mathbf{E}}(t)$ are white

Intro

Theory

Whiteness Tests: ACF

Problem:

Intro

Theory

SIFT

Apps

To-Do

- Confidence intervals apply to individual coefficients and assume coefficients are asymptotically independent. This may not be the case for multivariate models.
- In small sample conditions (small *T*), this test may cause us to reject the null hypothesis (residuals indicated as non-white) less often than we should for the chosen significance level (Lutkepohl, 2006) -- in other words, we may have a higher false positive rate for accepting that the model fits the data.
- This motivates the use of alternate multivariate tests

Theory

Whiteness Tests: Portmanteau

Table 3. Popular portmanteau tests for whiteness of residuals, implemented in SIFT. Here $\hat{T} = TN$ is the total number of samples used to estimate the covariance

Portmanteau Test	Formula (Test Statistic)	Notes			
Box-Pierce (BPP)	$Q_h \coloneqq \hat{T} \sum_{l=1}^h \operatorname{tr} \left(C_l' C_0^{-1} C_l C_0^{-1} \right)$	The original portmanteau test. Potentially overly- conservative. Poor small- sample properties.			
Ljung-Box (LBP)	$Q_h \coloneqq \hat{T}(\hat{T}+2) \sum_{l=1}^h (\hat{T}-l)^{-1} \operatorname{tr} \left(C_l' C_0^{-1} C_l C_0^{-1} \right)$	Modification of BPP to improve small-sample properties. Potentially inflates the variance of the test statistic. Slightly less conservative than LMP with slightly higher (but nearly identical) statistical power.			
Li-McLeod (LMP)	$Q_h := \hat{T} \sum_{l=1}^{h} \operatorname{tr} \left(C_l' C_0^{-1} C_l C_0^{-1} \right) + \frac{M^2 h(h+1)}{2\hat{T}}$	Further modification of BPP to improve small-sample properties without variance inflation. Slightly more conservative than LBP. Probably the best choice in most conditions.			
Mullen, 2010 (SIFT Manual)					

These test statistics are asymptotically χ^2 distributed with $M^2(h-p)$ d.f.

Fin

SIFT

Consistency Tests

- A well-fit model should be able to generate data that has the same correlation structure as the original data.
- One test of this is *percent consistency* (Ding et al, 2000)
- Here we generate simulated data from our fitted model (feeding it white noise) and calculate auto- and cross-correlations up to a fixed lag for both simulated data (**R**_s) and real data (**R**_r).
 - The percent consistency (PC) is then given by

$$PC = \left(1 - \frac{\left\|\left\|\mathbf{R}_{s} - \mathbf{R}_{r}\right\|_{2}}{\left\|\left\|\mathbf{R}_{r}\right\|_{2}}\right) \times 100$$

 A PC value near 100% indicates that the model is able to generate data that has a nearly identical correlation structure as the original data. A PC value near 0% indicates a complete failure to model the data.

Stability

- All eigenvalues of the system matrix are ≤ 1
- A stable process will not "blow up" (diverge to infinity)
- A stable model is always a stationary model (however, the converse is not necessarily true). If a stable model adequately fits the data (white residuals), then the data is likewise stationary

Intro

Theory

- Exclusion of processes that may exert causal influence on modeled processes increases the risk of causal mis-identification. (c.f. Pearl, *Causality: Models, Inference and Reasoning,* 2009)
 - Multivariate approaches are generally superior to bivariate approaches
 - allow detection of direct versus indirect dependence, reducing false positives
 - allow us to partially control for
 exogenous/unobserved causes (e.g. Guo, et al., J. Neuro. Methods, 2008)

 In the absence of a priori knowledge concerning causal structure, it is advisable to include as many processes as possible in a causal model (within data/modeling limitations)

						by removing the i ^m row and column of <i>S(f)</i> and returning the determinant.			R is the $[(Mp)^2 \times (Mp)^2]$ covariance matrix of the VAR[n] process	
\bigcirc		Estimator	Formula		Estimator	Formula		Estimator	Formula	
iry Intro	Spectral M.	Spectral Density Matrix	$S(f) = X(f)X(f)^{*}$ $= H(f)\Sigma H(f)^{*}$	Normalized Partial Directed Coherence (PDC)	$\pi_{ij}(f) = \frac{A_{ij}(f)}{\sqrt{\sum_{k=1}^{M} A_{kj}(f) ^2}}$ $0 \le \pi_{ij}(f) ^2 \le 1$ $\sum_{j=1}^{M} \pi_{ij}(f) ^2 = 1$	sures	Normalized Directed Transfer Function (DTF) $ \pi_{ij}(f) ^2$	$\gamma_{ij}(f) = \frac{H_{ij}(f)}{\sqrt{\sum_{k=1}^{M} H_{ik}(f) ^2}}$ $0 \le \gamma_{ij}(f) ^2 \le 1$ $\sum_{k=1}^{M} I_{kk}(f) ^2 \le 1$		
Theo	Ires		$C_{ij}(f) = \frac{S_{ij}(f)}{\sqrt{S_{ij}(f)S_{ij}(f)}}$	Directed Cohe	Computing d	$\bar{\pi}_{ij}(f) = \frac{\frac{1}{\sum_{i}} A_{ij}(f)}{\sqrt{\sum_{k=1}^{M} \frac{1}{\sum_{i}^{2}} A_{ki}(f) ^{2}}}$	Function Mea		$\sum_{j=1} \gamma_{ij}(J) = 1$	
	Coherence Measu	Coherency Operation Coherency	$\sqrt{S_{ii}(f)S_{jj}(f)}$ $0 \le \left C_{ij}(f)\right ^2 \le 1$	Partial	Generalized PDC (GPDC)	$\sqrt{-n} \sum_{i=1}^{M} \sum_{j=1}^{M} \overline{\pi}_{ij}(f) ^2 \le 1$ $\sum_{j=1}^{M} \overline{\pi}_{ij}(f) ^2 = 1$	irected Transfer	Full- Frequency DTF (ffDTF)	$\eta_{ij}^{2}(f) = \frac{\left H_{ij}(f)\right ^{2}}{\sum_{f} \sum_{k=1}^{M} \left H_{ik}(f)\right ^{2}}$	
S SO		Imaginary Coherence (iCoh)	$iCoh_{ij}(f) = \operatorname{Im}(C_{ij}(f))$	Renormal PDC (rPD0		$\lambda_{ij}(f) = Q_{ij}(f) * V_{ij}(f)^{-1}Q_{ij}(f)$ where $Q_{ij}(f) = \begin{pmatrix} \operatorname{Re}[A_{ij}(f)]\\ \operatorname{Im}[A_{ij}(f)] \end{pmatrix} \text{ and }$	Q	Direct DTF (dDTF)	22 $\delta_{ij}^2(f) = \eta_{ij}^2(f) P_{ij}^2(f)$	
o-Do App		Partial Coherence (pCoh)	$P_{ij}(f) = \frac{\hat{S}_{ij}(f)}{\sqrt{\hat{S}_{ii}(f)\hat{S}_{jj}(f)}}$ $\hat{S}(f) = S(f)^{-1}$ $0 \le P_{ij}(f) ^2 \le 1$		Re PD	Renormalized PDC (rPDC)	Renormalized PDC (rPDC)	$V_{ij}(f)_{2\overline{1}} \sum_{k,l=1}^{p} R_{jj}^{-1}(k,l) \Sigma_{ii} Z(2\pi f,k,l)$ $Z(\omega,k,l)$ $= \begin{pmatrix} \cos(\omega k) \cos(\omega l) & \cos(\omega k) \sin(\omega l) \\ \sin(\omega k) \cos(\omega l) & \sin(\omega k) \sin(\omega l) \end{pmatrix}$ $R \text{ is the } [(Mp)^{2} \times (Mp)^{2}] \text{ covariance matrix of the VAR}[p] \text{ process}$ $(L \ddot{u} t k e pohl, 2006)$		$\mathbf{X}(t) = \sum_{j=1}^{n} \mathbf{A}(f,t) = -\sum_{j=1}^{n} \mathbf{X}(f,t) = \mathbf{A}(f)$ $\mathbf{X}(f,t) = \mathbf{A}(f)$
Fin		Multiple Coherence (mCoh) $G_i(f) = \sqrt{1 - \frac{\det(S(f))}{S_{ii}(f)\mathbf{M}_{ii}(f)}}$ $\mathbf{M}_{ii}(f)$ is the minor of <i>S</i> (<i>f</i>) obtained by removing the i th row and column of <i>S</i> (<i>f</i>) and returning the determinant.		n Meas Granger-Geweke	Granger- Geweke Normalized Pirected Transfer Function (DTF)	$\begin{split} & \mathcal{K}_{ij}(f) \equiv \frac{\left(\sum_{ij} H_{ij}(2f) \sum_{ij}\right) \left H_{ij}(f) \right ^{2}}{\sqrt{\sum_{k=1}^{M} \left H_{ik}(f) \right ^{2}}} \\ & 0 \leq \left \gamma_{ij}(f) \right ^{2} \leq 1 \\ & \sum_{j=1}^{M} \left \gamma_{ij}(f) \right ^{2} = 1 \\ & \text{ditional details, see SIFT I} \end{split}$	(Kaminski) and Blinowska, 1991; Kaminski et al. 2001) A(f) System Matrix Complex measure which can be interpreted a Oise to ovariance Matrix information flow from j to i normalized by the total amount of information inflow to i . Generation inflow			

SIFT

Multivariate Models: Limitations

- However, multivariate methods come with a cost:
 - More parameters + limited data = higher risk of overfitting or worse yet....
 - ...the problem becomes *ill-posed* or *under-determined*.
 There are insufficient observations to uniquely determine a solution to the system of equations defining our model.

SIFT

Apps

To-Do

Multivariate Models: Limitations

How many samples do we need?

- N = number of samples required
- M = number of variables/sources
- T = number of trials/realizations
- > p = model order
- We have M²p model coefficients to estimate. So our ordinary leastsquares solution requires a *minimum* of M²p samples.

$N \ge M^2 p$

- Back-of-envelope: M=20, p=10, T=1 We need 20²x10 = 4000 samples
 -- 20 second epoch at sampling rate of 200Hz!
 - Ensemble aggregation (T > 1)?
- M=20, p=10, T=50: 4000/50 samples/trial \rightarrow 20/50 = 0.4 sec epoch

Multivariate Models: Constraints

Solutions?

Make assumptions (impose constraints)

We want to *a priori* restrict the range of allowable values for our parameters -- transforming the problem from one with infinite number of solutions in the original parameter space to one with a unique ("best") solution in the new parameter space

In a Bayesian context, this corresponds to making assumptions about the *prior distribution* of the parameters (Gaussian, Laplacian, ...)

Theory

Apps

Multivariate Models: Constraints

Unconstrained (all values equally probable). e.g. Uniform distribution

M>2

Smoothness constraints

prior

- large differences in values unlikely
- small (non-zero) values most probable. e.g. Normal (gaussian) prior.

Sparsity constraint many values small or exactly zero with occasional large values e.g. Laplacian prior

Intro

Smoothness Constraints

Standard least-squares solution

prediction error

$$A(t) = \arg\min_{\hat{A}} \left(\left\| Y - Z\tilde{A} \right\|_{2}^{2} \right)$$

 $\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)}(t) \mathbf{X}(t-k) + \mathbf{E}(t)$ $\tilde{A} = [A^{(1)}(t), \dots, A^{(p)}(t)]^{T}$ $X_{k} = [X(p+1-k), \dots, X(N-k)]^{T}$ $Z = [X_{1}, \dots, X_{p}]$ $Y = X_{0}$

Rewrite VAR[p] as VAR[1]

Smoothness Constraints

Ridge Regression
 (Tikhonov Regularization, Minimum-(L₂)-Norm

Equivalent to assuming a Gaussian prior with variance determined by λ

 Large values of A are penalized. The range of allowable values for coefficients is restricted, reducing the *effective* degrees of freedom and allowing us to estimate VAR coefficients with fewer observations.

Sparsity Constraints

Relatively low probability of a direct connection between any two anatomical functional units. This probability decreases with distance

It's a small world...

functional network

Sporns and Honey, PNAS, 2006

Sporns, Frontiers in Computational Neuroscience, 2011

Structural Connectivity

SIFT

Apps

To-Do

Fin

Sparsity Constraints

Standard least-squares solution

prediction error

$$f(t) = \arg \min_{\hat{A}} \left(\left\| \left| Y - Z\tilde{A} \right\|_{2}^{2} \right)$$

$$\mathbf{X}(t) = \sum_{k=1}^{p} \mathbf{A}^{(k)}(t) \mathbf{X}(t-k) + \mathbf{E}(t)$$
$$\tilde{A} = [A^{(1)}(t), \dots, A^{(p)}(t)]^{T}$$
$$X_{k} = [X(p+1-k), \dots, X(N-k)]^{T}$$
$$Z = [X_{1}, \dots, X_{p}]$$
$$Y = X_{0}$$

Rewrite VAR[p] as VAR[1]

- Equivalent to assuming a Gaussian prior over coefficients within groups and a Laplacian prior over the groups themselves
- Entire groups of coefficients are jointly pruned (set *exactly* to zero) while remaining groups assumed to have a Gaussian prior (ridge penalty).
 Allows us to estimate VAR coefficients with fewer observations.

SIFT

Sparsity Constraints

The process of acquiring and reconstructing a quantity that is underdetermined but known to be sparse (compressible) in some basis

How many samples do we need?

- N = number of samples required
- M = number of variables/sources, p = model order

 $N = O(K \log(M^2 p / K)) \approx O(\log M^2 p) \leq c \log(M^2 p)$

 $N \ge M^2 p$ (unconstrained)

M>2

Constraints Improve Estimation (if prior assumptions are correct)

- Significant improvements using smoothness or sparsity assumptions
- (e.g. Haufe et al, 2009, Valdez-Sosa et al, 2009)

Intro

Theory

Apps

 $[0-D_0]$

Figure 2: Average ROC curves of Granger Causality (red), Ridge Regression (green), Lasso (blue) and Group Lasso (black) in three different noise conditions and for two different model orders. Haufe, 2009

Adapting to Non-Stationarity

- Many ways to do adaptive VAR estimation
- Two popular approaches (adopted in SIFT):
 - Segmentation-based adaptive VAR estimation (assumes local stationarity)
 - State-Space Modeling

Intro

Theory

SIF

Apps

[0-D0]

Kalman Filtering and extensions

+

Discrete State-Space Model (SSM) for Electrophysiological Dynamics

observation equation (e.g. noisy sensor observations) $y(t) = Hs(t) + \epsilon(t)$

known deterministic inputs u(t)

Intro

Theory

Apps

state transition equation (e.g. latent source and/or coupling dynamics) $s(t) = f(s(t^-), u(t^-), \theta(t)) + v(t)$

Linear VAR[1] $> s(t) = \mathbf{A}(t)s(t-1) + v(t)$

- Dynamical system may be linear or nonlinear, dense or sparse, non-stationary, highdimensional, partially-observed, and stochastic
- Subsumes discrete Delay Differential Equation (DDE) and Vector Autoregressive (VAR) methods and closely related to Dynamic Causal Modeling (DCM)

Kalman Filtering

optimal estimator (in terms of minimum variance) for the state of a linear dynamical system

Apps

[0-D]

Intro

Kalman Filtering

Intro

Time (sec)

Nonlinear Modeling

- Interactions in brain are generally non-linear
- Purely linear models (e.g. high-order VAR models) can sometimes provide an approximation sufficient for correct detection of directed dependencies

ntro

Theory

DS

Fig. 8. Coupled van-der-Pol oscillators. Renormalized partial directed coherence for various coupling strengths ϵ_{12} . The dashed horizontal line marks the 5% significance level.

Schelter B, Timmer J, Eichler M., J. Neuro. Methods 2009

Fig. 9. Results of the renormalized partial directed coherence analysis for a network coupled Rössler oscillators. The coupling is bidirectional between oscillators 1 and 2 and unidirectional from oscillator 2 to oscillator 4 and from oscillator 4 to oscillator 3. The dashed horizontal line marks the 5% significance level, while the gray area represents the 95% confidence intervals.

Nonlinear Modeling

- A more general approach is to transform the non-linear system to a linear representation and apply the linear model there.
- e.g. local-linearization, kernel methods, etc.
- Nonlinear extensions of Kalman filtering provide efficient ways to model the time-evolving states and parameters of nonlinear processes

(Dual) Extended Kalman Filtering

Intro

Theory

Apps

- Linearize about the current state (firstorder Taylor approximation).
- Apply the Kalman Filter update rules using the linearized model
- Apply Granger-Geweke Causality to the linearized coefficient matrices

- Linear Kalman Filter: est_fitMVARKalman.m
- Nonlinear Kalman Filter: est_fitMVAR_DEKF.m

Statistics

- Different ways to do statistics in SIFT
 - Phase Randomization
 - Bootstrapping
 - Analytic Tests

Test	Null Hypothesis What question are we addressing?		Applicable Methods
H_{null}	C(i,j)=0	Is there significantly non-zero information flow from process $j \rightarrow i$?	Phase randomization Analytic tests
H_{base}	$C(i,j) = C_{base}(i,j)$	Is there a difference in information flow relative to the baseline?	Bootstrap resampling
H_{AB}	$C_A(i,j) = C_B(i,j)$	Is there a difference in information flow between experimental conditions/populations A and B?	Bootstrap resampling

C(i,j) is the measured information flow from process j --> i.

 C_{null} is the expected measured information flow when there is no true information flow. C_{base} is the expected information flow in some baseline period.

Intro

Ē

Statistics

Statistical Approach	Test	Parametric	Nonparam.
Asymptotic analytic estimates of confidence intervals. Applies to: PDC, nPDC, DTF, nDTF, rPDC	H _{null} , H _{base} , H _{AB}		
Theiler phase randomization Applies to: all	H _{null}		
Bootstrap, Jacknife, Cross-Validation Applies to: all	H _{AB} , H _{base}		
Confidence intervals using Bayesian smoothing splines Applies to: all	H _{base} , H _{AB}		

Bootstrap Statistics

- sample = X1, ..., Xn
- for k=1:R (number of bootstrap resamples/iterations)
 - resample n observations (trials) with replacement $X^* = \{X^*_{1, \dots} X^*_n\}$
 - compute estimator E_k (fit model, obtain connectivity) based on X^*
 - repeat
- with R large enough $P_E = \{E_1, ..., E_R\}$ provides a good approximation to the true distribution of the estimator (connectivity, power, etc)

Intro

Theory

Bootstrap Statistics

Theory

Bootstrap Statistics

Intro

Theory

S F

Apps

 $\Gamma O - D O$

Theory

Apps

 $\Gamma 0-D 0$

Bootstrap Differences

- Suppose we have two conditions
 - $A = \{a1,...a7\}$
- B = {b1,...,b6}
- We want to estimate the distributions of connectivity estimator applied to A and B separately, as well as the difference distribution (for testing H0: A=B)

Bootstrap Differences

- For k=1:R (number of bootstrap iterations)
 - Resample with replacement from both groups to get A_k and B_k
 - Fit models and obtain connectivity C_{Ak}, C_{Bk}
 - Compute difference $D_k = C_{Ak} C_{Bk}$
- Repeat

Fin

Bootstrap Differences

- For k=1:R (number of bootstrap iterations)
 - Resample with replacement from both groups to get A_k and B_k
 - Fit models and obtain connectivity C_{Ak}, C_{Bk}
 - Compute difference $D_k = C_{Ak} C_{Bk}$
- Repeat

Theory

Bootstrap Statistics

- The procedure yields a distribution $P_D = \{D_{1, \dots} D_R\}$
- If 0 lies in the right (or left) tail of this "difference distribution", then we **reject** the null hypothesis that A=B at the chosen confidence level (below: alpha=0.05 for a two-sided test)

- Difference distribution can take any shape
- The procedure above also provides estimates of the individual distributions of C_A and C_B yielding confidence intervals for H1

Ц

Phase-Randomization

- Phase Randomization Procedure (Theiler, 1992)
 - Method for testing whether there is non-zero information flow (H_{null})

Extract (random) phase

Theory

SIFT

Phase-Randomization

- Start with an n-trial sample: $X = \{X1, ..., Xn\}$
- for k=1:R (number of resamples)
 - randomize phases for all trials
 - compute connectivity estimate Ck
 - repeat
- With B large enough the B estimates provide a good approximation of the null distribution of the connectivity estimator
- Compare connectivity C_X from original (non-randomized) samples X to quantiles of $P_{null} = \{C_1, ..., C_R\}$

Multi-Subject Inference

- In many cases of source analysis involving focal/point sources (e.g. BSS + dipole fitting, sparse patch-based estimation) we encounter two key problems w.r.t. multi-subject inference:
 - 1. Identification/Co-registration
 - 2. Missing Data

Intro

Theory

Apps

 \bigcirc

 Conventional approaches utilizing disjoint clustering do not suitably address Issue 2 and generally lack means for rigorously quantifying statistical uncertainty in addressing Issue 1

 Issue 2 is exacerbated in connectivity analysis due to the combinatorial explosion of variables associated with a given source

Bayesian Hierarchical Model

- Perform multi-subject (second-level) inference via hierarchical (mixture) model, approximating the posterior distribution of source locations and connectivity surfaces.
- Advantages:
 - Handles multivariate measures such as connectivity
 - Yields posterior distributions allowing robust statistics and increased range of hypothesis testing (incl. analysis of individual variability)
 - Hierarchical structure can be adapted to obtain conditional probability distribution w.r.t. other metrics (ERSP, genetics, morphometry, behavior, etc)

See: Mullen, T. "The Dynamic Brain: Modeling Neural Dynamics and Interactions From Human Electrophysiological Recordings" Chapter 3.

Apps

Ц

Intro

MCMC Estimation (Gibbs Sampling)

MV-HBL

Sim: 10 Subjects, 30% missing dipoles

Estimated 95% CI (gray) with Ground Truth Superimposed (white)

Mullen, T., 2014 "The Dynamic Brain"; Mullen & Thompson, in prep

Bayesian Multi-Subject Inference

Theta-band (4-8 Hz) event-related dDTF Baseline: [-750 -500] ms

Intro

Theory

Apps

Fin

Cluster retained if more than 33% of subjects have greater than 50% probability of cluster membership

Bayesian Multi-Subject Inference

dDTF08

0.08

0.04

• 0.00

Color-coded clustering of all 246 dipoles

Intro

Theory

 $\overline{\mathbb{S}}$

Apps

Cluster retained if more than 33% of subjects have greater than 50% probability of cluster membership

Conventional Statistics

 An alternative approach: For each subject...

ntro

Theory

SIFT

Apps

To-Do

- 1. Perform distributed source localization (possibly after separating a subspace of brain components using ICA)
- 2. Select *M* regions of interest (ROIs) e.g. from a standardized anatomical atlas (e.g. Desikan-Killiany, Destrieux, etc) and integrate current density within each ROI. This yields *M* source time-series for each subject
- 3. Store results in EEG.srcpot
- 4. Obtain connectivity estimates for sources using SIFT with the 'Sources' option set in pre-processing. Resulting $[M \times M \times N_{freq} \times N_{times}]$ connectivity matrices are stored in EEG.CAT.Conn.
- 5. Apply your favorite mass-univariate or multivariate statistical approach (e.g. GLM, t-test, (M)ANOVA, etc) to the collection of connectivity estimates from all subjects to obtain desired statistics. See LIMO-EEG Toolbox and EEGLAB's statcond(). Beware of multiple comparisons issues! FDR may not be suitable.