The Dynamic Brain ll: Modeling Neural
Dynamics and Interactions from M/EEG
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Review: The VAR model

= The Vector Autoregressive (VAR) model as a basis for dynamical estimation
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Model Valigation

= |[f 2 model is poorly fit to data, then few, if any, inferences can be
validly drawn from the model.

» [here a number of criteria which we can use to determine whether
we have appropriately fit our VAR model. Here are three commonly
used categories of tests:

= Whiteness Tests: checking the residuals of the model for serial
and cross-correlation

x Consistency Test: testing whether the model generates data with
same correlation structure as the real data

x Stability Test: checking the stability/stationarity of the model.



Theory

Whiteness lests

x \\e can regard the VAR[p] model coefficients A® as a filter which

transforms random (white) noise E(t), into observed, structured data X(7):
L is a “lag operator”

X(0)= f(LEW) . (==X 4" . D700y~ 26— k)

x For coefficient estimates A®, we can obtain the residuals

E(N=X(0)-) APOX(t—k)

= |[f we have adequately modeled the data, the residuals should be
indistinguishable from a white noise process. Correlation structure in the
residuals means there is still correlation structure in the data that has not
been explained by the model.

= Checking the whiteness of residuals typically involves testing whether the
residual auto- and cross-correlation coefficients up to some desired
lag h are sufficiently small to ensure that we cannot reject the null
hypothesis of white residuals at some desired significance level.
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Whiteness lests

-
8 E(f) =N,V
&= OEFI(AD
- ~ A .
C, = <E(t)E (1 — l)> autocovariance at lag / ...
R =D"'CD" with correponding autocorrelation R
D = diag(\/diag(CO))
R =(R,....,R) set of autocorrelations up to lag h

We want to test the null hypothesis  H, : R, =(R,...,R,)=0

against the alternative: H :R #0

Two possible ways to do this:
® Autocorrelation function test
® Portmanteau tests
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Under the null hypothesis that E(t) is Gaussian white noise, we
expect approximately 1/20=5% of a.c.f. coefficients to exceed
the threshold +2/+/7 This gives us a p-value for rejecting Ho

Count(|Rh‘ > /ﬁ) Count(|Rh‘ oy ﬁ) I p<0.05 (1-p >.95) then we cannot
p= = reject Ho at the 5% level and we

accept that residuals E(t) are white

count(Rh) - MP(h+D)-M



Whiteness Tests: ACF

Theory

= Confidence intervals apply to individual coefficients and assume
coefficients are asymptotically independent. This may not be the
case for multivariate models.

= |n small sample conditions (small 7), this test may cause us to
reject the null hypothesis (residuals indicated as non-white) less
often than we should for the chosen significance level (Lutkeponl,
2000) -- in other words, we may have a higher false positive
rate for accepting that the model fits the data.

®x [his motivates the use of alternate multivariate tests



Table 3. Popular portmanteau tests for whiteness of residuals, implemented in SIFT. Here T = TN isthe
total number of samples used to estimate the covariance

The original portmanteau
test. Potentially overly-
conservative. Poor small-
sample properties.

Box-Pierce (BPP)

Modification of BPP to
improve small-sample
o hoo properties. Potentially
0, = T(T+2)2(T—l)_1tr(C;CO_ICZ Co_l) inflates the variance of the
[=1 test statistic. Slightly less
conservative than LMP with
slightly higher (but nearly
identical) statistical power.

Ljung-Box (LBP)

Further modification of BPP
to improve small-sample
Mzh(h+1) properties without variance
~ inflation.  Slightly = more
2T conservative  than  LBP.
Probably the best choice in

most conditions.

Mullen, 2010 (SIFT Manual)

h
Li-McLeod (LMP) | Q, =T Ztr(C{CJ 'C,C, 1)+
=1

These test statistics are asymptotically ¥2 distributed with M2(h-p) d.f.




Theory

Consistency Tests

= A well-fit model should be able to generate data that has the same
correlation structure as the original data.

x One test of this is percent consistency (Ding et al, 2000)

x Here we generate simulated data from our fitted model (feeding it white
noise) and calculate auto- and cross-correlations up to a fixed lag for
both simulated data (Rs) and real data (Ry).

x [he percent consistency (PC) is then given by
R -R

PC = 1—‘ 2 %100
Eoe

x A PC value near 100% indicates that the model is able to generate data
that has a nearly identical correlation structure as the original data. A PC
value near 0% indicates a complete failure to model the data.

r

2
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Stability Tests

Theory

= Stability
» All eigenvalues of the system matrix are <1
x A stable process will not “blow up” (diverge to infinity)

» A stable model is always a stationary model (however,
the converse is not necessarily true). If a stable model
adequately fits the data (white residuals), then the data is

ikewise stationary
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Multivariate versus Bivariate ™

= EXxclusion of processes that may exert causal influence on modeled

processes increases the risk of causal mis-identification. (c.f. Pearl,
Causality: Models, Inference and Reasoning, 2009)

Theory

= Multivariate approaches are generally
superior to bivariate approaches M>2 V=2

= allow detection of direct versus indirect
dependence, reducing false positives

= allow us to partially control for

exogenous/unobserved causes (e.g. Guo, et
al., J. Neuro. Methods, 2008)

= [N the albsence of a priori knowledge concerning causal structure,
it Is advisable to Include as many processes as possible In a causal
model (within data/modeling limitations)
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Spectral M.

Coherence Measures

Estimator

Formula

Spectral S(H=X(NHX()*
Density Matrix =H(XH(f)*
G, ()= ,—S /)

Coherency ' Si (f )SJJ (f)

0<|Cy( f)| <1
Imaginary
Coherence iCoh,(f)=1Im(C,(f))
(iCoh)

$,(/)

F,(f)=
Partial \/SU (f)S,, (f)
Coherence .
(pCoh) S(ESU)

o<|p () <1

det(S(/f))

G. = [l -——————
Multiple ) J S, OM, ()
?;k(ljir}f)nce M..(f)is the minor of S(f) obtained

by removing the ith row and column of
S(f) and returning the determinant.

Estimator

Formula

Partial Directed Coherence Measures

Granger-Geweke

A,(f)
Normalized < (f)= I 2
Partial \/2k=l|Alg' f )|
Directed 5
Coherence 0< |7L',.j (f)| <1
(PDC) w i
AR
1
7,(f)=
Generalized \/Zk 122 | k’(f)|
PDC (GPDC)
0 <| (| <1
Z,(N)| =1
=1
A, (N)=0,(N*V, (/)" G, (/)
where
4,(1)]
a= [Imm (f)]]
Renormalized V.(f)= ZR; (k,DZ,Z2r f,k,1)
PDC (rPDC) k=1
Z(w, k1)
_ [ cos(@k)cos(al) cos(wk)sin(al)
- sin(wk)cos(w!) sin(wk)sin (wl)
R is the [(Mp)? x (Mp)?] covariance
matrix of the VAR[p] process
(Litkepohl, 2006)
Granger- (22 /5 | (f)|2
Geweke -
Causality F:J(f) - S (f)
(GGC) i

Formula

Estimator

H,(f)
Normalized ¥y (f)= ~ - >
Directed \/Zkzl |Hik (f)|
Transfer

o<l ([ <1
> =1

Function
(DTF)

Full-
Frequency
DTF (ffDTF)

5,
Zf Zkle |Hik (f)|2

(/)=

Directed Transfer Function Measures

Direct DTF

(dDTF) &, (N)=m;(NE;(f)

X(0)=)," AY@OX(—k)+E()
A(f.)==) AP AV =1
X(f.0)= A(f.0) E(f,t)=H(f,0)E(f,1)

H(f) Transfer Function
A(f) System Matrix
Y. Noise Covariance Matrix

Variance Stabilization

For additional details, see SIFT Handbook (sccn.ucsd.edu/wiki/SIFT)



Multivariate Models;
Limitations

Theory

x However, multivariate methods come with a cost:

® More parameters + limited data = higher risk of
or worse yet....

...the problem becomes ol
There are insufficient observations to uniquely determlne
a solution to the system of equations defining our model.



Multivariate Models:
Limitations
How many samples do we need”

= N = number of samples required e

x ] = number of variables/sources

M>2

Theory

x [ = number of trials/realizations
= 0 = model order

x \\e have M?2p model coefficients to estimate. So our ordinary least-
squares solution requires a minimum of M2p samples.

N = M-p

» Back-of-envelope: M=20, p=10, T=1 We need 202x10 = 4000 samples
-- 20 second epoch at sampling rate of 200HZ!

Ensemble aggregation (T > 1)7?

x M=20, p=10, T=50: 4000/50 samples/trial = 20/50 = 0.4 sec epoch




Multivariate Models: M>2
Constraints

Theory

Solutions?

Make assumptions (impose constraints)

We want to a priori restrict the range of allowable
values for our parameters -- transforming the problem
from one with infinite number of solutions in the original
oparameter space to one with a unigue (“best”) solution
IN the new parameter space

In a Bayesian context, this corresponds to making
assumptions about the prior distribution of the
parameters (Gaussian, Laplacian, ...)
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Multivariate Models: Constraints™

posterior  likelihood  prior M>2

Theory

A= arginax{ p(A|D) = p(D|A)p(A)} O

/O(f\)

Unconstrained (all values equally
; pP(A)=U(@,b)  probable). e.g. Uniform distribution

Smoothness constraints
p(A) = N(O,2) e large differences in values unlikely
® small (hon-zero) values most

probable. e.g. Normal (gaussian) prior.

Sparsity constraint

A O p(A) =L(0,8)  ® many values small or exactly zero
with occasional large values e.qg.
Laplacian prior



Theory

prediction error

)

A(r) = argmin|Jv - Z4][
A

» Standard least-squares solution

Computa( iiiii
Neuroscience

Smoothness Constraints =

X(0=), AYNOX(-k)+E(@)

A=[AY®),..., A" D]
X =[X(p+1-k),...X(N-K]

Rewrite VAR[p]| as VAR|1]



Smoothness Constraints

-
9 = Ridge Regression
= (Tikhonov Regularization, Minimum-(L2)-Norm
—y penalty term,
prediction error enforces smoothness |\/|>2

)

A(t) = arg ;nin(‘ ‘Y — ZA‘ E + ﬂ,‘ ‘A
A

)

regularization

® Equivalent to assuming a Gaussian prior with variance determined by A

x | arge values of A are penalized. The range of allowable values for
coefficients is restricted, reducing the effective degrees of freedom and
allowing us to estimate VAR coefficients with fewer observations.



Sparsity

= Relatively low probability of a
direct connection between
any two anatomical functional
units. This probability
decreases with distance

Theory

It’'s a small world...

e
structural functional
network network

Sporns and Honey, PNAS, 2006

omputational

Sparsity Constraints
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Sparsity Constraints

-
é » Standard least-squares solution e
e
prediction error X(1) = 2;1 AP OX(t - k) + E(2)
o A=[AY(D),... AT D]
A(t)=arg mm(‘ ‘Y — ZAH ) .
A 2 X, =[X(p+1-k),....X(N = k)]
Z=[X,....X,]
Y =X,

Rewrite VAR[p]| as VAR|1]
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Sparsity Constraints w2

®x Group Lasso (L1,2nhorm)

Theory

smoothness (L2)

prediction error (preserves spectrum)
e - - ADMM
_ . . (D (p)
A(t)= arg;nmU ‘Y ZA| + A Eij Al LA Hz)

DAL

_

regularization Jroup sparsity (L1)

®x Equivalent to assuming a Gaussian prior over coefficients within groups
and a Laplacian prior over the groups themselves

x Entire groups of coefficients are jointly pruned (set exactly to zero) while
remaining groups assumed to have a Gaussian prior (ridge penalty).
Allows us to estimate VAR coefficients with fewer observations.



Theory

euroscience

Sparsity Constraints s

Compressive Sensing

= [he process of acquiring and reconstructing a
quantity that is underdetermined but known to be
sparse (compressible) in some basis

How many samples do we need”
®x N = number of samples required
x [ = number of variables/sources, p = model order

N =0(Klog(M*p/K))=0(logM?p) < clog(M*p)

N = M-p
(unconstrained)
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Constraints Improve Estimation =
(If prior assumptions are correct)

x Significant improvements using smoothness or sparsity assumptions

x (e.g. Haufe et al, 2009, Valdez-Sosa et al, 2009)

Sensitivity
Sensitivity
Sensitivity
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-~ Figure 2: Average ROC curves of Granger Causality (red), Ridge Regression (green), Lasso

| / \ - { \ e .- . ., -
(blue) and Group Lasso (black) in three different noise conditions and for two

different model orders. Haufe, 2009
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Adapting to Non-Stationarity

= Many ways to do adaptive VAR estimation

Theory

® WO popular approaches (adopted in SIFT):

®x Segmentation-based adaptive VAR estimation
(assumes local stationarity)

x State-Space Modeling > _ O

505

Kalman Filtering and extensions

- " 2 = N X
J. § ” ) 2} 1 S \, = .-- l . :
‘ NS¢ N~ X \
- i, <00 \ & a —/~/ A )b
- > :"-/» = y | ) I
- Ve )

& 5()= 1 (s0)u()) +v(0)



Discrete State-Space Model (SSM) for
Electrophysiological Dynamics

observation equation
€.9. NOISYy sensor opservations)

Theory

Known
deterministic inputs

u(t)

state tansitionequation
(e.g. latent source and/or coupling dynamics)

s()= (s ).u().00))+v(t)

Linear VAR[1] > s(t)=A(t)s(t—1)+v(2)

e Dynamical system may be linear or nonlinear, dense or sparse, non-stationary, high-
dimensional, partially-observed, and stochastic

e Subsumes discrete Delay Differential Equation (DDE) and Vector Autoregressive (VAR)
methods and closely related to Dynamic Causal Modeling (DCM)




Theory

Kalman Filtering

optimal estimator (in terms of minimum variance) for the state of a
inear dynamical system

z,u) is linear in
f(z,u) new observatlon

()
{z,u} for classic
Kalman Filtering / \
t

Time Update Measurement Update
(“Predict”) (“Correct”)
zt_:f(zt—l’ut—l)—l_vt €:yt—§7t
y, = Hz, 2,=2,+Gge
P =AP_ AT P=(I-GH)P,
t a t+1
Inltlallze \ /
=FE(z,)
= cov(z,) updated model

.__ unknown state vector at time t
& = e.g. delay-embedding of sources and/or coupling (VAR) parameters

N
Tim MuIIen
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Causality To

10 pi#
1M el
12 -
13

A

aNA

File Edit

40 S0

2

View

Kalman Filtering

Eigure 52 Subi,, Cond 0

Insert

Tools

Desk?&p Window
O Wt - 2

Help

S0

Hen

-l"“ 1)

6

7

O’
' ' ' .
; .
I
(] |
!
' “
) | !
S0 30 40 SO

Time (sec)

GPDC Causality

Fro

m

9

40

| T, L
. ’ ;
wl ol ’
1 ]
' v LE 1
" - s I
| " . T
| " s e
! .I 1] ' .
| : .
! TR B B
o e :
. ! " i ! | |’ -
L "
il
" V! -
Wl A
) : ' .- (3
. .

S0 30 40 SO 30 40 S0 30 40 SO

Center for
omputational
Neuroscience

Tim Mullen

40

10

20

40
30
20
10
40

20
10
40

10

Frequency (Hz)

10

20
10



Theory

Nonlinear Modeling

® |nteractions in brain are generally non-linear

x Purely linear models (e.g. high-order VAR models) can
sometimes provide an approximation sufficient for
correct detection of directed dependencies

Schelter B, Timmer J, Eichler M., J. Neuro. Methods 2009
van-der-Pol coupled oscillators Stochastic coupled Rossler oscillators

Xi = ,LL(] — XIZ)X, + Ct)iin +0oin; + E EIJ(XJ — Xi) §o ( (“’JYJZJJF L;Sj.i (Xi—xf)] +‘7ﬂb)
. . Z w; X; +ay;
-3 J# b+J()](jfc)]Zj
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Fig.9. Results of the renormalized partial directed coherence analysis for a network
coupled Rossler oscillators. The coupling is bidirectional between oscillators 1 and 2
and unidirectional from oscillator 2 to oscillator 4 and from oscillator 4 to oscillator
3. The dashed horizontal line marks the 5% significance level, while the gray area
represents the 95% confidence intervals.

Fig. 8. Coupled van-der-Pol oscillators. Renormalized partial directed coherence for
various coupling strengths €1,. The dashed horizontal line marks the 5% significance
level.




Nonlinear Modeling

= A more general approach is to transform the non-linear
system to a linear representation and apply the linear
model there.

Theory

® ¢.g. local-linearization, kernel methods, etc.

® Nonlinear extensions of Kalman filtering provide efficient
ways to model the time-evolving states and parameters
of nonlinear processes

» (Dual) Extended Kalman Filtering

/\ ® | inearize about the current state (first-

Time Update Measurement Update|  Order Taylor approximation).
(“Predict”) (“Correct”) ® Apply the Kalman Filter update rules
T using the linearized model
itialize Linearize about the / ® Apply Granger-Geweke Causality to the

current state est. linearized coefficient matrices




Theory

Kalman Filtering in SIFT

» | inear Kalman Filter; est fitMVARKalman.m

x Nonlinear Kalman Filter: est_fitMVAR_DEKFE.mM

ooooooooooooo
eeeeeeeeeeee



Theory

Statistics

x Different ways to do statistics in SIFT
®x Phase Randomization
» Bootstrapping

® Analytic Tests

Phase randomization

Analytic tests

Bootstrap resampling
Bootstrap resampling

C(i,)) is the measured information flow from process | --> I.
Cnul IS the expected measured information flow when there is no true information flow.

Chase IS the expected information flow in some baseline period.



Statistics

O
_q:, Statistical Approach Test  Parametric Nonparam.
— Asymptotic analytic estimates of confidence Hnut,
INntervals. Hbase,
Applies to: PDC, nPDC, DTF, nDTF, rPDC Has
Theller phase randomization Hou
Applies to: all
Bootstrap, Jacknife, Cross-Validation Hag,
Applies to: all Hpase
Confidence intervals using Bayesian smoothing H
splines Hbase’
Applies to: all o3

Houn : Cij=0 Hypase: Gij = Cpaseline Hag: CGAj = CBj



Theory

n samples
WlTH guEEENg,

replacement :,. BOOTSTRAP.

SAMPLES ¢

= sample = X1, ..., Xn
= for k=1:R (number of bootstrap resamples/iterations)
= resample n observations (trials) with replacement X* = {X*1, .. X*n}
= compute estimator Ex (fit model, obtain connectivity) based on X*
= repeat
= With R large enough Pe = {E1, ..., Er} provides a good approximation to the true distribution
of the estimator (connectivity, powet, etc)



Theory

Bootstrap Statistics

% self-awarness data, Wilcox, 2005, p58 Sootstrapped estimates

bootstrapped means
1000

3000

Sample with
replacement b times

2500

2000

compute estimate

Distribution of bootstrapped l Sort & get Cl
estimates of the mean

sorted bootstrapped means

Histogram of bootstrapped means
80

70
60
S0

40
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Theory

(eelj
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(el) |

100 200 300
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Theory

Bootstrap Differences

= SUPPOse we have two conditions
A ={al,...ar}

x B ={b1,...,b0}

x \\e want to estimate the distributions of connectivity estimator
applied to A and B separately, as well as the difference
distribution (for testing HO: A=B)

a,%6 az
A _a;as

difference Dor




Theory

Bootstrap Differences

» For k=1:R (number of bootstrap iterations)
= Resample with replacement from both groups to get Axand Bk
x Fit models and obtain connectivity Cak, Csk
x  Compute difference Dk = Cak-Csk

x Repeat

a,93 ay
A d, dy analyze

difference

31 analyze

Neuroscience
Tim Mullen



Theory

Bootstrap Differences

» For k=1:R (number of bootstrap iterations)
= Resample with replacement from both groups to get Axand Bk
x Fit models and obtain connectivity Cak, Csk
x  Compute difference Dk = Cak-Csk

x Repeat

analyze

difference

analyze

Neuroscience
Tim Mullen



Bootstrap Statistics

» The procedure yields a distribution Pp = {D+ ... Dr}

-

o,

2 = fOlies in the right (or left) tail of this “difference distribution”,

= then we reject the null hypothesis that A=B at the chosen
confidence level (below: alpha=0.05 for a two-sided test)

signif. diff.
0
b L A

2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

= Difference distribution can take any shape

= [he procedure above also provides estimates of the individual
distributions of Ca and Cg yielding confidence intervals for H1



Theory

Phase-Randomization

®x Phase Randomization Procedure (Theiler, 1992)

® Method for testing whether there is non-zero
information flow (Hnur)

N
Tim MuIIen

Phase-randomized

Extract signal amplitude

Original data
AN e [ o ol I IFFT
Comblne

Extract (random) phase

Random data

data

N

FOUALNE g ol

St A S m”‘”‘.}‘

AN LB DI g S




Theory

Phase-Randomization

» Start with an n-trial sample: X = {X1, ..., Xn}
» for k=1:R (number of resamples)
= randomize phases for all trials
»x compute connectivity estimate Ck
= repeat
= \Vith B large enough the B estimates provide a good approximation of the null
distribution of the connectivity estimator
x Compare connectivity Cx from original (non-randomized) samples X to quantiles of

Prui = {C1, ..., Cr}

Signif. value

D) CX
null

2.5% 97.5%



Theory

Multi-Subject Inference

® [N many cases of source analysis involving focal/point sources
(e.g. BSS + dipole fitting, sparse patch-based estimation) we
encounter two key problems w.r.t. multi-subject inference:

1. Identification/Co-registration

2. Missing Data

= Conventional approaches utilizing
disjoint clustering do not suitably
address Issue 2 and generally
lack means for rigorously
quantifying statistical uncertainty
IN addressing Issue 1

= |SSue 2 IS exacerbated in connectivity analysis due to the combinatorial
explosion of variables associated with a given source



Bayesian Hierarchical Model

= Perform multi-subject (second-level) inference via hierarchical
(mixture) model, approximating the posterior distribution of source
locations and connectivity surfaces.

Theory

= Advantages:

x Handles multivariate measures such as
connectivity

» Yields posterior distributions allowing PZ,16)

robust statistics and increased range of
hypothesis testing (incl. analysis of
individual variability)

P(S,1Z,) P(B1Z)| P(S,1Z,) P(B,1Z,)

= Hierarchical structure can be adapted to

obtain conditional probability distribution

w.r.t. other metrics (ERSP, genetics,
morphometry, behavior, etc)

See: Mullen, T. “The Dynamic Brain: Modeling Neural Dynamics and Interactions
From Human Electrophysiological Recordings” Chapter 3.



Generative
Model

Goal:
P(G,Z1{S,B})

Subject 1
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Bayesian FPCA Smoothing (Parameterization)

B-spline C(f,t)=g(f,t,b)+n(f,1)
Conn C(f,0)=q(A™(1),E())
WG Y() =) AYNDY (k) +E(r)

B=E{b}

—

To-Do

Source

Localization

Source
Separation




MCMC Estimation (Gibbs Sampling)
D:{{Si}’{Bi}’{zs}’{sz}} G=GB) |/

o ) P(Z,1G) P(Z,1G)
G={S§,B,2,,0;"} " 3
P(S,1Z,) P(B1Z)| P(S,1Z,) P(B,1Z,)
P(G,Z| D) Target Distribution B -
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Gibbs Sampling Scheme:

1) Initialize G*, Z* from initial clustering (e.g. k-means) solution

2) Sample G* from posterior P(G | Z ,D) o< P(D1Z ,G )P(G")
3) Sample Z* from posterior P(Z 1G ,D) < P(D1Z ,G YP(Z")
4) Repeat (2-3) many times: P(G",.Z'|D) = P(G,Z|D)




Sim: 10 Subjects, 30% missing dipoles

MV‘ H B |_ Estimated 95% CI (gray) with

Ground Truth Superimposed (white)
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Bayesian Multi-Subject Inference £

Theta-band (4-8 Hz) event-related dDTF
Baseline: [-750 -500] ms
Response-locked error trials
FROM

p<0.01 (N=24)
o BA19/39 BA31 BA19 BA32 BA32/ACC BA24/MCC BA32 BA2/pCG BA20 BA7/Cuneus Parietal WM
99 /0 C I (+/36,-70,23) (12,-41,-34) (-32,-70,22) (-16,13,34) (1,30,29) (1,-2,35) (20,7,32) (-33,-28,43) (-39,-9,-19) (3,-73,32) (27,-35,37)

.

Theory
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Cluster retained if more than 33% of subjects have greater
than 50% probability of cluster membership




Tim Mullen

Bayesian Multi-Subject Inference £

Response-locked error trials Theta-band (‘L—STHFE)S
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Conventional Statistics

> = An alternative approach:

8 For each subject...

|

- 1. Perform distributed source localization (possibly after separating a
subspace of brain components using ICA)

2. Select M regions of interest (ROIs) e.g. from a standardized anatomical
atlas (e.g. Desikan-Killiany, Destrieux, etc) and integrate current density
within each ROI. This yields M source time-series for each subject

3. Store results in EEG.srcpot

4. Obtain connectivity estimates for sources using SIFT with the ‘Sources’
option set in pre-processing. Resulting [M X M X Nfeg X Ntimes] cOnnectivity
matrices are stored in EEG.CAT.Conn.

5. Apply your favorite mass-univariate or multivariate statistical approach (e.g.
GLM, t-test, (M)ANOVA, etc) to the collection of connectivity estimates from all

subjects to obtain desired statistics. See LIMO-EEG Toolbox and EEGLAB’s
statcond(). Beware of multiple comparisons issues! FDR may not be suitable.



