Estimating transient phase-amplitude coupling using local mutual information

Ramon Martinez-Cancino

University of California San Diego
Swartz Center for Computational Neurosciences
Outline

Intro to theory
- Intro to Phase-Amplitude Coupling (PAC)
- Local (pointwise) Information Theory Measures
- Estimating PAC with Local Mutual Information

Results
- Simulations
- ECoG data analysis

Demo
Brain oscillations

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Waveform</th>
</tr>
</thead>
<tbody>
<tr>
<td>gamma 32 - 100 Hz</td>
<td></td>
</tr>
<tr>
<td>beta 13 - 32 Hz</td>
<td></td>
</tr>
<tr>
<td>alpha 8 - 13 Hz</td>
<td></td>
</tr>
<tr>
<td>theta 4 - 8 Hz</td>
<td></td>
</tr>
<tr>
<td>delta 0.5 - 4 Hz</td>
<td></td>
</tr>
</tbody>
</table>
Cross-Frequency Coupling

Found both in animals and humans

Associated to epilepsy, Parkinson’s disease, Alzheimer’s disease, schizophrenia, obsessive-compulsive disorder and mild cognitive impairment.

(Mormann et al., 2005; Cohen, 2008; Osipova et al., 2008; Tort et al., 2008, 2009, 2010; Cohen et al., 2009a,b; Colgin et al., 2009; Axmacher et al., 2010a,b; Voytek et al., 2010)

Jirsa and Muller, 2013
Amplitude Modulation Fundamentals

Modulator

\[v_{\text{mod}} = V_{\text{mod}} \sin(2\pi f_{\text{mod}} t) \]

Carrier

\[v_{\text{carr}} = V_{\text{carr}} \sin(2\pi f_{\text{carr}} t) \]

AM Signal

\[v_{\text{AM}} = v_{\text{carr}} \sin(2\pi f_{\text{carr}} t) + \left[V_{\text{mod}} \sin(2\pi f_{\text{mod}} t) \right] \sin(2\pi f_{\text{carr}} t) \]
By mean of the Hilbert transform a signal can be expressed as its analytic signal.

\[S_t = s_{mt} e^{i\phi_t} \]

\[s_{mt} = |S_t| \]

\[\phi_t = \arg[S_t] \]

Instantaneous amplitude (or the envelope)

Instantaneous phase.

\(\text{abs(hilbert}(S_t)) \)

\(\text{angle(hilbert}(S_t)) \)
Computing PAC

Electrophysiological signal

- **High frequency band** f_{Amp} (e.g: 30-50Hz)
- **Low frequency band** f_{Phase} (e.g: 5-12Hz)

Mean Vector Length

Canolty et al. 2006

- Composite vectors $z_t = A_t e^{i\phi_t}$
- Mean vector length

$$MVLmi = \left| \frac{1}{N} \sum_{t=1}^{T} z_t \right|$$

Kullback-Leibler Modulation Index

Tort et al. 2010

$$P(j) = \frac{\langle A_{f_A}, \phi_r \rangle (j)}{\sum_{k=1}^{n} \langle A_{f_A}, \phi_r \rangle (k)}$$

$$MI = \frac{D_{KL}(P||U)}{\log N}$$

Compute the Kullback-Leibler with a uniform distribution

GLM Measure

Penny et al. 2008

$$A_t = X\beta + e$$

$$X = \begin{bmatrix} \cos\phi_1 & \sin\phi_1 & 1 \\ \vdots & \vdots & \vdots \\ \cos\phi_{\text{max}} & \cos\phi_{\text{max}} & 1 \end{bmatrix}$$

Use the explained variance as an index of PAC

ERPAC

Voytek et al. 2013

Time resolved PAC by applying GLM Measure for each latency in event related data
Information Theory Definitions

Given the measurements x and y of the RV X and Y

Mutual Information: average reduction in uncertainty about X given the knowledge of the value of Y

\[
I(X,Y) = - \sum p(x,y) \log_2 \frac{p(x|y)}{p(x)}
\]

\[
I(X,Y) = H(X) - H(X|Y)
\]

The mutual information is a measure of dependency (both linear and nonlinear) between the two random variables X and Y
KSG Mutual Information Estimator
(Kraskov, Stogbauer and Grassberger)

- Extension of Kozachenko-Leonenko estimator of Entropy
- Non-parametric estimator
- Data efficient
- Minimal bias

Assume the joint space $Z = (X, Y)$

Determining k-nearest neighbors for each z_i

$$||z - z'|| = \max\{||x - x'||, ||y - y'||\}$$

- Find K-nearest neighbor of z_i (a distance $\frac{\varepsilon}{2}$)
- Count the number of points $n_x(i)$ and $n_y(i)$ in the marginal space within a row (and column) of width ε

Estimate Mutual Information

$$I(X,Y) = \psi(k) - \left\{ \psi(n_x + 1) + \psi(n_y + 1) \right\} + \psi(N)$$

Kraskov et al. 2004
Estimating local Mutual Information

Lizier et al. 2008, considered the estimation of Local MI from the KSG estimator.

Estimate Mutual Information

\[I(X, Y) = \psi(k) - \psi(n_x + 1) + \psi(n_y + 1) + \psi(N) \]

Estimating Local Mutual Information

\[i(x, y) = \psi(k) - \psi(n_x + 1) - \psi(n_y + 1) + \psi(N) \]

Kraskov et al. 2004

Unrolling expectation

Goal:
Estimating PAC using local Mutual Information
Instantaneous MIPAC

Data model: Continuous data \((1 \times N_{lat})\)

\[\Delta v = \infty; \] % Initialize Percentage variance reduction
\[c = 1; \]

\[\text{while} \quad \Delta v_{\text{var,threshold}} < \Delta v \]
\[\text{Estimate } i(A_t, \phi_t) \text{ for } k = c; \]
\[\text{Compute } \Delta v_{\text{var}}; \]
\[c = c + 1; \]

End

\[\text{MIPAC = Low-pass filter } i(A_t, \phi_t) \text{ at } f_{\text{phase}}; \]

Assume the joint space \(Z = (A_t, \phi_t)\)

\[\|Z - Z'\| = \max(\|\phi - \phi'\|, \|A - A'\|) \]
Circular norm (Berens, 2009) Euclidean norm

\[i(x, y) = \psi(k) - \psi(n_x + 1) - \psi(n_y + 1) + \psi(N) \]

\[\text{High frequency band } f_{\text{Amp}} \text{ (e.g: 30-50Hz)} \]
\[A_t = \text{abs(hilbert}(S_A)) \]
\[\text{Low frequency band } f_{\text{phase}} \text{ (e.g: 5-12Hz)} \]
\[A_t = \text{angle(hilbert}(S_{\phi})) \]

Martinez-Cancino et al 2018 (under review in Neuroimage)
Event-related MIPAC

Data model:

Low frequency band (f_{phase})

$A_t = \text{angle}(\text{hilbert}(S_{\phi}))$

Full cycle of f_{phase}

High frequency band (f_{amp})

$A_t = \text{abs}(\text{hilbert}(S_{\phi}))$

Event Related MIPAC (cyclostationary)

% Epoched data

$$\text{for } t = 1: N_{lat}$$

$\Delta_{var} = \text{Inf};$ % Initialize Percentage variance reduction

$c = 1;$

$\text{while } \Delta_{var, threshold} < \Delta_{var}$

Estimate $i(A_{trl,t}(::,t), \phi_{trl,t}(::,t))$ for $k=c;$

(Neighbors are count in a latency window)

Compute Δ_{var};

$c = c+1;$

end

end

MIPAC = Low-pass filter $i(A_{trl,t}, \phi_{trl,t})$ at $f_{phase}.$

Martinez-Cancino et al 2018 (under review in Neuroimage)
Inst. MIPAC and Event-related MIPAC

MIPAC

Inst. Amplitude

Inst. Phase

MIPAC estimate

Latency

Event-related MIPAC

Inst. Amplitude

Latency windows to compute neighbors

Inst. Phase

Latency

Trials

MIPAC estimate

Latency

Trials

Event Related MIPAC

Latency

Latency
MIPAC Simulations
Simulation 1.1: Instantaneous MIPAC

\[f_{\text{mod}} = 5Hz \]
\[f_{\text{carr}} = 40Hz \]
\[S_{\text{rate}} = 500Hz \]

(A) Block-shaped waveform modulation strength.
(B) Simulated signal
(C) Estimated MIPAC (red), and local MI (light red)

Martinez-Cancino et al 2018 (under review in Neuroimage)
Simulation 1.2: Instantaneous MIPAC

\(f_{mod} = 5\text{Hz} \)
\(f_{carr} = 40\text{Hz} \)
\(S_{rate} = 500\text{Hz} \)

(A) Saw-tooth shape waveform modulation strength.
(B) Simulated signal
(C) Estimated MIPAC (red), and local MI (light red)

Martinez-Cancino et al 2018 (under review in Neuroimage)
Simulation 1.3: Instantaneous MIPAC

\[f_{\text{mod}} = 5\text{Hz} \]
\[f_{\text{carr}} = 40\text{Hz} \]
\[S_{\text{rate}} = 500\text{Hz} \]

(A) Absolute value of a sinusoid used as modulation strength.
(B) Simulated signal
(C) Estimated MIPAC (red), and local MI (light red)

Martinez-Cancino et al 2018 (under review in Neuroimage)
Simulation 2: Instantaneous MIPAC Noise Added

$$f_{\text{carr}} = 40\, \text{Hz}$$ \quad $$S\text{rate} = 500\, \text{Hz}$$ \quad $$f_{\text{mod}} = 5\, \text{Hz}$$ \quad $$\text{SNR} = 10$$

MIPAC from a simulated Phase-Amplitude-Modulated signal with noise added. MIPAC was estimated from the same signals generated the previous simulations, but with a SNR= 10. Estimated MIPAC (red), and local MI (light red).
MIPAC convergence

Martinez-Cancino et al 2018 (under review in Neuroimage)
Simulation 3: Event-related MIPAC

ER PAC data simulation

Event related MIPAC and ERPAC (Voytek et al, 2013) were used to estimate PAC

\[f_{mod} = 5Hz \]

\[f_{carr} = 40Hz \]

\[S_{rate} = 500Hz \quad SNR = 10 \]

Each trial was shifted 1-100 pts
Simulation 4: MIPAC & MImi

\[f_{mod} = 7 \text{Hz} \]
\[f_{carr} = 50 \text{Hz} \]
\[S_{rate} = 500 \text{Hz} \]

Grand Mean

MI modulation index

Martinez-Cancino et al 2018 (under review in Neuroimage)
MIPAC application to real data
ECoG Data

Subject
• Clinical monitoring and localization of seizure foci
• 1 subject (mv)
• ECoG channels in: Inf. Temp. Gyrus
 Lingual Gyrus
 Fusiform Gyrus

Experimental design
• Images of Houses and Faces were presented randomly
• 3 runs 100 presentations each (50 H / 50F)

Preprocessing
Performed in EEGLAB *(Delorme and Makeig, 2004)*

1. Artifact removal
2. CAR
3. Resampling to 512Hz
4. Line noise removal ~$(60, 120)$ Hz
 Hamming-windowed FIR notch filter
5. Extract epochs time-locked to stimulus presentations $[-400,800]$ ms

Original publication:
The physiology of perception in human temporal lobe is specialized for contextual novelty
Kai J. Miller, Dora Hermes, Nathan Witthoft, Rajesh P. N. Rao, Jeffrey G. Ojemann
ECoG Data: Mlmi in action

Martinez-Cancino et al 2018 (under review in Neuroimage)
ECoG Data: Event Related Potential Image

Channel 16
ECoG Data: Time-Frequency Decomposition

[2, 120]Hz FFTs and Hanning window tapering
Generated using EEGLAB function *newtimef.m*

Martinez-Cancino et al 2018 (under review in Neuroimage)
ECoG Data: MIPAC vs ERPAC

Event-related MIPAC and ERPAC (Voytek et al. 2014) were computed

\[f_{phase} = 16 \text{ Hz} \]

\[f_{amp} = 95\text{Hz} \]
ECoG Data: MIPAC Image

ER-MIPAC computed for *Faces* presentation

\[f_{\text{phase}} = 16 \text{ Hz} \]

\[f_{\text{amp}} = 95\text{Hz} \]
Conclusions

- An approach to estimating dynamical PAC in electrophysiological signals was proposed.
- The method was validated on simulated PAC signals.
- Application to human ECoG data showed positive results.
DEMO

Available from: https://bitbucket.org/ramonmc/pop_pac/
Acknowledgments

Coauthors

Joseph Heng
Ken Kreutz Delgado
Arnaud Delorme
Roberto Sotero
Scott Makeig

This work was supported by National Institutes of Health grant 5R01-NS047293-12 and by a gift from The Swartz Foundation (Old Field NY)