Time-Frequency Analysis of Biophysical Time series

Tim Mullen
(with many contributions from Arnaud Delorme)

\[S(f) = \frac{1}{N} \sum_{t=0}^{N-1} x(t)e^{-2\pi ift/N} \]
Synchronicity of cell excitation (due to recurrent cortico-cortical and cortico-thalamo-cortical projections) determines amplitude and rhythm of the EEG signal.
Common Oscillatory Modes in EEG

- 30-60 Hz Gamma
- 18-21 Hz Beta
- 9-11 Hz Alpha
- 4-7 Hz Theta
- 0.5-2 Hz Delta

Simulated

Real
Sinusoids

Phase shift

\[\theta = \pi / 2 \]

Angular frequency

\[\omega = 2\pi f = 2\pi \text{ rad/sec} \]

Amplitude

\[A = 1.2 \]
Wide-sense stationary signals

The first and second moments (mean and variance) of the data distribution do not depend on time.
Wide-sense stationary signals

Cyclostationary signals

2 Hz

10 Hz

20 Hz

2+10+20 Hz

Wide-sense Stationary

Slide courtesy of Petros Xanthopoulos, Univ. of Florida
Wide-sense stationary signals

By looking at the Power spectrum of the signal we can recognize three frequency Components (at 2, 10, 20Hz respectively).
Fourier’s Analysis

Time domain

\[x(t) \]

Frequency domain

\[|S(f)|= \text{Power} \]

Time

Frequency

Freq. decomp.

Sum of freq.
Fourier’s Theorem

Any stationary, continuous process can be exactly described by an infinite sum of sinusoids of different amplitudes and phases.

Jean Baptiste Joseph Fourier (1768 –1830)
Aliasing and the Nyquist Frequency

Signal: $f = 100$ Hz

Sampling: $f_s = 80$ Hz

Alias: $f_{\text{alias}}(N) = 20$ Hz

Nyquist Frequency:

The maximum frequency that can be uniquely recovered at a sampling rate of f_s

$$f_N = f_s / 2$$

Quiz: What is N in the example above?

$$f_{\text{alias}}(N) = \left| f - Nf_s \right|$$

$$f_s = \text{sampling rate}$$
Euler’s Formula

\[e^{i(\omega t + \theta)} = \cos(\omega t + \theta) + i \sin(\omega t + \theta) \]

Any sinusoid can be expressed as the sum of two complex numbers...

\[A \cdot \cos(\omega t + \theta) = \frac{A}{2} e^{i(\omega t + \theta)} + \frac{A}{2} e^{-i(\omega t + \theta)} \]

\[= \text{Re}\{Ae^{i(\omega t + \theta)}\} = \text{Re}\{S(\omega, t)\} \]

Another version:

\[\frac{A}{2} e^{i(\omega t + \theta)} + \frac{A}{2} e^{-i(\omega t + \theta)} = \text{Re}\{Ae^{i(\omega t + \theta)}\} = \text{Re}\{S(\omega, t)\} \]

Phase

\[\theta = \angle S(\omega, t) = \frac{\pi}{2} \]

Amplitude

\[S(\omega, t) = A \]

Real part
Cosine component

Imaginary part
Sine component

Phasor
Phasors

Rotation velocity (Rad/S; Hz)
= (angular) frequency ($\omega; f$)

$$A \cdot \cos(\omega t + \theta) = \text{Re}\{Ae^{i(\omega t + \theta)}\} = \text{Re}\{S(\omega, t)\}$$

Amplitude
$$|S(\omega, t)| = A$$

Phase
$$\theta = \frac{\pi}{2}$$

Shorthand phasor notation:
$$Ae^{i\phi}$$

Polar animations courtesy Wikipedia
Phasors: Example

\[\begin{align*}
\text{Real} & \quad \text{Imag.} \\
3 & \quad \pi/2 \quad 1.2
\end{align*} \]
Phasors: Example

3

$\pi/4$ 0.7

Real

Imag.
Discrete Fourier Transform

Time \rightarrow Frequency

Forward transform

$$S(f) = \frac{1}{N} \sum_{t=0}^{N-1} x(t)e^{-2\pi ift/N}$$

Frequency \rightarrow Time

Inverse transform

$$x(t) = \frac{1}{N} \sum_{f=0}^{N-1} S(f)e^{2\pi ift/N}$$

$N = \text{number of samples}$

Fast Fourier Transform (FFT)

$$e^{\pm i(2\pi ft + \theta)} = \cos(2\pi ft + \theta) \pm i\sin(2\pi ft + \theta)$$

Power reflects the covariance between the original signal and a complex sinusoid at frequency f. Or you can think of it as the proportion of the signal variance explained by a sinusoid at frequency f.
Zero-padding

The DFT/FFT of a sequence of length \(N \) produces power estimates at \(N \) frequencies evenly distributed between 0 and the sampling rate \((F_s) \) (or \(\text{floor}(N/2+1) \) frequencies between 0 and the Nyquist rate, \(F_n = F_s/2 \)).

Padding the signal with \(Q \) zeros achieves the following:

1) Allows enforcement of signal length as a power of two enabling FFT
2) Increases the number of frequency bins between 0 and \(F_s \) from \(N \) to \(N+Q \) (intermediate points are sinc interpolates)

Zero-padding does not increase frequency resolution (number of independent degrees of freedom)
Tapering

Fourier’s Theorem lets us exactly describe any continuous, stationary signal using an infinite weighted sum of sinusoids. Discontinuous functions can be infinitely approximated, but the approximation may be poor for finite sampling.

Gibbs Phenomenon
“Rippling” effect due to discontinuities in signal (e.g. edges of the truncated signal)

- Infinite number of frequencies required to approximate discontinuities
- This means infinite (or very large) number of samples required (not possible)

What can we do?
Tapering

Smoothly decay signal to zero at endpoints to smooth discontinuity

EEG

Tapered EEG
Tapering reduces the effect of the Gibbs phenomenon making it easier to identify “true” peaks in the spectrum from spurious ripple peaks (minimized broadband bias or “spectral leakage”).

The cost is increased width of central peak (narrowband bias).
Spectral Estimation via Welch’s Method

Given K windows:

- Variance is reduced by a factor of K
- Frequency resolution also reduced by a factor of K

\[S_{Welch}(f) = \frac{1}{K} \sum_{k=1}^{K} |S_k(f)| \]

- Tapering also results in data loss \rightarrow decreased frequency resolution (increased narrowband bias)
- Can we mitigate data loss?
Spectral Estimation via Welch’s Method

Overlap-add method results in reduced data loss due to tapering, while preserving spectral variance reduction 😊

\[
S_{\text{Welch}}(f) = \frac{1}{K} \sum_{k=1}^{K} |S_k(f)|
\]
Averaging spectra over \(n \) independent trials leads to further reduction of variance by a factor of \(n \).

\[
\frac{1}{n} \sum_{k=1}^{n} |S_k(f)|^2
\]
Non-Stationary Signals

Non-stationary signals include bursts, chirps, evoked potentials, …
Spectrogram or ERSP

FFT

5 Hz

10 Hz

20 Hz

30 Hz

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms
Spectrogram or ERSP
Power spectrum and event-related spectral (perturbation)

\[ERS(f, t) = \frac{1}{n} \sum_{k=1}^{n} |S_k(f, t)|^2 \]

Here, there are \(n \) trials
Each trial is time-locked to the same event (hence “event-related” spectrum)
The ERS is the average power across event-locked trials

Scaled to dB \(10 \log_{10} \)}
Absolute versus relative power

Absolute = ERS

Relative = ERSP (dB or %)

To compute the ERSP, we just subtract the pre-stimulus ERS from the whole trial.
The Uncertainty Principle

A signal cannot be localized arbitrarily well both in time/position and in frequency/momentum.

There exists a lower bound to the Heisenberg product:

\[\Delta t \Delta f \geq \frac{1}{4\pi} \]

or \[\Delta f \geq \frac{1}{4\pi \Delta t} \]

e.g. here are two possible \((\Delta f, \Delta t)\) pairs:

\[\Delta f = 1\text{Hz}, \Delta t = 80\text{ msec} \quad \text{or} \quad \Delta f = 2\text{Hz}, \Delta t = 40\text{ msec} \]

Werner Karl Heisenberg (1901 – 1976)

Note: \(\Delta f\) means “difference between successive frequencies” or the inverse of the frequency resolution. Ditto for \(\Delta t\).
Natural biophysical processes may exhibit sustained changes in narrowband low-frequency oscillations along with rapidly-changing (e.g. “burst”) high-frequency oscillations.

The Short-Time Fourier Transform has a constant temporal resolution for all frequencies.

Can we adapt the time-frequency resolution tradeoff for individual frequencies to improve spectral estimation?

Yes, we can!
Wavelet Analysis

We estimate the time-varying power at 10 Hz by convolving EEG signal with a tapered 10 Hz complex sinusoid (Morlet wavelet).
By convolving stretched and scaled versions of the “mother” wavelet with the EEG signal, we determine the time-frequency distribution of power.
Some Wavelet Families

Morlet

Daubechies_4

Daubechies_20

Coiflet_3

Haar_4

Symmlet_4

Meyer_2

Battle_3
Trading Frequency for Time
(and vice versa)

Wide window (temporally diffuse)

10 Hz

10 Hz

10 Hz

10 Hz

hi corr ✓

Hi corr ✓

Low corr ✓

Hi corr ✓

10 Hz

10 Hz

10 Hz

10 Hz

Low corr ✓

Hi corr X

Low corr ✓

Hi corr X

Narrow window (temporally compact)

High Freq. resolution
Low Time Resolution

Low Freq. resolution
High Time Resolution
FFT versus Wavelets

- **Fixed time res**
 - No freq res

- **Fixed freq res**
 - No time res

- **Variable time res**
 - Variable freq res

- **Equal time and freq resolution**

Adapted from http://www.cerm.unifi.it/EUcourse2001/Gunther_lecturenotes.pdf, p.10
Wavelet scale

Wavelet (0)

Scale

1Hz

2Hz

4Hz

6Hz

8Hz

10Hz

constant window size (time resolution) for increasing frequency → increasing # cycles with frequency.

Wavelet (1)

scale expansion factor (q)

window size decreases by a factor of 2 for each octave (power of 2) → constant # of cycles at each frequency
Wavelet scale expansion factor

Larger expansion factor produces larger scale decrements (increased time resolution, lower frequency resolution) for increasing frequency.

Number of cycles at highest frequency for an expansion factor of q:

$$C_{f_{\text{max}}} = \frac{f_{\text{max}}}{f_{\text{min}}} C_{f_{\text{min}}} (1 - q)$$
FFT versus Wavelets

FFT (Wavelet(0))

Wavelet (1)

scale expansion factor (q)
Intertrial Coherence (ITC)

Phase Resetting

Slide courtesy of Stefan Debener
Inter-Trial Coherence (ITC)

Trial 1
Trial 2
Trial 3

Power = mean(amplitudes^2)
0.44 or -8.3 dB

ITC = |mean(norm’d phase vectors)|
Magnitude: 0.33

>> EEG = pop_newtimef(EEG,..., 'plotitc','on');
Intertrial Coherence (ITC)

Phase Resetting

ITC: .05

ITC: .80
Time-Frequency Analysis of Biophysical Time series:

Practicum
Plot periodogram (spectrum) using Welch’s method

- **winsize**, 256 (change FFT window length)
- **nfft**, 256 (change FFT padding)
- **overlap**, 128 (change window overlap)
Plot IC ERSP

Component number
Sub epoch time limits [min max] (msec)
Frequency limits [min max] (Hz) or sequence
Baseline limits [min max] (msec) (0->pre-stim.)
Wavelet cycles [min max fact] or sequence
ERSP color limits [max] (min=-max)
ITC color limits [max]
Bootstrap significance level (Ex: 0.05)
Optional newtimef() arguments (see log power)

Use 200 time points
Use limits, padding 1
Use divisive baseline
Use limits
Log spaced
No baseline
Use FFT

Figure 1: Panel showing options for plotting IC ERSP.

Figure 2: Heatmap showing component 1 power and inter-trial phase coherence (faces, epochs).
Pure green denotes non-significant points.
Figure 3

Component 1 power and inter-trial phase coherence (faces, epochs)

Frequency (Hz)

Time (ms)

ERP

Increase # freq bins

padratio = 1

padratio = 2

Figure 4

Component 1 power and inter-trial phase coherence (faces, epochs)

ERSP (dB)

Time (ms)

ITC

Component number
Sub epoch time limits [min max] (msec)
Frequency limits [min max] (Hz) or sequence
Baseline limits [min max] (msec) (0->pre-stim.)
Wavelet cycles [min max/fact] or sequence
ERSP color limits [max] (min=--max)
ITC color limits [max]
Bootstrap significance level (Ex: 0.01 -> 1%)
Optional newtime() arguments (see Help)
Show the actual dominant phase of the signal.
To visualize both low and high frequencies

```matlab
freqs = exp(linspace(log(1.5), log(100), 65));
cycles = [linspace(1, 8, 47) ones(1,18)*8 ];
```
Component time-frequency
Exercise

• **ALL**
 Start EEGLAB, from the menu:
 load <eeglab_root>/sample_data/
eeeglab_data_epochs_ica.set
 or your own data

• **Novice**
 From the GUI, Plot spectral decomposition with
 100% data and 50% overlap (‘overlap’). Try
 reducing window length (‘winsize’) and FFT length
 (‘nfft’)

• **Intermediate**
 Same as novice but using a command line call to
 the pop_spectopo() function. Use GUI then history
 to see a standard call (“eegh”).

• **Advanced**
 Same as novice but using a command line call to
 the spectopo() function.
Exercise - newtimef

- **Novice**
 From the GUI, pick an interesting IC and plot component ERSP. Try changing parameters window size, number of wavelet cycles, padratio,

- **Intermediate**
 From the command line, use newtimef() to tailor your time/frequency output to your liking. Look up the help to try not to remove the baseline, change baseline length and plot in log scale. Enter custom frequencies and cycles (2 slides back).

- **Advanced**
 Compare FFT, the different wavelet methods (see help), and multi-taper methods (use timef function not newtimef). Enter custom frequencies and cycles. Look up newtimef help to compare conditions. Visualize single-trial time-frequency power using erpimage.