STUDY clustering overview

STEP 1
Build a STUDY

STEP 2
Precompute the data

STEP 3
Precluster the data

STEP 4
Cluster the data

Exercise...
STUDY clustering overview

STEP 1
Build a STUDY

STEP 2
Precompute the data

STEP 3
Precluster the data

STEP 4
Cluster the data

Exercise...
Memory options should change when using STUDY vs single dataset.
Build a STUDY

- Import data
 - Import epoch info
 - Import event info
- Export
- Load existing dataset
 - Save current dataset(s)
- Clear dataset(s)
- Create study
 - Using all loaded datasets
 - Browse for datasets
- Load existing study
 - Save current study
 - Save current study as
 - Clear study
- Memory and other options
 - Save history
- Quit
Build a STUDY, cont'd

![Create a new STUDY set](image)

<table>
<thead>
<tr>
<th>dataset filename</th>
<th>browse</th>
<th>subject</th>
<th>session</th>
<th>condition</th>
<th>group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Important note: Removed datasets will not be saved before being deleted from EEGLAB memory.

Update dataset info - datasets stored on disk will be overwritten (unset = Keep study info set).

Delete cluster information (to allow loading new datasets, set new components for clustering).

Choose dataset to add to STUDY

- Name: [dataset names]
- Date modified: [dates]
- Type: [file types]

Help
Edit dataset info

Create a new STUDY set -- pop_study()

Edit STUDY set information - remember to save changes

- **STUDY set name:** [Sternberg]
- **STUDY set task name:** [Sternberg]
- **STUDY set notes:**

<table>
<thead>
<tr>
<th>dataset filename</th>
<th>browse</th>
<th>subject</th>
<th>session</th>
<th>condition</th>
<th>group</th>
<th>select by r.v.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C:Users\julie\Documents\Work</td>
<td>...</td>
<td>S01</td>
<td></td>
<td>memorize</td>
<td></td>
<td>Clear</td>
</tr>
<tr>
<td>C:Users\julie\Documents\Work</td>
<td>...</td>
<td>S01</td>
<td></td>
<td>ignore</td>
<td></td>
<td>Clear</td>
</tr>
<tr>
<td>C:Users\julie\Documents\Work</td>
<td>...</td>
<td>S02</td>
<td></td>
<td>probe</td>
<td></td>
<td>Clear</td>
</tr>
<tr>
<td>C:Users\julie\Documents\Work</td>
<td>...</td>
<td>S02</td>
<td></td>
<td>memorize</td>
<td></td>
<td>Clear</td>
</tr>
<tr>
<td>C:Users\julie\Documents\Work</td>
<td>...</td>
<td>S03</td>
<td></td>
<td>ignore</td>
<td></td>
<td>Clear</td>
</tr>
<tr>
<td>C:Users\julie\Documents\Work</td>
<td>...</td>
<td>S03</td>
<td></td>
<td>probe</td>
<td></td>
<td>Clear</td>
</tr>
<tr>
<td>C:Users\julie\Documents\Work</td>
<td>...</td>
<td>S03</td>
<td></td>
<td>memorize</td>
<td></td>
<td>Clear</td>
</tr>
<tr>
<td>C:Users\julie\Documents\Work</td>
<td>...</td>
<td>S04</td>
<td></td>
<td></td>
<td></td>
<td>Clear</td>
</tr>
</tbody>
</table>

Important note: Removed datasets will not be saved before being deleted from EEGLAB memory

- Dataset info (condition, group, ...) differs from study info. [set] = Overwrite dataset info.
- Delete cluster information (to allow loading new datasets, set new components for clustering, etc.)
ICs to cluster
Build a STUDY

% Open eeglab:
[ALLEEG EEG CURRENTSET ALLCOM] = eeglab;

% Set memory options:
pop_editoptions('option_storedisk', 1, 'option_savetwofiles', 1,...
 'option_saveica', 1, 'option_single', 0, 'option_memmapdata',...
 0, 'option_computeica', 1, 'option_scaleicarms', 0,...
 'option_rememberfolder', 1);
% saves a file 'eeg_options.m' to your current working directory

% Initialize EEGLAB/STUDY variables:
STUDY = []; CURRENTSTUDY = 0; ALLEEG=[]; EEG=[]; CURRENTSET=[];

Most important option:
• Allows only one dataset to be loaded at once.
• Most STUDYs are too big to have all data loaded at once.
Build a STUDY

% Faster alternative to building a STUDY manually
% Example STUDY: 13 subjects, 3 conditions

% Define variables:

`basedir = 'C:\...\EEGLAB_WORKSHOP\STUDY\'`;
`setnames = {'Memorize.set','Ignore.set','Probe.set'};`;
`subjs = {'S01','S02','S03','S04','S05','S06','S07',...
'S08','S09','S10','S11','S12','S13'};`;
`studynname = 'Sternberg';`;
`taskname = 'Sternberg';`;
`savename = 'stern.study';`;
Define variables

% concatenate string variables:

[] % strings inside brackets will be concatenated

dataset = [basedir,subjs{subj},'\',setnames{cond}];

C:\EEGLAB_Workshop\STUDY\S01\Memorize.set
% Now loop through subjects and add to the STUDY:
index = 1; % initialize STUDY index
for subj = 1:length(subjs) % for each subject
 for cond = 1:length(setnames) % for each condition
 datset = [basedir,subjs{subj},'\',setnames{cond}];
 [STUDY ALLEEG] = std_editset(STUDY, ALLEEG,...
 'name', studyname, 'task', taskname,...
 'commands',{{'index',index,'load',datset},...
 {'dipselect',0.15},{'subject',subjs{subj}},{...
 {'condition',conds{cond}}},...
 'inbrain','on','updatedat','off',...
 'savedat', 'off','filename', [basedir, savename]];
 index = index + 1;
 CURRENTSTUDY = 1; EEG = ALLEEG; CURRENTSET = [1:length(EEG)];
 [STUDY, ALLEEG] = std_checkset(STUDY, ALLEEG);
 end;
end;
eeglab redraw
STUDY structure

STUDY =

 name: 'Sternberg'
 task: 'Sternberg'
 datasetinfo: [1x39 struct]
 notes: ''
 filename: 'stern.study'
 filepath: 'C:\Users\julie\Documents\Workshops\Finland\STUDY'
 history: [1x7332 char]
 subject: {1x13 cell}
 group: {''}
 session: []
 condition: {'ignore' 'memorize' 'probe'}
 setind: [3x13 double]
 etc: [1x1 struct]
 preclust: [1x1 struct]
 cluster: [1x1 struct]
 changrp: [1x71 struct]
 saved: 'yes'

>>
Subject info in STUDY structure

```matlab
>> STUDY.datasetinfo

ans =

1x39 struct array with fields:
    filepath
    filename
    subject
    session
    condition
    group
    index
    comps

>>
```

Gives information for each dataset of each subject
STEP 1
Build a STUDY

STEP 2
Precompute the data

STEP 3
Precluster the data

STEP 4
Cluster the data

Exercise...
Precompute data measures
Precompute data measures

TIP: Compute all measures so you can test different combinations for clustering

```matlab
[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'components', ...
'erp', 'on', 'rmbase', [-200 0], 'scalp', 'on', 'spec', ...
'on', 'specparams', {}, 'ersp', 'on', 'erspparams', ...
{'cycles',[3 0.5], 'nfreqs',100, 'freqs',[3 70], ...
'alpha',0.01}, 'itc', 'on');
```
STUDY clustering overview

STEP 1
Build a STUDY

STEP 2
Precompute the data

STEP 3
Precluster the data

STEP 4
Cluster the data

Exercise...
Precluster the data
Precluster the data

\[
\text{parentclust} = 1; \quad \% \text{ cluster 1 is always full parent cluster}
\]

\[
\text{[STUDY ALLEEG]} = \text{std_preclust}(\text{STUDY, ALLEEG, parentclust, {'spec','npca',5,}
\text{'norm',1,'weight',1,'freqrange',[3 25]},{'erp','npca',6,'norm',1,'}
\text{'weight',1, 'timewindow',[0 400]},{'scalp','npca',10,'norm',1,'weight',1,'}
\text{'abso',1},{'dipoles','norm',1,'weight',10},{'ersp','npca',20,'}
\text{'freqrange',[3 30] , 'timewindow',[0 600],'norm',1,'weight',1},{'itc','}
\text{'npca',6,'freqrange',[3 30],'timewindow',[0 400] , 'norm',1, 'weight',1});
\]
Choosing data measures

What measure(s) should you use?

• It depends on your final cluster criteria…
 - If for example, your priority is dipole location, then cluster only based on dipole location…

But consider:

 - What is the difference between these two components?
Choosing data measures

Similar dipole location, very different orientation.

Obvious dramatic effect on scalp map topography:

But, do they perform the same functions?
Choosing data measures

ERPs seem different...
Choosing data measures

Spectra are similar, but they have variable responses to different conditions…

EEGLAB Workshop X, June 14-17, 2010, Jyväskylä, Finland: Julie Onton – STUDY Intro
Choosing data measures

ERSPs have some similar features...
Choosing data measures

What data measures should you use?

It depends…

• broadly-matched ICs: use many/all of the measures.

• specifically-matched ICs: use one/few of the measures.
What should clusters look like?

ICs clustered by dipole location and ERSP activity
% std_dipoleclusters() variables:

clusters = [3:length(STUDY.cluster)]; % clusters to plot
title = 'Cluster Dipoles'; % figure title
plot_params = [2,2,1]; % [nrows,ncols,subplot]
views = [1,2,3,4]; % 1=top,2=side,3=rear,4=oblique
cols = hsv(length(clusters));

% std_dipoleclusters function call:

std_dipoleclusters(STUDY,ALLEEG,'clusters',clusters,...
'title',title,'viewnum',views,'rowcolplace',plot_param,...
'centroid','off','colors',cols);
Precluster: Use singular values from PCA

%% Do it yourself:
%% Load all ERSP data
%% decompose with PCA
%% plot singular values
(See code in ‘Tutorial_8_BuildSTUDY.m’)

Normalized singular values

~ relative variance of principal components

10% of max singular value
STUDY clustering overview

STEP 1
Build a STUDY

STEP 2
Precompute the data

STEP 3
Precluster the data

STEP 4
Cluster the data

Exercise...
Cluster components

```
nclusts = 25; % choose # of clusters to create
[STUDY] = pop_clust(STUDY, ALLEEG,'algorithm','kmeans','clus_num',nclusts);
```
View and edit clusters

![EEGLAB v6.0b interface showing study settings and options](image)

- **STUDY set: At...**
- **Study filename:**
- **Study task name:**
- **Nb of subjects:**
- **Nb of conditions:**
- **Nb of sessions:**
- **Nb of groups:**
- **Epoch consistency:** yes
- **Channels per frame:** 31
- **Channel locations:** yes
- **Clusters:** 26
- **Status:** Pre-clustered
- **Total size (Mb):** 39.1

Options available:
- Edit study info
- Precompute channel measures
- Plot channel measures
- Precompute component measures
- Build preclustering array
- Cluster components
- Edit/plot clusters
Plot/edit clusters

Study name: 'Sternberg' (336 of 336 components clustered)

Select cluster to plot
- All cluster centroids
- ParentCluster 1 (336 ICs)
 - Cls 2 (17 ICs)
 - Cls 3 (6 ICs)
- Plot scalp maps
- Plot dipoles
- Plot ERP(s)
- Plot spectra
- Plot ERSPs
- Plot ITCs
- Plot cluster properties

Select component(s) to plot
- 'Cls 2' comp. 1 (S01 IC21)
- 'Cls 2' comp. 2 (S03 IC21)
- 'Cls 2' comp. 3 (S03 IC25)
- 'Cls 2' comp. 4 (S04 IC19)
- Plot scalp map(s)
- Plot dipole(s)
- Plot ERP(s)
- Plot spectra
- Plot ERSP(s)
- Plot ITC(s)
- Plot component properties

Create new cluster
- Rename selected cluster
- Merge clusters

Reassign selected component(s)
- Remove selected outlier comp(s.
- Auto-reject outlier components

Help
Cancel
Ok
Plot cluster data

- Plot mean scalp maps for easy reference
Plot cluster data

Choose which cluster

Choose which components
STUDY clustering overview

STEP 1
Build a STUDY

STEP 2
Precompute the data

STEP 3
Precluster the data

STEP 4
Cluster the data

Exercise...
Exercise

• **Novice**
 - Use the GUI to build a STUDY (for practice, try just a few subjects).
 - Choose 'precompute' options (but do not recalculate for the sake of time).
 - Choose 'precluster' options and cluster.

• **Intermediate**
 - Script a loop to build a STUDY from the commandline
 - Precluster (pre-computation already done) and cluster components using measures of your choice.

• **Advanced**
 - Load raw data measures and run PCA to determine the relative size of PCA dimensions for each data measure.
 - Try preclustering/clustering based on your observations

**All scripts for exercises can be found in:
 ../EEGLAB_Workshop/Scripts/Tutorial_7_BuildSTUDY.m
(initial variables missing a ‘conds’ variable:
 conds = {'memorize','ignore','probe'};