STUDY analysis

Task 1
Cluster ERP image (IC polarity)

Task 2
Cluster cross coherence

Task 3
Dipole density

Exercise...
STUDY analysis

Task 1
Cluster ERP image (IC polarity)

Task 2
Cluster cross coherence

Task 3
Dipole density

Exercise...
Cluster ERP image

Purpose of ERP image:
- Observe single-trial dynamics of an IC activation (or power)

Purpose of CLUSTER ERP image:
- Observe single-trial dynamics of multiple *matched* ICs from several subjects

Two approaches:
- Average ERP images across ICs
- Merge trials across ICs
Cluster ERP image: match polarity

reversed polarities reflect mismatched scalp maps

reorienting maps and activations gives a more coherent picture
Movie of IC scalp map over time

Potential (uV)

Time (ms)

EEGLAB Workshop X, June 14-17, 2010, Jyväskylä, Finland: Julie Onton –STUDY analysis
Matching activation polarity

EEGLAB STUDY matches polarities for you
Matching activation polarity

However, original IC maps/activations may be opposite within a cluster:

Reversed polarity
Matching activation polarity

Reorient map AND activation of one IC to align
Cluster ERP image: RT sort

Consistent scalp maps

Sort cluster ERP image by response time

Consistent activations
STUDY analysis

Task 1
Cluster ERP image (IC polarity)

Task 2
Cluster cross coherence

Task 3
Dipole density

Exercise...
Cross coherence between clusters requires 2 clusters with common subjects
STUDY cross coherence

\[
\text{clust1} = 6;
\]
\[
\text{clust2} = 23;
\]
% Crossf parameters:--------------------------------

\[
\text{type} = '\text{phasecoher}';
\]
\[
\text{alpha} = .01;
\]
\[
\text{cycles} = [3 0.5]; \text{ % wavelet cycles}
\]
\[
\text{freqscale} = '\text{log}';
\]
\[
\text{frqlim} = [3 30]; \text{ % calculation frequency limits in Hz}
\]
\[
\text{tmlims} = [-100 1000]; \text{ % [min max] times in ms for window}
\]
for cond = 1:size(STUDY.cluster(clust1).sets,1)
 ttls = cell(1,0); allrts = cell(1,0); p=1;
 for ic = 1:length(STUDY.cluster(clust1).comps)
 setidx = STUDY.cluster(clust1).sets(cond,ic);
 comp1 = STUDY.cluster(clust1).comps(ic);
 [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, CURRENTSET,...
 'retrieve', setidx, 'study', CURRENTSTUDY);
 subjmatch = find(STUDY.cluster(clust2).sets(cond,:) == setidx);
 for c = 1:length(subjmatch)
 comp2 = STUDY.cluster(clust2).comps(subjmatch(c));
 [coh(::, ::, p), mcoh, times, freqs, cohboot(::, p), cohang(::, ::, p)] = ...
 newcrossf(EEG.icaact(comp1,:), EEG.icaact(comp2,:),...
 EEG.pnts, [EEG.xmin*1000 EEG.xmax*1000], EEG.srate, cycles,...
 'alpha', alpha, 'winsize', EEG.srate, 'newfig', 'off', ...
 'type', type, 'freqs', frqlim, 'freqscale', freqscale,...
 'savecoher', 0 , 'plotamp' , 'off', 'plotphase' , 'off');
 p = p+1;
 ttls{end+1} = [STUDY.datasetinfo(setidx).subject,': ICs ',...
 int2str(comp1),'-',int2str(comp2)];
 end;
 end;
condcohs{cond} = coh;
condboots{cond} = cohboot;
condang{cond} = cohang;
end;
Task 4: Cross coherence between clusters

```matlab
figure;
imagesclogy(times,freqs,mean(coh,3));
set(gca,'ydir','norm');hold on;
plot([0 0],[get(gca,'ylim')],'k-');

title(['Cluster ',...
int2str(clusts(1)),' vs cluster ',...
int2str(clusts(2))]);

% include a colorbar
% for coh values:
cbar;
```

Gives average phase coherence between members of two different IC clusters.
STUDY analysis

Task 1
Cluster ERP image (IC polarity)

Task 2
Cluster cross coherence

Task 3
Dipole density

Exercise...
Dipole density plotting

PURPOSE: to visualize distributions of dipoles in ‘MRI-esque’ way

Broadband gamma IMs used for classification

<table>
<thead>
<tr>
<th>dipoles/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>-2</td>
</tr>
<tr>
<td>-22</td>
</tr>
</tbody>
</table>

EEGLAB Workshop X, June 14-17, 2010, Jyväskylä, Finland: Julie Onton –STUDY analysis
Explanation of ‘method’ argument

'method' - ['alldistance'|'distance'|'entropy'|'relentropy'] method for computing density:

'alldistance' - {default} take into account the gaussian-weighted distances from each voxel to all the dipoles. See 'methodparam' (below) to specify a standard deviation (in mm) for the gaussian weight kernel.

'distance' - take into account only the distances to the nearest dipole for each subject. See 'methodparam' (below).

'entropy' - taking into account only the nearest dipole to each voxel for each subject. See 'methodparam' below.

'relentropy' - as in 'entropy,' but take into account all the dipoles for each subject.
cond = 1; clust = 3;
dipsources = struct('posxyz',[],'momxyz',[],'rv',[]); n = 1;
nowidx = 0; % initialize
for ic = 1:length(STUDY.cluster(clust).comps)
 setidx = STUDY.cluster(clust).sets(cond,ic);
 comp = STUDY.cluster(clust).comps(ic);
 if setidx ~= nowidx % don't call in if already active
 [ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, CURRENTSET, ...
 'retrieve',setidx, 'study',CURRENTSTUDY); nowidx = setidx;
 end;
 model = EEG.dipfit.coordformat;
 dipsources(1,n).posxyz = EEG.dipfit.model(comp).posxyz;
 dipsources(1,n).momxyz = EEG.dipfit.model(comp).momxyz;
 dipsources(1,n).rv = EEG.dipfit.model(comp).rv; n = n + 1;
end;
dipoledensity(dipsources , 'method','alldistance','methodparam',10,...
 'coordformat',model);
Exercise

- **ALL**
 - Load workshop STUDY

- **Novice**
 - Load and plot individual ERSPs for one or more clusters.
 - How consistent are the ERSPs in these clusters?

- **Intermediate**
 - Pick a cluster to investigate
 - Plot mean power in a small time/frequency window across all ICs and conditions for this cluster

- **Advanced**
 - Plot ERP image for a cluster sorting for response time (Probe).
 - Try a dipole density plot for one or more clusters of interest
 - try plotting different MRI slices to better view cluster

** All scripts for Intermediate/Advanced exercises can be found in ...
../workshop/Scripts/Tutorial_9_STUDYanalysis_II.m