Practicum: Extending BCILAB and Implementing Custom Methods

EEGLAB Workshop 2013, Track B

Christian A. Kothe
SCCN, UCSD
1. Concrete Case Study
2. BCI Paradigm Plugins
 1. Implementing the SPoC algorithm
3. Machine Learning Plugins
 1. Implementing Ridge Regression
4. Signal Processing Plugins
 1. Implementing Delay Embedding
Concrete Case Study

• **Goal**: Implement a method that can predict continuous target values based on brain oscillations
 – Learns spatial filters
 – Learns frequency weighting

• **Data**: Predict time-on-task target variable in imagined-movements dataset userdata/imag.set

• **Script**: Use scripting_tutorial.m, section *Data Curation Example II*
1.1 BCI Paradigm Plugins

Implementing SPoC
The SPoC Algorithm

• Recent method:

• Generalization of CSP to regression settings, similar implementation
 – Start from ParadigmCSP
2.1 Machine Learning Plugins

Implementing Ridge Regression
Ridge Regression

• Regression with l2 regularization
• Implementation available on Wikipedia\(^1\)
• Start from a short/simple existing plugin: ml_trainsvmperf/ml_predictsvmperf
• Introduces a regularization parameter (set to 1 by default)

\(^1\): http://en.wikipedia.org/wiki/Tikhonov_regularization, 4\(^{th}\) equation
3.1 Signal Processing Plugins

Implementing Delay Embedding
Delay Embedding

• Idea: stacking delayed versions of the signal into multiple channels
• Allows to generalize linear spatial models to linear spatio-temporal models which can implement temporal filters, e.g., FIR filters
• Known to work well with CSP, see: Lemm, Steven, et al. Spatio-spectral filters for improving the classification of single trial EEG, Biomedical Engineering, IEEE Transactions on 52.9 (2005): 1541-1548 – should work with SPoC, too
• Can be implemented on epoched signals or continuous signals – for simplicity, start from simple epoch-based filter (flt_fft)

¹: note, independent_channels must be changed to false