Forward and inverse models
Localizing sources using DIPFIT

Robert Oostenveld

Donders Institute for Brain, Cognition and Behaviour
Nijmegen, The Netherland
DIPFIT: localizing dipoles

• Motivation
• Ingredients
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – Comparison EEG and MEG
• Inverse modeling
 – Single and multiple dipole fitting
 – Distributed source models
DIPFIT: localizing dipoles

- **Motivation**

- **Ingredients**
 - Source model
 - Volume conductor model
 - Analytical (spherical model)
 - Numerical (realistic model)
 - Comparison EEG and MEG

- **Inverse modeling**
 - Single and multiple dipole fitting
 - Distributed source models
Motivation

- Why fit dipoles?
- Why measure EEG?
- Why do ICA?

- Get extra information about brain processes
 - Time course of activity \rightarrow EEG
 - Location of activity \rightarrow fMRI
Difference between EEG and fMRI

- EEG measures post-synaptic potentials
 - related to synchronized neuronal input
- fMRI measures BOLD
 - related to energy consumption

- Different characteristics in the time domain
- Different generators

- Timecourse *and* location
Why EEG: extra information

- Timecourse
 - ERSP
 - ERP

- Topography
 - Scalp distribution
 - Underlying generators

ICA
Independent component analysis

Cocktail Party

Mixture of Brain source activity
Infomax ICA

\[Y = [A; B] \]

\[X = YW \]

ICA

\[\tilde{Y} = W^T \tilde{X} \]
Source modelling

forward problem

- physiological source
- electrical current
- body tissue volume conductor
- observed potential or field

inverse problem
Overview

• Motivation
• Ingredients
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – Comparison EEG and MEG
• Inverse modeling
 – Single and multiple dipole fitting
 – Distributed source models
Neuronal currents

Stellate cell

Pyramidal cell
Symmetry, orientation and activation

- radial symmetric
- random oriented
- asynchronously activated
- synchronously activated parallel oriented
Motivation for current dipoles

• Neurophysiological motivation
Equivalent current dipoles
Motivation for current dipoles

- Neurophysiological motivation

- Physical/mathematical motivation
 - Any current distribution can be written as a multipole expansion
 - First term: monopole (must be zero)
 - Second term: dipole
 - Higher order terms: quadrupole, octupole
Motivation for current dipoles

- Neurophysiological motivation

- Physical/mathematical motivation
 - Any current distribution can be written as a multipole expansion
 - First term: monopole (must be zero)
 - Second term: dipole
 - Higher order terms: quadrupole, octupole

- Convenience
 - Dipoles can be used as building block in distributed source models
Overview

- Motivation and background
- Forward modeling
 - Source model
 - **Volume conductor model**
 - Analytical (spherical model)
 - Numerical (realistic model)
 - Comparison EEG and MEG
- Inverse modeling
 - Single and multiple dipole fitting
 - Distributed source models
 - Spatial filtering
Volume conductor

• electrical properties of tissue
• geometrical description

• spherical model
• realistic shaped model

→ Describes how the currents flow, not where they originate from
Volume conductor

- **Advantages spherical model**
 - mathematically accurate
 - reasonably accurate
 - computationally fast
 - easy to use

- **Disadvantages spherical model**
 - inaccurate, esp. in some regions
 - difficult alignment with anatomy
Volume conductor

• Advantages realistic model
 – accurate solution for EEG

• Disadvantages realistic model
 – more work
 – individual anatomical MRI required
 – computationally slow(er)
 – numerically instable
 – difficult in interindividual comparison

→The pragmatic solution is to use a standard realistic headmodel for EEG
Realistic volume conductor

• Computational methods for volume conduction problem that allow realistic geometries
 – Boundary Element Method (BEM)
 – Finite Element Method (FEM)

• Geometrical description
 – triangles
 – tetraeders/voxels
Volume conductor: BEM

• Boundary Element Method
 – description of geometry by compartments
 – each compartment is
 • homogenous
 • isotropic
 – important tissues
 • skin
 • skull
 • brain
 • (CSF)
 – triangulated surfaces as boundaries
 – surfaces should be closed
Volume conductor: FEM

- Tessellation of 3D volume in tetraeders
- Large number of elements
- Each tetraeder can have its own conductivity

- FEM is most accurate numerical method
- Computationally expensive
- Accurate conductivities are not (well) known
Overview

• Motivation and background

• Forward modeling
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – **Comparison EEG and MEG**

• Inverse modeling
 – Single and multiple dipole fitting
 – Distributed source models
 – Spatial filtering
EEG volume conduction
EEG volume conduction

- Potential difference between electrodes corresponds to current flowing through skin
- Only tiny fraction of current passes through skull
- Therefore the model should describe skull and skin as accurately as possible

- Problems with skull
 - Not visible in anatomical MRI
 - Thickness varies
 - Conductivity is not homogeneous
 - Complex geometry at base of skull
Electric current → magnetic field
MEG volume conduction

- Measures sum of fields associated with
 - Primary currents
 - Secondary currents !!!
MEG volume conduction

- Only tiny fraction of current passes through the poorly conductive skull
- Therefore skull and skin can be neglected in the MEG model
- Local conductivity around dipole important
 - geometry
 - conductivity
Differences between EEG and MEG

- more blurred
- deep sources
- electrode noise
- reference electrode
- fixed to head
- skull+skin important for modelling

- no radial or deep sources
- environmental noise
- independent sensors
- head can move
- skull+skin not important
Overview

• Motivation

• Forward modeling
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – Comparison EEG and MEG

• Inverse modeling
 – Single and multiple dipole fitting
 – Distributed source models
Source modelling

forward problem

- physiological source electrical current
- body tissue volume conductor
- observed potential or field

inverse problem
Inverse methods

- Single and multiple dipole models
 - Minimize error between model and measured potential/field

- Distributed dipole models
 - Perfect fit of model to the measured potential/field
 - Minimize additional constraint on sources
 - LORETA (smoothness)
 - Minimum Norm (L2)
 - Minimum Current (L1)

- Spatial filtering
 - Scan whole brain with single dipole and compute the filter output at every location
 - MUSIC
 - Beamforming (e.g. LCMV, SAM, DICS)
Overview

• Motivation and background
• Forward modeling
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – Comparison EEG and MEG
• Inverse modeling
 – *Single and multiple dipole fitting*
 – Distributed source models
 – Spatial filtering
Single or multiple dipole models

- Manipulate source parameters to minimize error between measured and model data
 - Location of each source
 - Orientation of each source
 - Strength of each source
- Orientation and strength together correspond to the “dipole moment” and can be estimated linearly
- Position is estimated non-linearly
- Source parameter estimation
Parameter estimation

\[Y = f(X; \ a, b) = a \times X + b \]

\[\xi = a, b, c, \ldots \]
Parameter estimation: model

measured potential

forward model for the data

select “optimal” model

\[V_i = V(\vec{r}_i) + \text{noise} \]

\[Y_i = Y(r_i; \xi) + \text{noise} \]

\[\min_\xi \left\{ \sum_{i=1}^{N} (Y(r_i; \xi) - V(r_i))^2 \right\} \]
Select optimal model

\[\text{error}(\xi) = \sum_{i=1}^{N} (Y_i(\xi) - V_i)^2 \Rightarrow \min_{\xi} (\text{error}(\xi)) \]

\[\xi = a, b, c, \ldots \]
Dipole *scanning*: grid search

- define grid with allowed dipole locations
- compute optimal dipole moment for each location
- compute value of goal-function
- plot value of goal-function on grid

- number of evaluations:
 - single dipole, 1 cm grid: ~4 000
 - single dipole, ½ cm grid: ~32 000
 - two dipoles, 1 cm grid: ~16 000 000
Dipole fitting: nonlinear search

- start with an initial guess
- evaluate the local derivative of goal-function
- “walk down hill” to the most optimal solution

- number of evaluations: ~100
Overview

• Motivation and background
• Forward modeling
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – Comparison EEG and MEG
• Inverse modeling
 – Single and multiple dipole fitting
 – Distributed source models
 – Spatial filtering
Distributed source model

- Position of the source is **not estimated** as such
 - Pre-defined grid (3D volume or on cortical sheet)
- Strength is estimated
 - In principle easy to solve, however...
 - More “unknowns” (parameters) than “knowns” (measurements)
 - Infinite number of solutions can explain the data perfectly
 - Additional constraints required
 - Linear estimation problem
Distributed source model

- Linear estimation

\[\Psi = q_1 \Psi_1 + q_2 \Psi_2 + \ldots = \begin{bmatrix} \Psi_{1,1} & \Psi_{2,1} & \ldots \\ \Psi_{1,2} & \Psi_{2,2} & \ldots \\ \vdots & \vdots & \ddots \\ \Psi_{1,N} & \Psi_{2,N} & \ldots \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ \vdots \end{bmatrix} = L \cdot \tilde{q} \]

\[\tilde{q} = L^{-1} \cdot \Psi \]
Distributed source model

\[V = L \cdot q + \text{Noise} \]

\[
\min_q \{ \| V - L \cdot q \|^2 \} = 0 \quad !!
\]

- Regularized linear estimation:
 \[
 \min_q \{ \| V - L \cdot q \|^2 + \lambda^2 \cdot \| D \cdot q \|^2 \}
 \]

- Constrained linear estimation:
 \[
 \min_q \{ q^T \cdot W \cdot q \} \quad \text{while} \quad \| V - L \cdot q \|^2 = 0
 \]
Overview

• Motivation and background
• Forward modeling
 – Source model
 – Volume conductor model
 • Analytical (spherical model)
 • Numerical (realistic model)
 – Comparison EEG and MEG
• Inverse modeling
 – Single and multiple dipole fitting
 – Distributed source models
 – Spatial filtering
Spatial filtering

- position of the source as such is not estimated
- scanning the whole brain
 - single dipole as source
 - estimate activity at each grid location
 - that explains a part of the data
 - that suppresses other activity
- various methods
 - multiple signal classification (MUSIC)
 - beamforming
 - LCMV, SAM, DICS, …
- not a distributed source model, but a distributed representation of the single dipole estimate
- unmixing of data into “signal source” and “noise sources” using assumptions on temporal relation between sources
Summary 1

- Forward modelling
 - Required for the interpretation of scalp topographies
 - Interpretation of scalp topography is “source estimation”
 - Mathematical techniques are available that aid in interpreting scalp topographies -> inverse modeling
Summary 2

- Inverse modeling
 - Model assumption for volume conductor
 - Model assumption for source (i.e. dipole)
 - Additional assumptions on source
 - Single point-like source
 - Multiple point-like sources
 - Distributed source
 - Different mathematical solutions
 - Dipole fitting (linear and nonlinear)
 - Linear estimation (regularized)