NFT
Neuroelectromagnetic Forward Head Modeling Toolbox

Zeynep AKALIN ACAR
15th EEGLAB Workshop, Beijing
June, 2012
A complete framework for accurate forward problem solution.

Easy-to-use MATLAB environment with GUI and command-line functions.

Ability to use available subject information

– T1-weighted 3D MR images
– Digitized sensor (electrode) locations
Comparison with Dipfit

◆ The realistic model in Dipfit is a three-layer MNI head model represented with 3000 vertices.
 – The forward matrices are pre-calculated, so there is no need for FP calculations.

◆ NFT generates subject-specific models.
 – NFT does model generation and forward problem calculations.
 – More accurate.
T1-weighted

http://sccn.ucsd.edu/nft

Digitizer locations

http://sccn.ucsd.edu/nft
Head modeling from MR images

From a magnetic Resonance Image
- Image Segmentation
- Mesh Generation
- Source Space Generation
- Electrode Co-Registration

MR image

T1-weighted

Segmentation

Electrode Registration

BEM mesh
Preparing the MR Image

- Using FreeSurfer
 - Inhomogeneity correction
 - Convert to 1x1x1 volume
 - Arrange direction of the image
 - Save in analyze format
Image Segmentation

Filter the image
(Curvature Anisotropic Filtering)

From a magnetic Resonance Image

- Image Segmentation
- Mesh Generation
- Source Space Generation
- Electrode Co-Registration

Classifies four tissues from T1-weighted images
Scalp, Skull, CSF and Brain
Starting NFT

- To start from EEGLAB
 EEGLAB -> Tools -> NFT
- To start as a standalone toolbox
 addpath NFT directory
 Type ‘NFT’ in Matlab
 For demo: go to NFT-2.4_demo folder
Subject Selection

- Select subject folder
- Specify subject name
- Specify session name
Subject Selection

Select current folder as subject folder
Enter “SubjectA” as subject name
Enter “s1” as the session name
Image Segmentation
Image Segmentation

NFT: MR segmentation

1. Anisotropic Filtering
 - Swap LIR
 - Check inhomogeneity
 - Number of iterations: 5
 - Image diffusion: 3

2. Scalp Segmentation

3. Brain Segmentation
 - Cerbellar low point: 66
 - White matter seed point: 135
 - Fill level: 0.4
 - Threshold: 0.4

4. Outer Skull Segmentation
 - Center of one eye: 110

5. Inner Skull Segmentation

Load image
Segmentation

Select an image in analyze format
Segmentation

Run filtering
Segmentation

Image Segmentation

1. Anisotropic Filtering
 - Number of iterations: 5
 - Image diffusion: 3

2. Scalp Segmentation

3. Brain Segmentation
 - Cerebellar low point: 66
 - White matter seed point: 135
 - Fill level: 0.4
 - Threshold: 0.4

4. Outer Skull Segmentation
 - Center of one eye: 110

5. Inner Skull Segmentation

Display Image:
- MR image
- Filtered image
- Scalp mask
- Brain mask
- Outer skull mask
- Inner skull mask

Save Results:
- Output Folder: /data/projects/seynep/common/home/zevmei/co/deneme
- Filtered Image
- Segmentation

Image is filtered!
Segmentation

View filtered image

Image Segmentation

1. Anisotropic Filtering
 - Number of iterations: 5
 - Image diffusion: 3

2. Scalp Segmentation

3. Brain Segmentation
 - Cerebellar low point: 66
 - White matter seed point: 135
 - Fill level: 0.4
 - Threshold: 0.4

4. Outer Skull Segmentation
 - Center of one eye: 110

5. Inner Skull Segmentation

Save Results
- Output Folder: /data/projects/zeypem.comm/home/zeypem/comdeneme
 - Filtered Image
 - Segmentation

NFT: MR segmentation
Segmentation

Click ‘Next’ for scalp segmentation.
Segmentation

Click ‘Run’ for scalp segmentation
Image Segmentation
Segmentation

View scalp mask

NFT: MR segmentation

(x,y,z) = (128, 128, 128)

Coronal view

Axial view

Sagittal view

Image Segmentation

1. Anisotropic Filtering
 - Check inhomogeneity
 - Number of iterations: 5
 - Image diffusion: 3

2. Scalp Segmentation

3. Brain Segmentation
 - Cerebellar low point: 66
 - White matter seed point: (135, 135)
 - Fill level: 0.4
 - Threshold: 0.4

4. Outer Skull Segmentation
 - Center of one eye: 110

5. Inner Skull Segmentation

Display Image

- MR image
- Filtered image
- Scalp mask
- Brain mask
- Outer skull mask
- Inner skull mask

Save Results

Output Folder: /data/projects/zevneq/common/home/zevneq/ord/cr/segmentation

Run

Scalp segmented!
Segmentation

Click ‘Next’ for brain segmentation
Segmentation

Selection of cerebellar low point
Segmentation

Click 'Set'
Segmentation

Selection of a WM point
Segmentation

Image Segmentation

1. Anisotropic Filtering
 - Number of iterations: 5
 - Image diffusion

2. Scalp Segmentation

3. Brain Segmentation
 - Cerebellar low point: x = 67, y = 172, z = 158
 - White matter seed point: x = 158, y = 150
 - Fill level: f = 0.4
 - Threshold: T = 0.4

4. Outer Skull Segmentation
 - Center of one eye: z = 110

5. Inner Skull Segmentation

Options:
- Swap L/R
- Check inhomogeneity
- Preview
- Run
- Next
Segmentation

Click ‘Run’ for brain segmentation
Segmentation

Change thresholds if there is need.
Segmentation

View brain mask

Image Segmentation

1. Anisotropic Filtering
 - Number of iterations: 5
 - Image diffusion: 3

2. Scalp Segmentation

3. Brain Segmentation
 - Cerebellar low point: x=172, y=158, z=150
 - White matter seed point: x=158, y=150
 - Fill level: 0.1
 - Threshold: 0.1

4. Outer Skull Segmentation
 - Center of one eye: z=110

5. Inner Skull Segmentation
 - Brain segmented!
Segmentation

Click ‘Next’ for skull segmentation
Segmentation

Select a slice for eyes
Segmentation

Image Segmentation

1. Anisotropic Filtering
 - Number of iterations: 5
 - Image diffusion: 3

2. Scalp Segmentation

3. Brain Segmentation
 - Cerebellar low point: (x, y, z) = (150, 67, 95)
 - White matter seed point: (172, 158, 150)
 - Fill level: 0.1
 - Threshold: 0.1

4. Outer Skull Segmentation
 - Center of one eye: (95, Set)

5. Inner Skull Segmentation

Save Results

- Output Folder: /data/projects/zyneq/comm_on/home_zeveno/cdeneme
- Filtered Image
- Segmentation

Click ‘Set’
Segmentation

Click ‘Run’ for skull segmentation
Segmentation

Click on the eyes
Segmentation

Image Segmentation

1. Anisotropic Filtering
 - Check inhomogeneity
 - Number of iterations: 5
 - Image diffusion: 3

2. Scalp Segmentation

3. Brain Segmentation
 - Cerebellar low point: 67
 - White matter seed point: 158
 - Fill level: 0.1
 - Threshold: 0.1

4. Outer Skull Segmentation
 - Center of one eye: 95

5. Inner Skull Segmentation
 - Segmenting skull...
Segmentation

Image Segmentation

1. Anisotropic Filtering
 - Number of iterations: 5
 - Image diffusion: 3

2. Scalp Segmentation

3. Brain Segmentation
 - Cerebellar low point: (x, y, z) = (172, 158, 150)
 - White matter seed point: (x, y, z)
 - Fill level: [0, 1]
 - Threshold: [0, 1]

4. Outer Skull Segmentation
 - Center of one eye: (x, y, z) = (95)

5. Inner Skull Segmentation

Save Results:
- Output Folder
- Filtered Image
- Segmentation

Skull segmented!
Segmentation

View skull segmentation
Segmentation

Click ‘Next’ for CSF segmentation.
Segmentation

Click ‘Run’ for CSF segmentation
Segmentation
Segmentation

View CSF segmentation

Image Segmentation

1. Anisotropic Filtering
 - Number of iterations
 - Image diffusion

2. Scalp Segmentation

3. Brain Segmentation
 - Cerebellar low point
 - White matter seed point
 - Fill level
 - Threshold

4. Outer Skull Segmentation
 - Center of one eye

5. Inner Skull Segmentation
 - Segmentation complete
Segmentation

Save filtered image
Segmentation
Segmentation

Image Segmentation

1. Anisotropic Filtering
 - Number of iterations: 5
 - Image diffusion: 3

2. Scalp Segmentation

3. Brain Segmentation
 - Cerebellar low point: x = 172, y = 158, z = 150
 - White matter seed point: x = 158, y = 158, z = 150
 - Fill level: 0.1, 0.1, 0.1
 - Threshold: [0, 1]

4. Outer Skull Segmentation
 - Center of one eye: x = 95

5. Inner Skull Segmentation

Save Results
- Output Folder: /data/projects/zyeneplusv/to/dememe
- Segmentation

Saving segmentation as SubjectA_segments.mat
Segmentation

Image Segmentation

1. Anisotropic Filtering
 - Check inhomogeneity
 - Number of iterations: 5
 - Image diffusion: 3

2. Scalp Segmentation

3. Brain Segmentation
 - Cerebellar low point: x=172, y=158, z=150
 - White matter seed point: Fill level = 0.1, Threshold = 0.1

4. Outer Skull Segmentation
 - Center of one eye: x=95

5. Inner Skull Segmentation

Save Results
- Output Folder: /data/projects/zevnek/common/home/zevnek/sk1/deneme
- Filtered Image
- Segmentation

Segmentation saved as SubjectA_segments.mat
Image Segmentation

```
>> dir SubjectA*
SubjectA_mri.mat   SubjectA_segments.mat

>> load SubjectA_mri
>> mri
mri =

    dim: [256 256 256]
xgrid: [1x256 double]
ygrid: [1x256 double]
zgrid: [1x256 double]
anatomy: [256x256x256 double]
transform: [4x4 double]
hdr: []

>> load SubjectA_segments
>> Segm
Segm =

    scalpmask: [256x256x256 logical]
    brainmask: [256x256x256 logical]
    outerskullmask: [256x256x256 logical]
innerskullmask: [256x256x256 logical]
```
Mesh Generation

Generate Mesh for a 3 or 4 layer head model
Generates a simple source space:
Regular Grid inside the brain
With a given spacing and distance to the mesh
Source Space Generation

From a magnetic Resonance Image

Image Segmentation

Mesh Generation

Source Space Generation

Electrode Co-Registration

NFT: Source space generation

Mesh Folder

/data/projects/zeynep/common/home_zeynep/jo/dene/dene_real

Grid spacing (mm) 8

Min. distance from the mesh (mm) 2

Generate Regular Source Space

Source space saved!
Electrode Co-registration

From a magnetic Resonance Image
- Image Segmentation
- Mesh Generation
- Source Space Generation
- Electrode Co-Registration

NFT: Electrode co-registration

Load sensor locations
Electrode file name
/data/projects/zeynep/common/home_zeynep/jo/deneme/dene_real

Mesh Folder

Initial co-registration
Translation
Rotation

Complete co-registration
Translation
Rotation

Save initial reg.
Save complete reg.
Electrode Co-registration
Electrode Co-registration

From a magnetic Resonance Image
- Image Segmentation
- Mesh Generation
- Source Space Generation
- Electrode Co-Registration
Electrode Co-registration

From a magnetic Resonance Image

Image Segmentation

Mesh Generation

Source Space Generation

Electrode Co-Registration...
Electrode Co-registration

From a magnetic Resonance Image
- Image Segmentation
- Mesh Generation
- Source Space Generation
- Electrode Co-Registration
Electrode Co-registration
Electrode Co-registration

From a magnetic Resonance Image

- Image Segmentation
- Mesh Generation
- Source Space Generation
- Electrode Co-Registration
Head Modeling from Electrode Position Data

- Warp a template mesh to electrode positions
 - When no MR images are available
 - Non-rigid thin-plate spline warping
Template Warping

NFT: Template head model warping

Load sensor data

Output Folder: /data/projects/zeypem/common/home/zeypem/jo/deneme/dene_mni

MNI head model

Warped MNI head model

Start warping
Template Warping
Template Warping
Forward Problem Solver

- MATLAB interface to numerical solvers
- Boundary Element Method or Finite Element Method
 - EEG Only (for now)
 - Interfaces to the Matrix generator executable written in C++
- Other computation done in MATLAB
- Generated matrices are stored on disk for future use.
Forward Problem Solution with BEM
Forward Problem Solution with BEM
Forward Problem Solution with BEM

BEM Mesh Info
- Mesh Name: SubjectA
- Number of Layers: 4
- Number of Nodes: 13724
- Number of Elements: 27476
- Number of Nodes/Element: 3

Show Mesh

BEM Model
- Enter conductivity values:
 - Scalp: 0.33
 - Skull: 0.004
 - Brain: 0.33
 - CSF: 1.79
- Modified (Isolated Problem Approach)
- Create Model
- BEM Model Created

Session
- Session Name: s1
- Load Sensors
 - Mesh Coordinates
 - Mesh Node List
- Load
- Show Sensors
- Generate transfer matrix
- Value Changed!

Forward Problem Solution
- Load Source Space
- Compute Lead Field Matrix
- Plot Potential Distribution
- For Dipole
Forward Problem Solution with BEM
Forward Problem Solution with FEM

- Tetgen for mesh generation
 - Uses BEM meshes as boundaries
- METU-FEM to generate transfer matrix
 - Compiled from source
 - Requires PETSc for matrix operations
- metufem .mex file for forward solutions in MATLAB
- Instructions available under README.FEM file.
Forward Problem Solution with FEM
Dipole Fitting

- Requires EEGLAB integration to access Component indices.
- Uses FieldTrip in EEGLAB for dipole fitting.
Warping Demo

- If the subject does not have an MRI, a template head model (MNI) can be warped to electrode locations:
 - Go to NFT-2.4_demo_warping folder
 - Start NFT
 - Enter SubjectA as subject name and s1 as session name
 - Select the current folder as the subject folder
 - Click on Warping
 - After warping, continue with Forward and Inverse modeling.
Output

- Dipole source localization is saved in EEG structure, under EEG.etc.nft.
- After source localization with NFT, you can continue using EEGLAB;

```
EEG.dipfit.model = EEG.etc.nft.model;
```
Start EEGLAB and set your parameters:

```matlab
% Start EEGLAB
eeeglab

EEG = pop_loadset('filename', eeg_file, 'filepath', eeg_path);
[ALLEEG, EEG, CURRENTSET] = eeg_store( ALLEEG, EEG, 0 );

% set 'of' (output folder), subject_name, session_name, and elec_file
subject_name = 'SubjectA';
session_name = 's1';
nl = 4; % number of layers
plotting = 1;
comp_index = 1:20; % component index for source localization
```
NFT Matlab Scripts

- Realistic modeling from MRI

 % Do segmentation using the GUI
 nft_mesh_generation(subject_name, of, nl)
 nft_source_space_generation(subject_name, of)

 % Do co-registration using the GUI
 nft_forward_problem_solution(subject_name, session_name, of);
 dip1 = nft_inverse_problem_solution(subject_name, session_name, of, EEG, comp_index, plotting, elec_file)
NFT Matlab Scripts

- BEM warping mesh

 nft_warping_mesh(subject_name, session_name, elec_file, nl, of, 0, 0);

nft_forward_problem_solution(subject_name, session_name, of);

dip1 = nft_inverse_problem_solution(subject_name, session_name, of, EEG, comp_index, plotting, elec_file)
NFT Matlab Scripts

- FEM warping mesh

  ```matlab
  session_name='s1_fem';
  nft_warping_mesh(subject_name, session_name, elec_file, nl, of,0,1);
  nft_fem_forward_problem_solution(subject_name, session_name, of);
  dip1 = nft_inverse_problem_solution(subject_name, session_name, of, EEG, comp_index, plotting, elec_file)
  ```
NFT Matlab Scripts

- Set NFT dipole structure to EEGLAB dipole structure

  ```matlab
  eeglab_folder = dirname(which('eeglab'));
  mri_file = [eeglab_folder '/plugins/dipfit2.2/standard_BEM/standard_mri.mat'];
  EEG.dipfit.mrifile = mri_file;
  EEG.dipfit.model = EEG.etc.nft.model;
  ```
NFT download and reference

- http://www.sccn.ucsd.edu/nft