Clustering Independent Components of EEG Data

Scott Makeig
Institute for Neural Computation
University of California San Diego

26th EEGLAB Workshop
Beer Sheva, Israel

October, 2017
Why cluster independent components across subjects or sessions?

• ICA transforms the data from a channel basis (activity recorded at each channel)

 to a component basis (activity computed at each IC).

• Normally, EEG researchers assume that, for example, electrode channel F7 == F7 == F7 ... in each subject – and then ‘cluster‘ their data assuming channel equivalence.

• This amounts to the simple assumption

 “Your Cz is My Cz!“

• But this is only *roughly* correct!
Example: First Subject

Electrode F7

ICs

Σ

IC1

IC2

IC3

IC4

Cortex

Scalp
Scalp ICs
IC1 IC2 IC3 IC4
Electrode F7
Cortex
Scalp
Second Subject

Makeig, 2005
Clustering ICA components by eye

Left mu

Right mu

Makeig et al., ~2000 unpublished
So how to cluster components?

The same problems hold for clustering independent components

Across Ss, components don’t even have “the same” scalp maps!

→ Are “the same” components found across subjects?

• What should define “the same” (i.e., “component equivalence”)?
 • Similar scalp maps?
 • Similar cortical or 3-D equivalent dipole locations?
 • Similar activity power spectra?
 • Similar ERPs?
 • Similar ERSPs?
 • Similar ITCs?
 • Or similar combinations of the above?? …
EEG IC Source Locations
(135,794 IC equivalent dipoles!)

NB: Width of these hotspots gives a lower bound on IC effective source localization accuracy!
Clustering must actually be still tighter, since the actual 'hotspots' are here convolved with 1) a 3-D location blur, 2) head co-registration errors!
... Some caveats

In this *dipole density()* assay ...

- MR head images were not available → brain co-registration crude.
- Single versus dual-dipole model selection was subjective.
- Different electrode montages → mis-localization effects.
- Electrode locations were not all digitized – some ‘guestimated’!
- Brain geometries differ!

Graphics: Julie Onton, 2005
Why should IC clusters have breadth?

Equivalent cortical areas
Have different scalp maps
And dipole locations!
Does the spatial distribution of IC equivalent dipole source locations depend on the task the subject performs?

i.e.

Do “the same” ICs (and IC clusters) appear for every task?
Equivalent dipole density

Onton et al., 2005

Sternberg letter memory task

>> dipoledensity()
Equivalent dipole density

Emotion imagery task

>> dipoledensity()
Equivalent dipole density

Onton et al., 2005

Sternberg letter memory task

>> dipoledensity()
So how to cluster components?

The same problems hold for clustering independent components

Across Ss, components don’t even have “the same” scalp maps!

→ Are “the same” components found across subjects?

• What should define “the same” (i.e., “component equivalence”)?
 • Similar scalp maps?
 • Similar cortical or 3-D equivalent dipole locations?
 • Similar activity power spectra?
 • Similar ERPs?
 • Similar ERSPs?
 • Similar ITCs?
 • Or similar combinations of the above?? …
 • EEGLAB clustering supports all these possibilities.
Study IC Clustering: Assumptions

- Assumes there are *functionally equivalent* ICs across most subjects.
- Assumes these ICs have *similar responses* to experimental conditions across a set of measures (ERP, ERSP, ITC...)
- Creates *non-overlapping IC partitions* making each IC belong to only one cluster.
EEGLAB Study Clustering strategy

1. Cluster on **multiple measures** (dipole locations, scalp maps, spectra, ERPs, ITCs, ERSPs, ...) **in one or more conditions**.

2. **Reduce the dimension** of each measure to a principal component subspace.

3. Compose a PCA-reduced **position vector** for each component.

4. **Cluster** the composed component vectors using k-means or other.

5. Use the computed component measures (not PCA-reduced) to **visualize the activities and spatial properties** of the clustered components.

6. Compute and visualize the **cluster-mean measures**.

7. Use **clustered Study set data** as input into ‘std_???’ functions.
Study IC Clustering

Sometime clusters are spatially separate AND have distinct responses.

In other cases, they may have similar responses or may overlap spatially.

Onton & Makeig, 2007
EEGLAB Study Clustering procedure

1. Identify a set of datasets as an EEGLAB Study.
2. Specify the subject code, subject group, condition and/or session for each dataset in the Study.
3. Identify components to cluster in each Study dataset.
4. Decide on component measures to use in clustering the Study and/or to evaluate the obtained component clusters.
5. Compute the component measures for each Study dataset.
6. Cluster the components on these component measures.
7. Review the obtained clusters (e.g., their scalp maps, dipoles, and activity measures).
8. Edit the clusters (manually remove/shift components, make sub-clusters, merge clusters, re-cluster).
9. Statistically test differences within or between selected clusters.

Makeig, 2007
Why aren’t all participants in every IC cluster?
Subject differences?

Significant ITC differences (by bootstrap) between the LOC and fLOC clusters immediately follow Probe presentation (5-11 Hz).
Subject differences?
STUDY IC Clustering: Practical Problems

Large parameter space problem: many different clustering solutions can be produced by changing parameters and measure subsets. Which one should we choose?

EEGLAB clustering has ~12 parameters
Problems with multi-measure clustering

In a uniform density distribution,

where are the clusters by location?

N. Bigdely-Shamlo, 2010
Problems with multi-measure clustering

What are the clusters according to location?
Problems with multi-measure clustering

What are the clusters according to size?
Problems with multi-measure clustering

What are the clusters according to location and size?

Well, it depends on how much weight we give each measure...
With either clustering method, we basically mix together distances for a subset of EEG measures (ERP, ERSP, ITC, mean spectrum, dipole location).

This may make clustering distance less interpretable.
Study IC Clustering by Measure Projection

- Instead, we can directly work on pair-wise similarity matrices and prevent ICs with similarities less than certain threshold (e.g., ERSP corr. < 0.5) to be clustered together.
- The most important measure is equivalent dipole location.
- Assuming a certain variability estimate for dipole location (due to error in localization and subject variability), one can also estimate an optimum number of clusters.

Measure Projection asks:

1. Where in ‘template brain space’ does our data have evidence that our measure of interest is consistent across nearby ICs?
2. Which such brain space voxel domains show consistent differences?
Project Target ERSPs on Equivalent Dipole Locations

Measure Projection: RSVP Task Example

N. Bigdely-Shamlo, 2011
Questions?