[Eeglablist] cognitive levels

Indir Jaganjac ijaganjac at yahoo.com
Tue Dec 7 08:47:11 PST 2010


Hi Kartik,
 
 
 
 
 
 
 

I would suggest reading the presentation from the 12th EEGLAB workshop "Time-Frequency analysis of biophysical time series", by Dr.Arnaud Delorme. The frequency ranges are:
 
30-60 Hz  gamma
18-21 Hz  beta
9-11 Hz  alpha
4-7 Hz  theta
0.5-2 Hz  delta
 

Perhaps it's good to record at least 20 minutes for basic three cognitive states; sleep, alert, high-alert. Then import EEG data>filter the data>basic FIR filter. In pop_eegfilt() just enter values in lower edge of the frequency pass band (Hz) and higher edge of the
frequency pass band (Hz). Then Tools>Run ICA.  In this way you can generate datasets for training and use function classify from statistics toolbox: 
class = classify(sample,training,group,type,prior).

FFT can help in the sense that training and classification are done more accurately in time-frequency domain.
 
 
 
 
 
 
 

regards,

I. Jaganjac   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From: Kartik Samala Naga <snkartik at gmail.com>
Precedence: list
MIME-Version: 1.0
To: eeglablist at sccn.ucsd.edu
Date: Thu, 2 Dec 2010 21:17:54 +0530
Message-ID: <AANLkTimX6ifDpPud-52nCz=Pf-+xzK4q7y37dhnO0HeC at mail.gmail.com>
Content-Type: multipart/alternative; boundary=000325550e5a52c76c04966f5899
Subject: [Eeglablist] cognitive levels
Message: 1
--000325550e5a52c76c04966f5899
Content-Type: text/plain; charset=ISO-8859-1
hi all,
         how much minimum data should one record to classify a eeg wave
dominance(alpha,beta).how to classify a cognitive state.is there a
possibility to predict exactly by fft?

kartik
--000325550e5a52c76c04966f5899
Content-Type: text/html; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable
<br clear=3D"all"><br>hi all,<br>=A0 =A0 =A0 =A0=A0 how much minimum data s=
hould one record to classify a eeg wave dominance(alpha,beta).how to classi=
fy a cognitive <a href=3D"


      
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://sccn.ucsd.edu/pipermail/eeglablist/attachments/20101207/b2233328/attachment.html>


More information about the eeglablist mailing list