[Eeglablist] Auditory steady-state response and ERP analysis pre-processing steps

Andreas Widmann widmann at uni-leipzig.de
Tue Aug 25 03:00:16 PDT 2015


Dear Makoto, Michael, and list,

> Standard filtering policy does not go well with variations of (multivariate) Granger Causality analysis. Many says 1-Hz high-pass filter we do is no good for analyzing averaged ERP. High-pass filter should be done before CleanLine.
Nima introduced a clever solution for the Cleanline vs. highpass filter issue in the prep-pipeline/paper: The low frequency signal components are preserved during highpass filtering (i.e., the difference between filtered and unfiltered data) and re-added to the cleaned data after applying Cleanline.

Best,
Andreas

> > 0. Start with 128-channel EEG from EGI HydroCel Geodesic Sensor Net, with flags indicating events and epochs around events predefined (-0.1s to 0.9s around the events).
> 
> Use -1 to 2 sec to epoch. This is because you want to use 3-Hz 3-cycle wavelet later. It does not matter even if this causes overlap of the trials; it always happen as long as you use sliding windows.
> 
> Also, you may want to use continuous data as long as it is cleaned.
> 
> > 1. Keep all valid (even if lots of line noise) channels in dataset, only remove channels which clearly have no physiological information.
> 
> I agree, unless you discard all the channels.
> 
> > 2. Epoch the data, reject bad epochs by eye (significant movement or rare, not-stereotyped artifacts)
> 
> No, make every effort not to reject epochs due to eye activity (saccade, blink, etc) This is because ICA is best capable of identifying them. Save your trials.
> 
> > 3. Run ICA on epoched data.
> 
> Make sure that you clean your data before running ICA.
> 
> > 4. Reject components related to blinks, stereotypical muscle activity, and 60 Hz noise, and EKG artifacts.
> 
> No, do not reject anything. You'll create STUDY later, in doing which ICs with 15% residual variance and those with outside-brain dipoles are kicked out. Usually this will reject around 70% of your ICs (depending on your data).
> 
> > 5. Reconstruct sensor-level signals from remaining ICA weights
> 
> It's a forward projection. Fine.
> 
> > 6. Re-reference all cleaned EEG channels to the average reference
> 
> Nima emphasized that when you use average reference you should choose only clean channels to include. See his paper for details. Jason also said average reference should be done before ICA, but it will cause rank reduction (and does not change the results except for zero-centering the scalp maps) so I would recommend you do it after ICA.
> 
> > 7. Interpolate (using spherical splines from neighboring electrodes) any channels that were rejected in step 1.
> 
> No it's not necessary if you stick to ICA-centric analysis to the end.
> 
> > 8. Calculate ERPs, time-frequency analysis, source localization
> 
> Use STUDY for the group-level analysis.
> 
> Additional info can be found here.
> http://sccn.ucsd.edu/wiki/Makoto's_preprocessing_pipeline
> 
> Makoto
> 
> On Tue, Aug 18, 2015 at 11:54 AM, Michael Boyle <mrboyle at live.unc.edu> wrote:
> Dear EEGLABers,
> 
> I would like to know whether or not the particular pre-processing steps listed are recommended for ERP analysis, time-frequency analysis (wavelet amplitude spectrograms or DFT spectrograms, ITPC), and source localization analysis. 
> 
> In particular, I am uncertain about the ordering of steps such as interpolating bad channels before or after re-referencing or ICA, or if particular steps work for some analysis strategies but not others (e.g. if a preprocessing step would work fine for time-frequency analysis but not be appropriate for source localization). Any feedback is much appreciated!
> 
> 0. Start with 128-channel EEG from EGI HydroCel Geodesic Sensor Net, with flags indicating events and epochs around events predefined (-0.1s to 0.9s around the events).
> 1. Keep all valid (even if lots of line noise) channels in dataset, only remove channels which clearly have no physiological information.
> 2. Epoch the data, reject bad epochs by eye (significant movement or rare, not-stereotyped artifacts)
> 3. Run ICA on epoched data.
> 4. Reject components related to blinks, stereotypical muscle activity, and 60 Hz noise, and EKG artifacts.
> 5. Reconstruct sensor-level signals from remaining ICA weights
> 6. Re-reference all cleaned EEG channels to the average reference
> 7. Interpolate (using spherical splines from neighboring electrodes) any channels that were rejected in step 1.
> 8. Calculate ERPs, time-frequency analysis, source localization
> 
> Best and many thanks,
> Michael
> 
> _______________________________________________
> Eeglablist page: http://sccn.ucsd.edu/eeglab/eeglabmail.html
> To unsubscribe, send an empty email to eeglablist-unsubscribe at sccn.ucsd.edu
> For digest mode, send an email with the subject "set digest mime" to eeglablist-request at sccn.ucsd.edu
> 
> 
> 
> -- 
> Makoto Miyakoshi
> Swartz Center for Computational Neuroscience
> Institute for Neural Computation, University of California San Diego
> _______________________________________________
> Eeglablist page: http://sccn.ucsd.edu/eeglab/eeglabmail.html
> To unsubscribe, send an empty email to eeglablist-unsubscribe at sccn.ucsd.edu
> For digest mode, send an email with the subject "set digest mime" to eeglablist-request at sccn.ucsd.edu



More information about the eeglablist mailing list