[Eeglablist] Dear list, about line noise.
Makoto Miyakoshi
mmiyakoshi at ucsd.edu
Wed Apr 14 15:21:45 PDT 2021
Dear Ramtin,
> Although you specifically suggest the use of CleanLine after ZapLine, I
was wondering whether the opposite makes any difference.
Interesting question.
The residual line noise after CleanLine is probably non-stationary (because
CleanLine uses a sliding window approach). Because ZapLine makes an
assumption of stationarity, I thought ZapLine may not be able to deal with
it very well. But strictly speaking, ZapLine's performance there of course
depends on the stationarity of the residual line noise.
If you are interested, you may want to run the test. Both methods are
published, so it is just a matter of time.
And if you find my prediction is wrong, please do let me know! I'm very
curious.
Thank you for your interest Ramtin.
Makoto
On Wed, Apr 14, 2021 at 6:04 AM Ramtin Mehraram <ramtin.mehraram at kuleuven.be>
wrote:
> Dear Makoto,
>
> I see that you recommend in that paper a combined usage of ZapLine and
> CleanLine for optimal results. Although you specifically suggest the use of
> CleanLine after ZapLine, I was wondering whether the opposite makes any
> difference.
>
>
> Thank you in advance for your help.
>
> Kind regards,
> Ramtin
>
> -----Original Message-----
> From: eeglablist <eeglablist-bounces at sccn.ucsd.edu> On Behalf Of Makoto
> Miyakoshi via eeglablist
> Sent: martedì 16 marzo 2021 17:47
> To: EEGLAB List <eeglablist at sccn.ucsd.edu>
> Subject: Re: [Eeglablist] Dear list, about line noise.
>
> ⚠ External sender. Take care when opening links or attachments. Do not
> provide your login details.
>
> Dear Hsin-An and Meha,
>
> Here is the recently published comparison between CleanLine
> (cleanLineNoise) and ZapLine.
>
> https://urldefense.com/v3/__https://eur03.safelinks.protection.outlook.com/?url=https*3A*2F*2Furldefense.com*2Fv3*2F__https*3A*2F*2Fpubmed.ncbi.nlm.nih.gov*2F33584237*2F__*3B!!Mih3wA!SNPuomg5uPwruRY1ELie8uo9D7PfRRhCS9Sdb3sznjFPoh_hJ_-ID3V4-enETszcFZ_OiQ*24&data=04*7C01*7CR.Mehraram2*40newcastle.ac.uk*7C6f0001c617114b813b9808d8e89c1437*7C9c5012c9b61644c2a91766814fbe3e87*7C1*7C0*7C637515104334719474*7CUnknown*7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0*3D*7C1000&sdata=k1vBHH73jDERLO*2FHhc7LVcGBx2P9N7A1BP*2BwCGBHgZU*3D&reserved=0__;JSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUl!!Mih3wA!UK4MzzIQgUArd5inHE3ocME5_O0L_DLA7L0j7wH6B6XfllYAb3xzne9F7yPdxefpmg$
>
> I think CleanLine is good for general purposes if you need to retain the
> original signal in the line noise frequency range. The assumption here is
> that line noise has much slower time constant to modulate amplitude (i.e.
> line-noise signal nvelope) than the genuine EEG signal. The same goal can
> be achieved by ZapLine if the spatial filter of the line noise is
> stationary, but this assumption is less likely.
>
> Makoto
>
> On Mon, Mar 15, 2021 at 8:40 AM Meha Fatima via eeglablist <
> eeglablist at sccn.ucsd.edu> wrote:
>
> > Dear Chang,
> >
> > I have found Cleanline very useful for 60 Hz line noise removal, so
> > you can try it :)
> >
> >
> >
> > On Sun, 14 Mar 2021 at 23:54, <chang.ha at msa.hinet.net> wrote:
> >
> > >
> > >
> > >
> > > Dear list,
> > >
> > >
> > > Which is the most effective plugin to remove line noise (i.e., 60Hz)?
> > >
> > > Filter the data (Basic FIR filter, new default) - Notch filter the
> > > data instead of pass band?
> > >
> > > Cleanline?
> > >
> > > PREP pipeline?
> > >
> > > Or any other plugin?
> > >
> > > Thanks.
> > >
> > >
> > > Hsin-An Chang M.D.
> > >
> > > Tri-Service General Hospital, Taipei, Taiwan
> > >
> > >
> > > _______________________________________________
> > > Eeglablist page:
> > >
> https://urldefense.com/v3/__https://eur03.safelinks.protection.outlook.com/?url=http*3A*2F*2Fscc__;JSUl!!Mih3wA!UK4MzzIQgUArd5inHE3ocME5_O0L_DLA7L0j7wH6B6XfllYAb3xzne9F7yMNuQP9EA$
> > > n.ucsd.edu%2Feeglab%2Feeglabmail.html&data=04%7C01%7CR.Mehraram2
> > > %40newcastle.ac.uk%7C6f0001c617114b813b9808d8e89c1437%7C9c5012c9b616
> > > 44c2a91766814fbe3e87%7C1%7C0%7C637515104334719474%7CUnknown%7CTWFpbG
> > > Zsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn
> > > 0%3D%7C1000&sdata=USyHTXMXUeJvrCLjvIDf7JxkFbUDjifrjFRRQyLDKUc%3D
> > > &reserved=0 To unsubscribe, send an empty email to
> > > eeglablist-unsubscribe at sccn.ucsd.edu
> > > For digest mode, send an email with the subject "set digest mime" to
> > > eeglablist-request at sccn.ucsd.edu
> > >
> >
> >
> > --
> >
> > * Dr. Meha Fatima BSMT, Ph.D.*
> > Assistant Professor
> > Dow Institute of Medical
> > Technology
> > Dow University of Health
> Sciences
> > *mehafatima1 at gmail.com
> > <mehafatima1 at gmail.com>.*
> > _______________________________________________
> > Eeglablist page:
> >
> https://urldefense.com/v3/__https://eur03.safelinks.protection.outlook.com/?url=http*3A*2F*2Fsccn__;JSUl!!Mih3wA!UK4MzzIQgUArd5inHE3ocME5_O0L_DLA7L0j7wH6B6XfllYAb3xzne9F7yN_ZgT5Vw$
> .
> > ucsd.edu%2Feeglab%2Feeglabmail.html&data=04%7C01%7CR.Mehraram2%40n
> > ewcastle.ac.uk%7C6f0001c617114b813b9808d8e89c1437%7C9c5012c9b61644c2a9
> > 1766814fbe3e87%7C1%7C0%7C637515104334719474%7CUnknown%7CTWFpbGZsb3d8ey
> > JWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C100
> > 0&sdata=USyHTXMXUeJvrCLjvIDf7JxkFbUDjifrjFRRQyLDKUc%3D&reserve
> > d=0 To unsubscribe, send an empty email to
> > eeglablist-unsubscribe at sccn.ucsd.edu
> > For digest mode, send an email with the subject "set digest mime" to
> > eeglablist-request at sccn.ucsd.edu
> >
> _______________________________________________
> Eeglablist page:
> https://urldefense.com/v3/__https://eur03.safelinks.protection.outlook.com/?url=http*3A*2F*2Fsccn.ucsd.edu*2Feeglab*2Feeglabmail.html&data=04*7C01*7CR.Mehraram2*40newcastle.ac.uk*7C6f0001c617114b813b9808d8e89c1437*7C9c5012c9b61644c2a91766814fbe3e87*7C1*7C0*7C637515104334729429*7CUnknown*7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0*3D*7C1000&sdata=sawUZo2GNZ324fwbobgGVFp*2FemjYJ*2FnPHeqwZcDFYFQ*3D&reserved=0__;JSUlJSUlJSUlJSUlJSUlJSUlJSU!!Mih3wA!UK4MzzIQgUArd5inHE3ocME5_O0L_DLA7L0j7wH6B6XfllYAb3xzne9F7yOZ4SGK3A$
> To unsubscribe, send an empty email to
> eeglablist-unsubscribe at sccn.ucsd.edu
> For digest mode, send an email with the subject "set digest mime" to
> eeglablist-request at sccn.ucsd.edu
>
More information about the eeglablist
mailing list