
USER’S GUIDE FOR T-SNE SOFTWARE

User’s Guide for t-SNE Software

Laurens van der Maaten LVDMAATEN@GMAIL.COM
TiCC
Tilburg University
P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Geoffrey Hinton HINTON@CS.TORONTO.EDU

Department of Computer Science
University of Toronto
6 King’s College Road, M5S 3G4 Toronto, ON, Canada

Editor:

1. Introduction

In this document, we describe the use of the t-SNE software that is publicly available online from
http://ticc.uvt.nl/∼lvdrmaaten/tsne. Please note that this document does not de-
scribe the t-SNE technique itself; for more information on how t-SNE works, we refer to (van der
Maaten and Hinton, 2008). The user’s guide assumes that the Matlab environment is used, however,
the discussion in section 3 is also of relevance to the use of the t-SNE software in programs that are
written in, e.g., R, Java, or C++.
There are two implementations of t-SNE available online: (1) a simple Matlab implementation, and
(2) a fast binary implementation. The use of the Matlab implementation is described in Section 2.
Section 3 covers the use of the fast t-SNE implementation.

2. Simple Matlab implementation

The main purpose of the Matlab implementation of t-SNE is to illustrate how the technique works.
The code contains a lot of comments, making it a useful resource in the study of the technique.
Matlab’s poor memory management probably makes the codes less appropriate for application on
large real-world datasets. The code requires a working installation of Matlab 7.4 (which is also
known as Matlab 2007A). No additional toolboxes are required.
The syntax of the Matlab implementation of t-SNE is the following:�

mappedX = tsne(X, labels, no_dims, init_dims, perplexity)
� �
Herein, X denotes the N×D data matrix, in which rows correspond to the N instances and columns
correspond to the D dimensions. In case the labels are specified, the code plots the intermediate so-
lution every ten iterations. The labels are only used in the visualization of the intermediate solutions:
t-SNE is an unsupervised dimensionality reduction technique. If an empty matrix ([]) is specified
instead of a labels vector, no intermediate solutions are shown. The dimensionality of the visual-
ization constructed by t-SNE can be specified through no dims (the default value for no dims is 2).
Before running t-SNE, the Matlab code preprocesses the data using PCA, reducing its dimensional-
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ity to init dims dimensions (the default value is 30). The perplexity of the Gaussian distributions
that are employed in the high-dimensional space can be specified through perplexity (the default
value is 30). The function returns a N × no dims matrix mappedX that specifies the coordinates of
the N low-dimensional datapoints.
We illustrate the use of the simple Matlab implementation with an example. The following example
requires the file mnist train.mat as available from the t-SNE website. Notice that the example
takes approximately an hour to complete.�

% Load data
load ’mnist_train.mat’
ind = randperm(size(train_X, 1));
train_X = train_X(ind(1:5000),:);
train_labels = train_labels(1:5000);

% Set parameters
no_dims = 2;
init_dims = 30;
perplexity = 30;

% Run t−SNE
mappedX = tsne(train_X, [], no_dims, init_dims, perplexity);

% Plot results
gscatter(mappedX(:,1), mappedX(:,2), train_labels, ’o’);
� �

3. Fast implementation

The fast version of t-SNE that is available online was implemented in C++. For large datasets, the
fast version employs the random-walk version of t-SNE. The fast version of t-SNE employs Intel’s
Primitive Performance Libraries in order to optimize the computational performance of the imple-
mentation. As a result, the implementation will generally run faster on Intel CPUs than on other
x86 CPUs (although the performance on, e.g., AMD CPUs is not bad either). Binaries for all major
platforms (Windows, Linux, and Mac OS X) are available for download. Also, a Matlab script is
available that illustrates how the fast implementation of t-SNE can be used. The syntax of the Mat-
lab script (which is called fast tsne.m) is roughly similar to that of the tsne function. It is given
by:

�
[mappedX, landmarks, costs] = fast_tsne(X, no_dims, init_dims, landmarks, ...

perplexity)
� �
Most of the parameters are identical to those discussed in Section 2, which is why we do not discuss
them in detail here. The parameter landmarks can specify either the ratio of landmark points
that should be employed (between 0 and 1; default value is min(6000/N, 1)), or the indices of the
datapoints that should be employed as landmark points. The function returns the low-dimensional
representation of the landmark points in mappedX. The function also returns a vector landmarks
that contains the indices of the datapoints that were employed as landmark points1; the labels of the
landmark points can thus be obtained through labels(landmarks). Moreover, the function returns

1. Note that if you set the ratio of landmarks to 1, the points in mappedX are also perturbed.
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a vector costs that contains the contribution to the cost function per datapoint (hence, sum(costs)
is the Kullback-Leibler divergence between P and Q), and can be used to evaluate which datapoints
are modeled poorly in the map.
An example of the use of the fast (landmark) version of t-SNE is given below. This example may
also take up to an hour to complete.�

% Load data
load ’mnist_train.mat’

% Set parameters
no_dims = 2;
init_dims = 30;
ratio_landmarks = .1; % use 6,000 points
perplexity = 30;

% Run t−SNE
[mappedX, landmarks] = fast_tsne(train_X, no_dims, init_dims, ...

ratio_landmarks, perplexity);
train_labels = train_labels(landmarks); % select the right labels

% Plot results
gscatter(mappedX(:,1), mappedX(:,2), train_labels, ’o’);
� �

The example uses all 60, 000 datapoints in the MNIST training set to compute the P -values, but only
returns an embedding for 0.1× 60, 000 = 6, 000 datapoints. The indices of these 6, 000 datapoints
are returned in landmarks.
Although we do not provide wrappers in other languages than Matlab, it should be fairly easy to
code one up yourself. The fast implementation of t-SNE assumes the data and the parameters to
be specified in a file called data.dat. The file data.dat is a binary file of which the structure
is outlined in Table 1. If you want to specify landmark points yourself, specify the number of
landmarks Nl (an integer value larger than 1) as well a list of indices of landmark points at the
end of the file. Otherwise, specify the ratio of landmark points ratio landmarks as a real-valued
number between 0 and 1. The data matrix X should be specified as a concatenation of the instances
(i.e., {instance1, instance2, ..., instanceN}). The result of the algorithm is written in a file
called result.dat, the structure of which is outlined in Table 2. The low-dimensional embedding
mappedX is returned as a concatenation of instances.

Value Number of elements Type
N 1 int32
D 1 int32
no dims 1 int32
perplexity 1 double
Nl or ratio landmarks 1 double
X N ×D double
if Nl was specified:

Nl double
landmarks

Table 1: Structure of the data.dat file.
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Value Number of elements Type
Nl 1 int32
no dims 1 int32
mappedX Nl × no dims double
landmarks Nl int32
costs Nl double

Table 2: Structure of the result.dat file.
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