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Abstract
SpikeNET is a simulator for modeling large networks of asynchronously spiking neurons. It uses simple

integrate-and-fire neurons which undergo step-like changes in membrane potential when synaptic inputs arrive. If
a threshold is exceeded, the potential is reset and the neuron added to a list to be propagated on the next time step.
Using such spike lists greatly reduces the computations associated with large networks, and simplifies
implementations using parallel hardware since inter-processor communication can be limited to sending lists of
the neurons which just fired. We have used it to model complex multi-layer architectures based on the primate
visual system that involve millions of neurons and billions of synaptic connections. Such models are not only
biological but also efficient, robust and very fast, qualities which they share with the human visual system.
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1. Introduction
There are currently a large number of different

systems that can be used for simulating neural
networks. Many have been designed for simulating
networks of artificial neurons and make no attempt
to model the detailed biophysics of neurons. The
underlying units have no structure, and their outputs
typically consist of a single continuous value (often
in the range 0 to 1 or from -1 to +1). While such
systems have been widely used, and have had
applications in a wide range of engineering and
financial areas, few would regard them as being
useful as tools for the computational neuroscientist.

At the other end of the spectrum there are
sophisticated programs such as GENESIS and
NEURON which are good for performing detailed
biophysical simulations that take into account
factors like the dendritic structure and complex
channel kinetics, but where the level of detail makes
it difficult to simulate very large networks
efficiently [2, 3].

In this paper we describe SpikeNET, a neural
network simulation package written in highly
portable C++ code which lies between these two
extremes. It is sufficiently biologically realistic to
make it possible to examine the role of temporal
properties such as synchronous or asynchronous
spiking in neurons, and yet sufficiently simple to
allow real-time simulation of large scale networks
of neurons.

2. Basic Organization
The basic objects in SpikeNET are two

dimensional arrays of relatively simple leaky

integrate-and-fire neurons. Each unit is characterized
by a small number of parameters : a membrane
potential, a threshold, and (in some cases) a
membrane time constant. When an afferent neuron
fires, the weight of the synapse between the two
neurons is added to the target neuron's potential, and
we test to see whether the neuron's potential has
exceeded the threshold. If so, the neuron is reset (by
subtracting the threshold) and the neuron is added to
the list of neurons that have fired in the current time

Figure 1: Basic organization of SpikeNET.
SpikeNET redirects lists of spikes between
different groups of neurons organized in two-
dimensional arrays. Since only a small
percentage of cells fire in each time-step,
communication overheads are kept to a
minimum.
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step. Propagation of activity within SpikeNET
involves sending lists of spikes between neuronal
arrays as illustrated in figure 1. The event-driven
nature of spike propagation is one of the reasons for
the efficiency of SpikeNET as a modeling system.

The basic cellular model can be made more
complex by including a sensitivity parameter which
modulates the effect of incoming action potentials.
We have used this feature to implement a rank-order
coding scheme which we have developed [6].
According to this scheme, the sensitivity parameter
is initially fixed at 1.0, but decreases by a fixed
percentage with each incoming impulse, resulting
in a progressive desensitization of the post-synaptic
neuron which can be thought of in terms of fast
shunting inhibition [1]. The net result of this
mechanism is that activation is maximal only when
the spikes arrive in the order of the weights - with
the highest weight synapses being activated first. If
desired, this desensitization process can be made
specific to particular sets of inputs such that, for
example, inputs from the thalamic could mutually
desensitize each other without affecting the efficacy
of intra-cortical inputs to pyramidal cells. These
more complex models for individual neurons are
designed to mimic some of the effects of the
dendritic structure of neurons while at the same time
avoiding the computationally expensive detailed
modeling that is normally required.

Most neurons are only affected by spikes in
their afferent neurons. However, for certain "input"
cells, corresponding for example to cells in the

retina, we determine spike timing by a direct
calculation that depends on the stimulus. Thus for
retinal ganglion cells, we can perform a local
"Mexican-hat" convolution on the image, and this
value is used to calculate the latency of the unit's
spike - the earliest latencies correspond to those
cells for which the value of the convolution is
highest, whereas lower activation levels result in
progressively longer latencies (figure 2).

3. SpikeNET in Action
To illustrate how SpikeNET can be used, we

will describe a multiscale face recognition network
which extends the face-localization model described
by Van Rullen et al [7], and uses an architecture
loosely based on the organization of the primate
visual system. Input images are first analyzed by
arrays of ON-center and OFF-center cells in the
"retina" at three different spatial scales. These cells
send spikes to neurons in the next layer which
contains neurons tuned for 8 different orientations at
each spatial scale. Lateral interactions between cells
in this layer were used to improve selectivity, and
are similar to those described by Zhaoping Li [4]. A
weak shunting inhibition was also included to make
the neurons sensitive to the order of activation of
their inputs. A third layer in the network contains
neurons selective for faces at the three spatial scales.
The connections between the level 2 orientation
maps and these face-selective units were trained
using a set of 200 photographs of faces and a
supervised learning procedure which attaches high
weights to inputs which are systematically among
the first to fire, and progressively smaller weights
to later firing inputs. Finally, a fourth layer of
neurons contains neurons which integrate the
information at the three different spatial scales in
the previous layer.

As can be seen from Figure 3, the simulation
is successful in that in the final map, the neurons
fire if a face, at any scale, is present in the input
image.

The model is clearly not very realistic. For
example, no attempt was made to model change in
resolution with retinal eccentricity, but the
architecture illustrated here demonstrates how
SpikeNET can be used to create quite complex
multilayer architectures involving large numbers of
units, and it shows how different hypotheses could
be tested and integrated easily in a biologically
plausible neural network.

Figure 2: Basic behavior of an integrate and
fire neuron. The latency of its discharge
depends on the strength of the stimulation.
With strong stimulation, the neuron will reach
threshold quickly whereas with weak
stimulation the latency will increase.
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4. Performance of SpikeNET
SpikeNET has been designed to be

computationally efficient. One of its advantages
comes from the efficient use of RAM. Since the
number of parameters per neuron is kept low, each
neuron can require as little as 16 bytes of memory,
depending on the type of precision required. More
importantly, the use of shared weights means that
one set of weights can be used for all the neurons in
an array. As a result it is perfectly reasonable to
simulate networks with tens of millions of neurons
and billions of synapses on standard desktop
computers.

The second advantage of SpikeNET is speed.
Using a standard G3 Macintosh (PowerPC 750
processor at 266 Mhz), SpikeNET can update
roughly 20 million connections per second, even
when using the sensitivity parameter to modulate
the effect of each synaptic input. This is sufficient
to model a network of 400 000 neurons in real
time, using a time step of 1 ms (assuming 49
connections per neuron, and an average firing rate of
1 spike per second, a value which is a reasonable
estimate for the average firing rate of cortical
neurons). Note that with a more conventional neural
network simulation approach one has to recalculate
every unit at every time step, and so the same
computational power would only allow 20 000
connections to be calculated per millisecond, which

with 49 connections per neuron would limit real-
time simulation to around 400 neurons.

Performance is clearly optimal with shared
weights, but even when each neuron has its own set
of weights (which obviously increases RAM usage
very considerably), speed only drops by a factor of
around 2. Adding a decay to neurons to simulate the
leaky nature of the synaptic integration process adds
roughly 30-40% to the computation time (the exact
value depends on the number of time steps in the
simulation). Finally, note that increasing the time
resolution from 1 ms to 0.1 ms has virtually no
effect on computation time, since the number of
spikes that are propagated does not change.

5. Parallel SpikeNET
Although running SpikeNET on a standard

desktop machine is already reasonably quick, the
very nature of SpikeNET makes it an ideal candidate
for implementation on parallel hardware. The factor
which usually prevents large scale use of parallel
hardware in computing is the amount of
communications needed between processors. For
many problems, one sees little speed up once the
computation has been split between more than 4 or
8 processors. However, with SpikeNET, the only
information that needs to be transferred between
processors are the Spike Lists. The format used by
SpikeNET means that the identity of each neuron

Figure 3 : Multiscale face detection
network using a biological neural
architecture. In each array of neurons,
gray levels are used to indicate the order
in which the cells fire - bright points
correspond to the cells that fired first.
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which fired can be transmitted using only around 1-
2 bytes, and so even a network with 10 million
neurons firing at an average of one spike per second
could be simulated in real time without saturating
the bandwidth of a cluster of processors linked by
conventional fast Ethernet technology. We are
currently developing multiprocessor PCI boards
which will allow real time simulation of even larger
networks of neurons.

6. Final Comments
Although primarily designed as a tool for

modeling biological neural networks, the level of
performance obtained with SpikeNET is such that
in a variety of tasks, processing architectures
developed using SpikeNET can perform at least as
well and in many cases substantially better than

more conventional image processing techniques. To
the biologist, this may not be so surprising. We
know that the processing strategies and architectures
used in the human visual system (for example) are
the end-product of hundreds of millions of years of
intense natural selection. The levels of performance
achieved by the human visual system are orders of
magnitude better than even the most sophisticated
artificial vision systems [5]. By elucidating the
computational principles which make this level of
performance possible, it may well be possible not
only to demonstrate the power of computational
neuroscience as a paradigm for understanding
biology, but may reveal the potential of the
discipline in areas as diverse as machine vision and
artificial intelligence.
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