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ABSTRACT The short response latencies of face selective neurons in the inferotemporal cortex impose major
constraints on models of visual processing. It appears that visual information must essentially propagate in a feed-
forward fashion with most neurons only having time to fire one spike. We hypothesize that flashed stimuli can be
encoded by the order of firing of ganglion cells in the retina and propose a neuronal mechanism, that could be related to
fast shunting inhibition, to decode such information. Based on these assumptions, we built a three-layered neural
network of retino-topically organized neuronal maps. We showed, by using a learning rule involving spike timing
dependant plasticity, that neuronal maps in the output layer can be trained to recognize natural photographs of faces.
Not only was the model able to generalize to novel views of the same faces, it was also remarkably resistant to image
noise and reductions in contrast.

Electrophysiological studies indicate that neurons in
the inferotemporal cortex (IT) respond selectively to
faces only 80-100 ms after stimulus presentation
(Bruce, Desimone, & Gross, 1981; Perrett, Rolls, &
Caan, 1982; Jeffreys, 1996). Within this time, visual
information has to travel through many hierarchical
layers in the visual system: from the retina, spikes
propagate to the lateral geniculate nucleus (LGN), then
to cortical visual areas V1, V2 and V4 before reaching
higher visual areas in the anterior and posterior
inferotemporal cortex (respectively AIT and PIT).
With at least 2 synaptic stages per cortical stage and a
mean synaptic conduction and integration time of
about 10 ms (Nowak & Bullier, 1997), such data imply
that the neurons at most processing stages will only
rarely be able to fire more than one spike before the
next stage has to respond (Thorpe & Imbert, 1989).
Given that at least two spikes would be necessary to
estimate spike frequencies, this raises severe problems
for the conventional view that the neurons are
transmitting the information in the form of a rate code.
It has been shown that, after a flash, the first wave of
spikes can carry a lot of information about the stimulus
(Heller, Hertz, Kjaer, & Richmond, 1995; Tovee &
Rolls, 1995; Sugase, Yamane, Ueno, & Kawano,
1999). In V1, stimuli, presented for 10 ms and
followed by a mask, can still trigger responses that are
orientation selective (Celebrini, Thorpe, Trotter, &
Imbert, 1993). In IT, under similar circumstances (14
ms between images), neurons can still respond
selectively to faces (Keysers, Xiao, Foldiak, & Perrett,
2001). Moreover, psychophysical evidence also
suggests that rapid visual categorization depends
mainly on feed-forward processing (Thorpe, Fize, &
Marlot, 1996; Delorme, Richard & Fabre-Thorpe,
2000) and is no faster for highly familiar images than
for ones that have never been seen before (Fabre-
Thorpe, Delorme, Marlot, & Thorpe, 2001). Thus,

biological and psychophysical studies seem to agree
that highly selective responses in the visual system can
be produced using essentially automatic feed-forward
processing.
We thus need to find neuronal codes consistent with
such constraints. We have argued elsewhere that the
use of relative latency coding, in which the order of
firing across a population of neurons is used to encode
flashed stimuli, offers many advantages (Thorpe, 1990;
Gautrais & Thorpe, 1998, Van Rullen & Thorpe,
2001). It is compatible with the constraint of using
only one spike at each processing stage and seems very
powerful in terms of information encoding: a
population of N neurons can actually discriminate N!
stimuli whereas, within the same time window, a more
classical population rate-code approach could only
encode N+1 stimuli (Gautrais & Thorpe, 1998).
In order to investigate the power of this form of
coding, we ran simulations using SpikeNet (Delorme,
Gautrais, VanRullen, & Thorpe, 1999), a software
package designed for modeling networks containing
hundreds of thousands of asynchronously firing
integrate-and-fire units. We have already shown that
such networks are able to detect faces in natural
photographs (VanRullen, Gautrais, Delorme, &
Thorpe, 1998). In this present paper, we go further by
demonstrating the ability of SpikeNet based networks
to perform a much more challenging face identification
task. The network was required to determine the
identity of a person from novel views that were not
presented during learning. We also analyzed the
performance of the network with noisy and low
contrast inputs.

1. Architecture of the model

With this model, our goal is to demonstrate, within a
neurobiologically plausible framework, the ability of a
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network that uses only one spike per neuron to process
faces (and quite probably other classes of stimuli) in
natural photographs. The network is hierarchically
organized into three layers of retinotopic maps
containing relatively simple integrate-and-fire neurons.
The model was kept as simple as possible but is
roughly based on the architecture of the primate visual
system, with a first layer corresponding to the retina,
the second one for V1 and the last one for V4-IT. The
pattern of connectivity becomes increasingly complex
as processing reaches higher levels. Spikes were
propagated in a feed-forward manner through the
whole network. A major constraint was that, at all
levels of processing, from the retina to higher neuronal
maps, neurons cannot spike more than once, thus
preventing the use of conventional rate-based coding
schemes. Moreover, because iterative loops cannot
occur, the propagation dynamics were purely feed-
forward.
The retina layer included ON and OFF center cells
whose activation levels depended on the local contrast
at a given location in the input image (difference of
gaussian 3x3, normalized to 0). At each location in the
input image, there was a pair of ON and OFF-center
ganglion cells only one of which was allowed to fire.
The neurons used a simple integrate-and-fire
mechanism that meant that spike latency is inversely
proportional to the activation value. This means that
the earliest cells to fire will correspond to the parts of
the input image where the contrast is the highest
(figure 1). We will see later that, as long as the relation

between latency and contrast is monotonously
decreasing, the exact transformation function does not
alter the propagation.
In the second layer of the model, neurons had
orientation selectivity (8 different orientations
separated by 45°). The pattern of connectivity was
implemented using Gabor functions (σ=1 neuronal
unit; ϕ = 0.5 rad/neuronal unit) similar to those used in
previous studies (VanRullen et al., 1998). The
neuronal thresholds were all equal and adjusted in such
a way that for a given image input, only about 10-20%
of the neurons produced a spike.
In the last layer, the number of neuronal maps
corresponded to the number of individuals presented to
the network. Neurons were trained to respond
selectively to the presence of a given person at the
center of their receptive field (which include most of
the input image) and whenever a neuron spiked, it
inhibited all the neurons of the other neuronal maps in
a zone centered on the neuron's location (Gaussian
distribution of synaptic weights of width σ=2 units).
The inhibition was strong enough to prevent units in
other maps from firing. Thus, neuronal discharges can
be seen to be selective to the presence of a given
person at one location in the input image.

2. Neurons

Neurons were simple integrate-and-fire units: they
integrated afferent spikes until they reached a threshold
and fired once. The latency of discharge of the output

Figure 1: A. Neurons can be considered
as integrate-and-fire units with spike
latencies that depend on the local
activation. Strongly activated neurons
will fire first (B > A > F > C > E > D)
and with only 6 neurons, one can encode
6! (i.e. 720) stimulus profiles. B.
Architecture of the model. It was built of
three processing stages: the image was
first decomposed using ON-center and
OFF-center contrast filters whose
outputs are used to determine spike
latencies. In a model of V1, 8 maps of
orientation selective cells (each
separated by 45°) integrated these
spikes. In the last layer, which
corresponds to V4-IT, neurons were
selective to faces (one neuronal map for
each individual). Spike propagation is
feed-forward only and iterative
processes can not occur in the sense that,
even if lateral interactions are present in
the last processing stage, each neuron
can only fire once.
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neuron depended upon the relative order of firing of its
afferent in the following way: let A = { a1 , a2 , a3 ...
am-1 , am } be the ensemble of afferent neurons of
neuron i and W = { w1,i , w2,i , w3,i ... wm-1,i , wm,i } the
weights of the m corresponding connections; let
mod ∈ 0,1] [ be an arbitrary modulation factor. Each
time the neuron receives a spike, the efficiency of
spike integration is divided by this factor, with the
result that the earliest spikes have the strongest impact
on the post-synaptic potential. Such a mechanism
implements a general decoding scheme for input
latencies (Thorpe and Gautrais, 1998).  In the current
simulations, the modulation factor was set so that when
half the active inputs have fired, the effectiveness of
any particular input is reduced by 50%. The activation
level of neuron i at time t is given by
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where order(aj) is the firing rank of neuron aj in the
ensemble A. By convention, order(aj) = +8  if neuron
aj has not fire at time t, setting the corresponding term
in the above sum to zero. This kind of desensitization
function could correspond to a fast shunting inhibition
mechanism.
Neuron i will fire at time t if (and only if)

Activation(i,t) ≥ Threshold(i)

Under such conditions, two key features can be pointed
out. First, the activation of the neuron is highest when
the order of afferent discharges matches the pattern of
weights. If the highest synaptic weights are activated
first, their effectiveness was unaffected by the
modulation. Second, because of this kind of spike
integration, the most strongly activated neurons fired
first. These points have important consequences
because the performance of the model depends on the
dynamics of this process.

3. Learning procedure

The image database included 400 faces resized to
28x23 pixels (10 views of 40 persons) corresponding
to the whole AT&T Cambridge Laboratories face
database (formerly “the ORL face database” available
at http://www.uk.research.att.com/facedatabase.html).
Individuals were of both sexes, from different origins,
with or without various characteristics such as glasses,
beard or moustache. Views were frontal (±30°).
We constructed 3 databases of images (figure 2). Out
of the 10 views of each given individual, 8 were
randomly selected to build the image database used for
the learning phase and the first test phase. To test the
robustness of the model to contrast and luminance
changes, 3 additional versions of all 400 views were
generated. One set had half contrast (pixel values we
recalculated to be in the range 64-191 over mean gray
level 128). The other two also had half contrast but the
gray levels were shifted to either higher or  lower
luminance levels by adding or subtracting 64. Among
these 4 versions, 2 were randomly chosen to be used
during learning and the remaining 2 were used to build
a first test base (thus there were 8x2 images of each
individual in both cases).
Of the 10 views of each individual, 8 had already been
used for learning with the first test base. The remaining
2, together with their 3 additional versions, were used
to test the model with views of each individual that had
never been presented (2x4 images for each of the 40
individuals).
Learning was supervised and implemented as follows:
first, before the propagation of each image of the
learning database, the neuron in the last layer that
corresponds to the location of the center of the face
presented was preselected. The center of the face was
defined as the isobaricenter of the nose and the two
eyes. These locations were determined by hand by
clicking on these features of the image at high
resolution. During the propagation of an image, the
synaptic weight distribution of inputs to the selected

Figure 2: A. Illustration of the database of images used in the learning procedure (LB) and for the first and second test databases
(TB1 and TB2). Database TB1 contained the same views as in the learning set but had different contrast and luminance values. The
second test base (TB2) contained novel views of each individual again with varying contrast and luminance values. B. Results of the
model on these databases. The performance on the LB and TB1 was perfect. On TB2, the drop in performance was only 2.
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Figure 3: Illustration of the propagation of a single face in the network. In the top left corner, an image is presented to the network
(x4 indicating that the actual size of the image was 4 times smaller). It is first decomposed into ON and OFF center contrast and then
into orientation filters (magnified twice for better legibility). The light pixels indicate neurons that were activated at short latencies,
whereas darker pixels correspond to neurons that fired progressively later during propagation. F1 to F40 display the spike activity for
the 40 neuronal maps selective to the 40 individuals. The only neurons to discharge were those at the center of the neuronal map
selective to the individual in the input image (F2). For each neuronal map, a reconstruction of the selectivity of its neuron is also
indicated on the right of its discharge map (magnified twice for better readability). For a neuron of one face selective map, this
reconstruction corresponds to a linear combination of input neurons’ selectivity (i.e. Gabor patches at various orientation and
positions relative to the output neuron location) weighted by the synaptic strengths connecting these input neurons to the output
neuron.

neuron was modified according to the discharge order
of the afferents.
More specifically, for a synaptic weight between
neuron j and the preselected neuron i:
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with the same convention as previously, N being the
number of images of each individual (10 in our case).
As we pointed out previously, after the learning phase,
the neuron is more selective to the pattern that was
presented because the highest synaptic weights tend to

corresponded to the afferent neurons that fired first.
Moreover, because the neurons in the output maps
share the same set of synaptic weights, responses of
neuronal maps were invariant to the location of the
face in the image. Whenever a neuron's synaptic
weight was modified, it affected all the neurons of the
map and each weight converged to a value that
depended on the mean rank of each input to the
neuronal map (in the network, the synaptic weight
value at the end of the learning phase was proportional
to the mean modulation of the synapse). Thus, within a
face selective neuronal map, all the neurons in the
output maps became selective to the "average" view of
one individual (figure 3).
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4. Thresholds

Because of the large number of neuronal maps
selective to faces, the thresholds of output neurons
cannot easily be adjusted by hand as was the case in
the previous studies (VanRullen et al., 1998). Instead,
we used an optimization procedure that adjusted the
threshold of each target map individually so that each
neuronal map responded to the same proportion of
images in the database, regardless of whether they
contained the individual to which they were selective
(with 40 neuronal maps, this corresponded to a
probability of 2.5%). A map was considered as
responding to a given image when the first neuron to
fire in the last layer belonged to this map. We expected
that, if the learning phase was accurate, this procedure
would result in neuronal maps that were selective to

images that contained the views of persons they were
trained on. This algorithm offers the great advantage of
not being supervised.

5. Results

The accuracy of the network was determined by
computing the rate of correct responses relatively to
the number of images (thus random responses would
lead to 2.5% correct responses). As in the case of
threshold optimization, we considered a neuronal map
to respond to a specific image if it contained the first
face selective neuron that discharged. The pattern of
results on the three databases is presented in figure 2. It
shows that the recognition accuracy on the database
used for learning was 100% correct. Performance was
also 100% correct when using the first testing database

Figure 4: Propagation of the whole set of 400 initial images (belonging either to the learning base or one of the two test bases). The
network is a scaled version of the one in figure 3. Here, we only presented the global result of the network superposed with the input
image. A ray-tracing algorithm was used to fill the spaces between each face image in the montage. The size of the image was
910x700 pixels, which requires a network containing roughly 32 million neurons and 245 billion connections. For a correct detection,
a neuron selective to a particular face must discharge within a 4x4 region located at the center of the face. Black squares indicate
correct recognition and white ones false detections.  Despite the size of the network, the simulation could be completed in about 30
minutes of CPU time on a modest desktop computer (Macintosh G3, 266 MHz).
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that contained views from the learning set but with
different contrast and luminance, thus demonstrating
that performance was robust to contrast and luminance
modifications. Using the second test database, the
percentage of correct responses reached 97.5%. This
database composed of views of individual that had not
been presented during the learning phase and thus
reflects the ability to the network to generalize to new
views.
In all the previous simulations, each 23 by 28 pixel
input image contained only one face. Since the total
network size was (2 + 8 + 40) times the number of
pixels in the image, the total number of neurons was
32200 neurons. However, by simply changing the size
of the input image, and thus scaling up the network, we
were able to test the network with a very large image
that contained all the 400 original views of the faces
and involved roughly 32 million neurons. As
illustrated in Figure 4, the results show that even under
these conditions, the model was able to simultaneously
process all the faces and maintain the accuracy of
identification at over 98%.

6. Resistance to noise and contrast reduction

To test the robustness of the model, the images were
degraded by lowering contrast or adding noise. The
decrease in contrast was achieved by limiting the range
of pixel values in the images of the learning database.
The results showed that the network performed well
even with substantial reductions in image contrast.
Indeed, only when contrast was reduced to below 3%

did the network fail (figure 5). At that level of contrast,
the gray levels in the image were restricted to only 1-5
possible values. Performance was also studied when
noise was added to the images during learning
(weighted average of the initial image with an image
made of pixels that took random gray values). As
indicated in figure 5, even with noise, the performance
of the network was still impressive: with 50% noise,
performance is still above 80% correct.
It is worth noting that these high levels of performance
were obtained despite the fact that the discharge
probability was not adjusted for each condition of
noise or contrast. The thresholds of neurons in the face
selective maps were fixed, based on the discharge
probability on the learning database, and were kept
constant for the rest of the simulation. For instance,
with a high percentage of noise, orientation selective
neurons in the second layer did not fire any more, so
face selective neuronal maps could not integrate any
inputs. Similarly, with 1% of residual contrast, there
was simply no further activity in the face-selective
output maps. Lowering the threshold of these output
maps may well allow performance to be improved
even further.

7. Biological relevance

We have already reviewed some of the arguments in
favor of the feed-forward propagation that was
implemented in our model Celebrini et al., 1993;
Thorpe et al., 1996; Delorme et al., 2000; Fabre-
Thorpe et al., 2001). Special emphasis should be given

Figure 5: Resistance to noise and contrast reduction. A. Contrasts were progressively reduced for the images in the learning
database (the contrast reduction corresponded to a reduction in the range of pixel values around a mean gray level 128). This curve
shows that accuracy was still above 95% even when contrast was reduced to 2%. The faces below the abscissa illustrate the contrast
reduction and normalized versions of the images indicate the remaining information available in the image. B. Noise was introduced
in the images of the learning database by a weighted average of the initial image with an image made of pixels that took random
gray values. Thus with 100% noise, no more information about the initial image was present. This curve shows that even with a
noise level of 45%, the accuracy of the network was still above 96%. The images below the abscissa illustrate the deterioration with
noise. For both contrast and noise condition, the images used to illustrate the effects were those which induced the most resistant
responses.
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to recent studies that show that, when presented with a
face to which it responded selectively, neurons in
inferotemporal cortex remained selective even when
images were successively presented in a RSVP (Rapid
Serial Visual Presentation) sequence during only 14 ms
each (Keysers et al., 2001). Under these constraints,
when a neuron responded to a face presented 80-100
ms earlier, V1, V2 and V4 were presumably still
processing the 6-7 subsequent images. Such data argue
strongly in favor of a mainly feed-forward processing
strategy. The simulations presented here demonstrate
that a simple processing mechanism compatible with
these temporal constraints is nevertheless capable of
producing neural responses that are surprisingly
selective. Clearly, we would not wish to argue that the
present simulations provide a realistic view of how
face selective responses are produced. On the other
hand, they do suggest that the computational capacities
of simple feed-forward networks of asynchronously
firing neurons have been seriously underestimated in
the past.
Although there is evidence that single spikes can be
reliable and carry considerable amounts of information
(Mainen & Sejnowski, 1995; Buracas, Zador,
DeWeese, & Albright, 1998), it is still generally
believed that most of the useful information is encoded
in the rate of discharge or in bursts. We would like to
argue that, at least for bursts, this is not contradictory
with our hypothesis. Bursts can be considered as single
events with the exact time and number of spikes within
a burst being rather uninformative. A number of
studies suggest that the latency of the first spikes that
carries considerable information about the stimulus
(Livingstone, Freeman, & Hubel, 1996; Berry,
Warland, & Meister, 1997; Lisman, 1997; Reinagel,
Godwin, Sherman, & Koch, 1999). Because of the fast
depression of excitatory synapses (Markram &
Tsodyks, 1996), the approximation of a single spike
event for a burst may be sufficient and would thus
correspond to the spike integration mechanism
implemented in our network.
More specifically, we need to point out some of the
major simplifications used in the simulations. A first
point is that we did not include a leakage term – the
neurons simply summed the incoming spikes,
modulating the effectiveness of each input by a factor
that depended on the order of that input. While this is
clearly unrealistic, it seems likely that when processing
is very rapid, the effect of including a leakage term
based on a typical membrane time constant of say 10-
20 ms would be minor. Furthermore, by avoiding
leakage currents, the responses of the neurons become
virtually invariant with changes in contrast, since the
final activation state of the output neurons depends
only on the order in which the inputs fire, and not their
precise latency.  The use of this simulation has the
added benefit that the precise form of the intensity-
latency function is much less critical since any

transformation of contrast to latency that corresponds
to a monotonous decreasing function would have given
the same result. For similar reasons, any
desensitization function that is a monotonic decreasing
function of the number of spikes would give
effectively the same pattern of results (Gautrais &
Thorpe, 1998; VanRullen & Thorpe, 2001). Note also,
that the fast desensitization mechanism we used fits
well with intracellular recording studies that show that
after a flash, neuronal conductance changes occur very
rapidly in a few ms and could be related to stimulus-
driven shunting inhibition (Borg-Graham, Monier, &
Fregnac, 1998). Moreover, it is now accepted, at least
in V1, that, after a flash, the integration of excitatory
post-synaptic potentials (EPSPs) interacts with fast
inhibition (Gabbott, Martin, & Whitteridge, 1988;
Celebrini et al., 1993; Hirsch, Volgushev, Pei,
Vidyasagar, & Creutzfeldt, 1993; Alonso, Reid, &
Martinez, 1998) even for the first spike (Hirsch et al.,
1998).
The architecture used in the current simulations was,
with the exception of the inhibitory connections
between retinotopically corresponding zones of the
output maps, a pure feed-forward one. Note, however,
that processing based on a wave of spike propagation
in which no individual neuron fires multiple spikes
could also include contributions from lateral
connections (VanRullen, Delorme, & Thorpe, 2001).
We would argue that, as long as no individual cell is
required to emit more than one action potential, the
network should be considered as functionally feed-
forward, even though anatomically defined feedback
loops are present. This argument might even apply to
connections between processing layers, for instance
between V2 and V1. Rapidly occurring effects of
anatomical feedback (Hupé, James, Payne, Lomber,
Girard, & Bullier, 1998) could still fit within the
processing wave model proposed here as long as the
effects of the top-down activity occur before some V1
neurons have emitted their first spike. For this reason,
the sort of processing mode proposed here is not
incompatible with the large amount of anatomical
feedback and lateral connectivity in the visual system.
Nevertheless, there are undoubtedly other important
roles for top-down connections that would include
attentional modulation and possibly learning.
The learning rule we used, optimal in terms of the rank
order coding hypothesis, could be seen as the most
artificial part of our network. However, we showed
recently that, because the speed of the integration
process is fast compared to the dynamics of
reinforcement/depression, our learning rule could be
linked to spike timing neuronal plasticity (Delorme et
al., 2001). This kind of neuronal plasticity indicates
that the order of input and output spikes is critical in
determining the weight change: if the EPSP occurs
before the postsynaptic neuron spikes, the synapse is
strengthened, otherwise it is depressed (Markram,
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Lubke, Frotscher, & Sakmann, 1997; Bi & Poo, 1998).
Such a rule might well fit with the idea of increasing
the weights of inputs that are systematically among the
first to fire. Finally, although part of the learning
process was supervised, the optimization procedure
was very simple, and served only to equalize discharge
probability in the output maps. No attempt was made
to adjust relative thresholds specifically with respect to
accuracy.

8. Performance of the model
Responses of our network seem remarkably accurate
when compared to other models (for a review see
Gong, McKenna, & Psarrou, 2000). Face recognition
models often use complex dynamic link matching
mechanisms where the image is transformed to obtain
a version which is more or less invariant to the view
presented (Wiskott & von der Malsburg, 1995; Würtz,
1997). Here we showed that this type of preprocessing
might not be necessary, since the model is able to
achieve limited view invariance without any of these
mechanisms. Thus, our model is more related to
standard principal component analysis (Fogelman-
Soulie, Viennet, & Lamy, 1993; Valentin, Abdi,
O'Toole, & Cottrell, 1994) or statistical networks
(Samaria & Harter, 1994). However, the performance
we obtained appears to be quite different from these
models. For instance, on the same image database we
used, a model based on Hidden Markov Chains only
reached an accuracy level of 90% on novel views of
the person presented during learning (Samaria &
Harter, 1994). Although the exact image distribution in
the learning database differed from our simulation, the
network presented here achieved 97.5% correct under
similar conditions. Another network by Mel (1997),
composed of two layers, also performs well in the
categorization of novel views of objects. The first layer
extracts basic features (orientation, color, blobs,
vertices...) and the second one implements a powerful
classifier based on a nearest neighbor classifier
technique derived from artificial intelligence.
However, although the performance of this network on
the classification of novel views was impressive (97%
of correct responses), it dropped very rapidly when
images were altered (80% of correct responses if the
color was removed; 58% under 30% of noise).
Although direct comparisons are always difficult, the
performance of our network appears more robust since
it does not rely on color cues and still reach 98% of
correct responses under 30% of noise.
Our approach, though very simplified, shows that one
can achieve high performance on challenging image
processing tasks using a simple feedforward
architecture based on biological vision. It also suggests
that computational neuroscience would greatly benefit
from paying close attention to the computational
advantages associated with spike-based processing.
This conclusion should not be surprising for the

biologist, since millions of years of evolution have
optimized the visual system to achieve the best
compromise between accuracy and processing speed.
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