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Abstract. We introduce the terms strong sub- and super-Gaussianity to refer to
the previously introduced class of densities log-concave is x2 and log-convex in
x2 respectively. We derive relationships among the various definitions of sub-
and super-Gaussianity, and show that strong sub- and super-Gaussianity are re-
lated to the score function being star-shaped upward or downward with respect
to the origin. We illustrate the definitions and results by extending a theorem of
Benveniste, Goursat, and Ruget on uniqueness of separating local optima in ICA.

1 Introduction

In their seminal work on blind deconvolution, Benveniste, Goursat, and Ruget [3] pro-
posed a definition of sub- and super-Gaussianity, and used it to derive conditions for
blind identifiability of the unmixing deconvolutive system by minimization of the ex-
pected value of certain classes of functions. Unlike the Cardoso-Amari stability condi-
tions [1, 7], which are local stability conditions for separating solutions based on second
derivatives, the BGR conditions based on super- and sub-Gaussianity give conditions
not only for stability, but also for uniqueness of separating local optima, and are based
on first derivatives, not requiring finite curvature. While their work is credited with be-
ing fundamental [10, 8], the BGR definition does not seem to have been employed much
in subsequent development in the ICA/BSS and latent variable communities, though
the definition of super-Gaussianity turns out to coincide with that used to guarantee
monotonicity in the sparse solution of underdetermined systems [15]. In this paper, we
attempt to illuminate the BGR concept of sub- and super-Gaussianity, which we refer to
as strong sub- and super-Gaussianity, by situating the definition in a nested hierarchy
that includes the more commonly used characterizations such as kurtosis, and Gaussian
density crossings. We also extend the class of functions that lead to unique globally
optimal separating solutions for super-Gaussian sources to the more naturally related
class of star-shaped functions.

2 Definitions and Set inclusion relationships

Qualitatively, super-Gaussianity may be thought of as implying both a sharper peak
and heavier tail than the corresponding Gaussian, while sub-Gaussian densities have
⋆ This research was partially supported by NSF grants ISS-0613595 and CCF-0830612.
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flatter peaks, “heavier shoulders”, and lighter tails. Quantitatively, we shall consider
in particular the following four definitions of the classes of sub- and super-Gaussian
densities.

1. Fourth-order cumulant. Let K+ to be the set of symmetric densities with positive
or infinite fourth-order cumulant, or excess kurtosis. Let K− be the set of densities
with negative fourth-order cumulant.

2. Density crossing inequalities. Let DC+ be the set of symmetric, finite variance
densities that cross a Gaussian density of equal variance exactly four times, with
higher density at the origin and on the tails. Let DC− be defined similarly, with
lower density at the origin and on the tails.

3. Strong sub-/super-Gaussianity. Let SS+ be the set of symmetric densities, p(x),
such that log p(

√
x) is convex on (0,∞). or equivalently densities of the form

exp(−f(x)) such that f ′(x)/x is non-increasing on (0,∞). Let SS− be the set
of symmetric densities with log p(

√
x) concave on (0,∞), or equivalently p(x) =

exp(−f(x)) with f ′(x)/x non-decreasing on (0,∞).
4. Convexity of score function. Let SC+ be the set of symmetric densities p(x) =

exp(−f(x)) such that f ′(x) is concave on (0,∞). Let SC− be the set of densities
with f ′(x) convex on (0,∞).

Consider a random variable X with probability density p(x), mean µ = E{X}, and
variance σ2 = E{(X − µ)2}. We can define a measure based on the fourth moment
that is invariant to changes in mean and scale, sometimes called the normalized or
standardized fourth moment, or kurtosis, κ = E{(X−µ)4}/σ4. Employing cumulants,
we find that the first and second cumulants equal the mean and variance, and the fourth
cumulant, γ, is equal to κ − 3. The fourth cumulant is sometimes called the excess
kurtosis, since the kurtosis of the standard Normal density is 3. The most commonly
used definition of sub- and super-Gaussianity involves the sign of the fourth cumulant,
i.e. the kurtosis relative to a Gaussian of equal variance. If the kurtosis exceeds that of
the Gaussian, then X , or its density p(x), is said to be super-Gaussian. Likewise if γ is
negative, or κ < 3, then X is said to be sub-Gaussian.

2.1 Density Crossings and Karlin’s theory

Let q(x) be a Gaussian density with variance equal to that of the symmetric density
p(x). According to [9], the proposition was known since R. A. Fisher that any symmet-
ric density which has sharper peak and heavier tails at unit variance, defined by p(x)
crossing q(x) four times, with p(x) > q(x) near x = 0, and p(x) > q(x) as |x| → ∞,
will have positive fourth cumulant. Finucan [9] proves this proposition.3 The relation-
ship between density crossings and moments in clarified by the work of S. Karlin, which
we shall briefly describe below.

Let p(x) and q(x) be symmetric probability densities. We first note that any sym-
metric function ψ(x) that is increasing on (0,∞) can be used as a normalizing condi-
tion,

∫
ψ(x)p(x)dx =

∫
ψ(x)q(x)dx in the definition of a class of moment-based sub-

and super-Gaussianity. We employ the two sign change form of Lemma A of [11].
3 In [13] the authors prove a similar theorem, where a concept of “over-Gaussianity” is defined

using the criterion of heavier tail only.
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Lemma 1 If
∫
ψ(x)p(x)dx =

∫
ψ(x)q(x)dx, with ψ(x) symmetric and increasing on

(0,∞), then p(x) and q(x) cross each other at least four times, i.e. p(x)− q(x) has at
least two sign changes on (0,∞).

We say that φ(x) is convex with respect to ψ(x) on (a, b) if,∣∣∣∣∣∣
1 ψ(x1) φ(x1)
1 ψ(x2) φ(x2)
1 ψ(x3) φ(x3)

∣∣∣∣∣∣ > 0, a ≤ x1 < x2 < x3 ≤ b

Ordinary convexity is obtained for ψ(x) = x. Just as a convex function can be inter-
sected by a linear function at most two times, if φ(x) is convex with respect to ψ(x),
then φα,β(x) = αψ(x) + β and ψγ,δ(x) = γφ(x) + δ can intersect at most two times
for all α, β, γ, δ. And when α, γ > 0, and φα,β(x) and ψγ,δ(x) intersect two times on
(a, b), then φα,β(x) > ψγ,δ(x) in a neighborhood of b. If φ(x) is convex with respect
to ψ(x), we also say that ψ(x) is concave with respect to φ(x). It is clear from the
definition that φ(x) is convex with respect to ψ(x) on (a, b) if and only if φ(ψ−1(x))
is convex on (ψ(a), ψ(b)).

Karlin and Novikoff’s Lemma B states.

Lemma 2 If
∫
ψ(x)p(x)dx =

∫
ψ(x)q(x)dx, with ψ(x) symmetric and increasing on

(0,∞), and p(x) and q(x) intersect exactly two times on [0,∞), then
∫
φ(x)p(x)dx ≥∫

φ(x)q(x)dx for all φ(x) convex with respect to ψ(x).

Taking q(x) to be Gaussian, ψ(x) = x2, and φ(x) = x4 yields the Finucan-Fisher
theorem. Taking q(x) Gaussian and ψ(x) = |x| in Thm. 1 implies that E{φ(X)} ≥
E{φ(Z)} for GaussianZ and strongly super-GaussianX satisfyingE{|X|} = E{|Z|},
allowing the moment-based definition to extend to random variables which do not have
finite variance.

2.2 Strong sub- and super-Gaussianity

If we assume that log p(x) is convex with respect to log q(x), or vice-versa, then the
normalized versions of p(x) and q(x), which intersect at least two times on (0,∞),
must in fact intersect exactly two times, since otherwise log p(x) and log q(x) would
also intersect more than two times contradicting the relative convexity of log p(x) and
log q(x). We thus have the following theorem.

Theorem 1 Let p(x) and q(x) be unimodal, symmetric probability densities, and let∫
ψ(x)p(x)dx =

∫
ψ(x)q(x)dx, with ψ(x) increasing on [0,∞). Let φ(x) be convex

with respect to ψ(x) on [0,∞). Then if log p(x) is convex with respect to log q(x), then∫
φ(x)p(x)dx ≥

∫
φ(x)q(x)dx.

If we take q(x) to be Gaussian, then the condition that log p(x) be convex (concave)
with respect to log q(x) on [0,∞) is equivalent to saying that − log p(x) is convex (con-
cave) with respect to x2, or − log p(

√
x) is convex (concave) on (0,∞). This condition

forms the definition of strong sub- and super-Gaussianity proposed by [4].
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Definition 1 A symmetric probability density p(x) is strongly super-gaussian if p(
√
x)

is log-convex on (0,∞), and strongly sub-gaussian if p(
√
x) is log-concave on (0,∞).

The requirement that f(x) , − log p(x) be convex or concave with respect to x2

can be expressed differentially in the same way that ordinary convexity can. Letting
x1 tend to x2 in the determinantal definition of relative convexity yields the first order
condition that φ(x) is convex with respect to ψ(x) if φ′(x)/ψ′(x) is non-decreasing.
Thus the differential condition for f(x) convex (concave) with respect to x2 on (a, b)
is that,

f ′(x)/x non-decreasing (non-increasing) on (a, b)

This condition on the first derivative of f(x) can be expressed more intuitively using the
concept of star-shaped functions [6]. Recall that a set S is star-shaped with respect to a
point x ∈ S if every point z ∈ S can be “seen” by x, i.e. for every point y on the line
joining x and z, y ∈ S. Classically, a function is said to be star-shaped if the epigraph
of f(x) (i.e. points (x, y) such that y ≥ f(x)) is star-shaped with respect to the origin.
This definition seems to be overly restrictive. We extend the classical definition of star-
shaped functions to include star-shaped upward and star-shaped downward functions.

Definition 2 A function f(x) is star-shaped upward if the epigraph of f(x) is star-
shaped with respect to the origin. f(x) is star-shaped downward if the hypograph (i.e.
(x, y) such that y ≤ f(x)) is star-shaped with respect to the origin.

Geometrically, if a line segment is drawn joining the origin to the point (x, f(x)), the
slope is given by f(x)/x. If f(x) is star-shaped upward, then by definition for 0 ≤
α ≤ 1, we have f(αx) ≤ αf(x), or f(αx)/(αx) ≤ f(x)/x. Thus an equivalent
defining criterion of star-shaped upward (downward) functions is that f(x)/x be non-
decreasing (non-increasing). We may thus formulate a natural geometric definition of
strong sub- and super-Gaussianity in terms of the (location) score function ψ(x) ,
(d/dx) log p(x): A symmetric density p(x) is strongly super-Gaussian (sub-Gaussian)
if and only if the score function ψ(x) is star-shaped upward (downward).

We note from the functions exp(−|x|p), which are super-Gaussian for p < 2 and
sub-Gaussian for p > 2 (by all definitions) that the score function in this case is convex
in the super-Gaussian case, and concave in the sub-Gaussian case. We might thus define
a (somewhat strict) form of sub- and super-Gaussianity accordingly as the score func-
tion is convex or concave on (0,∞). Since functions that are non-positive and convex
are also star-shaped upward, and functions that are non-positive and concave are star-
shaped downward, we see that the score convex and concave classes SC+ and SC− are
strict subsets of strong super- and sub-Gaussian classes SS+ and SS− respectively.

Putting these relationships together, we have the following.

Theorem 2 We have,
K+ ⊃ DC+ ⊃ SS+ ⊃ SC+

and similarly for the sub-Gaussian sets, with the unique intersection of all sub- and
super-Gaussian sets being the Gaussian density, as illustrated in the Venn diagram in
Figure 2a.
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Fig. 1. Star-shaped functions. (a) Star-shaped downward function corresponding to a strong super-
Gaussian density. (b) Star-shaped upward function corresponding to a (non-unimodal) strongly
sub-Gaussian density. In each function, the points on the graph are “visible” to the origin (joined
by a line segment without intersecting the graph). Star-shaped downward functions must be odd
and non-negative on (0,∞), so that strong super-Gaussians must be unimodal. Star-shaped down-
ward functions may be negative near the origin, and thus strong sub-Gaussians can be bimodal.
Neither require continuity, monotonicity, differentiability, or convexity or concavity.

2.3 Scale Mixture Representations

Gaussian scale mixtures constitute a large class of super-Gaussian densities, closed un-
der convolution, and in fact are the uniformly convergent limit of a sequence functions
that may be called n-times monotone [17].

Definition 3 p(x) is n-times monotone on (a, b) if (−1)kf (k)(x) is non-negative, non-
increasing and convex on (a, b) for k = 0, 1, 2, . . . , n− 2.

Thus n-times monotone functions have derivatives of alternating sign up to order n
when sufficiently differentiable. If this holds for all n, then we have complete mono-
tonicity [16]: A function f(x) is completely monotonic on (a, b) if (−1)nf (n)(x) ≥
0 , n = 0, 1, . . . for every x ∈ (a, b). Bernstein’s theorem [16, Thm. 12b] states: A
necessary and sufficient condition that p(x) should be completely monotonic on (0,∞)
is that p(x) =

∫∞
0
e−txdα(t), where α(t) is non-decreasing on (0,∞). Similarly, the

following theorem of Williamson [17] states the conditions for n-times monotonicity.

Theorem 3 A necessary and sufficient condition that p(x) should be n-times mono-
tonic on (0,∞) is that p(x) =

∫∞
0

(1 − tx)n−1
+ dα(t), where α(t) is non-decreasing

and bounded below on (0,∞).

We define the class M2(n) to be the set of functions n-times monotone in x2:

Definition 4 The class of functions M2(n) consists of all functions of the form,

p(x) =

∫ ∞

0

(1− tx2)n−1
+ dα(t)

where α(t) is non-decreasing and bounded below on (0,∞).
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Fig. 2. (a) Venn diagram showing set inclusions among sub- and super-Gaussian desnties. Gaus-
sian (G) is represented by the central line, and lies in the intersection of all sets except LSM.
K+ and K− are defined by moment-based criteria, e.g. excess kurtosis, and form the outermost
shell. The set of densities satisfying crossing properties with respect to a normalized Gaussian
density, DC+ and DC− form subsets of K+ and K− respectively, as shown by Karlin’s theory.
The set of strong sub- and super-Gaussians, SS− and SS+ are again strict subsets of the density
crossing classes, and the score concave and convex classes, SC+ and SC− are strict subsets of
SS+ and SS=. The class of Gaussian scale mixtures, GSM, is a strict subset of SS+, and strictly
contains the set of Laplacian scale mixtures, LSM, which is itself strictly contained in the class
of score convex densities, SC+. (b) Venn diagram showing set inclusions among strong sub- and
super-Gaussian classes, various scale mixtures, and the log-concave class. The class of densities
n-times monotone in x2, M2(n), tends to GSM as n → ∞. The class of strong super-Gaussians,
SS+ is strictly contained in M2(2), but not in M2(n) for n ≥ 3. The set of unimodal strong
sub-Gaussians is strictly contained in the log-concave class, PF2 (Polya frequency functions of
order 2), which however also contains densities that are in SS+.

By Williamson’s theorem, this is equivalent to (−1)k(d/dx)kp(
√
x) non-negative, non-

increasing, and convex on (0,∞), for k = 1, 2, . . . , n − 2. It is obvious from this
that M2(n) ⊂ M2(m) for m < n. By the Bernstein-Widder theorem, we have the
result that [12, 2], a function p(x) can be represented as a Gaussian scale mixture if and
only if p(

√
x) is completely monotonic on (0,∞). Concavity of − log p(

√
x) follows

from the complete monotonicity of p(
√
x) since sums of log-convex functions are again

log-convex [5, §3.5.2]. Thus, completely monotonic functions, being scale mixtures of
the log-convex on (0,∞) function, exp(−x), are also log-convex on (0,∞). We thus
have the following [14], All Gaussian scale mixtures are strongly super-Gaussian, i.e.
GSM ⊂ SS+. The inclusion is strict.

We also note that since strong super-Gaussianity of p(x) implies that p(
√
x) is con-

vex (and non-negative and non-increasing) on (0,∞), p(x) ∈ M2(2) by Williamson’s
theorem. Hence SS+ ⊂M2(2). M2(n) in fact includes sub- as well as super-Gaussian
densities (the functions (1−x2)n+ are all sub-Gaussian,) but the scale mixture represen-
tation using M2(2) will be useful when we consider the blind deconvolution theorem.
It is unclear whether the class SS+ admits an equivalent scale mixture representation,
but we shall show in the next section that for p(x) ∈ SS+, log p(x) can be represented
by a scale mixture, and thus p(x) can be represented by a type of product mixture.
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We finally note that the classes M2(n), along with the limiting class GSM, are
closed under convolution. The closure of GSM is straightforward, owing to the well-
known closure of the Gaussian density under convolution. In fact, forX and Y Gaussian
scale mixtures, X = ξ

1/2
1 Z1, Y = ξ

1/2
2 Z2 where ξ1, ξ2 are non-negative i.i.d, and Z1

and Z2 are i.i.d. Gaussian, we have X + Y
d
=(ξ1 + ξ2)

1/2Z [12]. The following are
used in the sequel is stated without proof due to space constraints.

Theorem 4 The classes M2(n) are closed under convolution. Furthermore, if p(x) ∈
M2(m) and q(x) ∈M2(n), then

∫
p(x− t)q(t)dt ∈M2(min(m,n)).

Theorem 5 If ψ(x) is star-shaped downward, and p(x) ∈ M2(2), then
∫∞
−∞ p(x −

t)ψ(t)dt is star-shaped downward.

3 Uniqueness of Separating Local Optima in ICA

To illustrate the application of the definition of strong sub- and super-Gaussianity (the
BGR definition) we prove the following theorem.

Theorem 6 Let x = As where si are i.i.d., zero mean, and strongly super-Gaussian.
If φ′(y) is star-shaped downward, then,

L(w) = E{φ
(
wTx

)
}

has a local minimum w∗ with ∥w∗∥ = 1, if and only if w∗TA = c eTj for some j, i.e.
w∗T is a row of the inverse of A up to scaling and permutation.

Proof. Define cT = wTA. Suppose ci ̸= 0 and cj ̸= 0. Define φ̃(y) ,
∫
φ(u)h(y −

u)du, where h(u) is the symmetric probability density function of u =
∑

k ̸=i,j cksk.
We have h(u) ∈M2(2) by Theorem 4, and,

E{φ(wTx)} = E{φ̃(cisi + cjsj)}

with φ̃ star-shaped downward by Theorem 5. Let y = R cos(θ)si + R sin(θ)sj , where
R = 1−

∑
k ̸=i,j w

2
k. Consider the function, (d/dθ)E{φ(y) ; θ}. From [3] we have,

(d/dθ)E{φ(y) ; θ} =

∫ ∞

0

r3
∫ π/4

0

exp
(
−g(r cos(ϕ))− g(r sin(ϕ))

)
sin(2ϕ)

×
(
g′(r cos(ϕ))

r cos(ϕ)
− g′(r sin(ϕ))

r sin(ϕ)

)(
b(ϕ− θ)− b(ϕ+ θ)

)
dϕ dr (1)

where b(ϕ) , φ(r cos(ϕ))+φ(r sin(ϕ)). Note that the function b(ϕ) satisfies the sym-
metries, b(ϕ) = b(−ϕ) = b(π/2− ϕ) by the symmetry in φ. Also, we have,

b′(ϕ) = 1
2r

2 sin(2ϕ)

(
φ′(r sin(ϕ))

r sin(ϕ)
− φ′(r cos(ϕ))

r cos(ϕ)

)
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Since g′(x)/x is non-decreasing (sources are strongly super-Gaussian), and φ′(x)/x is
non-decreasing (φ′(x) is star-shaped downward) on (0,∞), and both are increasing on
a common interval of nonzero measure, we have that the integrand of (1) is positive,
and thus,

(d/dθ)E{φ(y) ; θ} > 0, θ ∈ (0, π/4)

and w cannot be a local optimum, and one of ci or cj must be zero at all local optima.

4 Conclusion

We defined strong sub- and super-Gaussianity, and derived relationships among various
definition of sub- and super-Gaussianity. We extended a result of Benveniste, Goursat,
and Ruget [3] to include star-shaped downward non-linearities. Similar results can be
derived for sub-Gaussians and star-shaped upward functions, but under more restrictive
conditions due to limitations on closure under convolution.
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